CSCI 136
Data Structures &
Advanced Programming

Lecture 30
Fall 2017

Instructors: Bills are Back

Last Time

e Graph Data Structures: Implementation

* Adjacency Array Implementation Details

e Featuring many lterators!

Today s Outline

Greedy Algorithms for Optimization

Lab || : Exam Scheduling
* Defining the problem
e Sketching a design

Adjacency List Implementation Details
More Fundamental Graph Properties

An Important Algorithm: Minimum-cost
spanning subgraph

Lab | | Overview:
Graph Algorithms using structure5

Greedy Algorithms

* A greedy algorithm attempts to find a globally optimum

solution to a problem by making locally optimum
(greedy) choices

e Example: Graph Coloring
* A (proper) coloring of a graph G = (V,E) is an
assignment of a value (color) to each vertex so that
adjacent vertices get different values (colors)

e Typically one strives to minimize the number of colors
used

Greedy Coloring : Math

Here’s a greedy coloring algorithm
Build a collection C=1{C,, ..., C}} of sets of vertices

[=0: C.={} //empry set
while G is has more vertices
Jor each vertex uin G

if u is not adjacent to any vertex of C,

remove u from G and add u to C,
add C.to C

[T —I—;

Return C as the coloring

Greedy Coloring : CS

Here’s a greedy coloring algorithm
Create a structure C to hold a collection of lists

while G is not empty
pick a vertex v in G; create an empty list L; add v to L.

Jor each vertex u=vin G
if u is not adjacent to any vertex of L.
adduto L
remove all vertices of L from G

add l o C

Return C as the coloring

Greedy Coloring

Greedy Coloring

Some observations

e Each list (color class) L is a set of vertices no two of
which are adjacent (an independent set)

* Each color class is maximal: cannot be made any larger
e The hope is that this results in fewer colors being needed
e But the solution is not always optimum!
e This is a very hard problem
* The coloring problem is the same as finding a partition of
the vertex set into independent sets

e Partition means union of disjoint sets

Lab | | : Exam Scheduling

Find a schedule (set of time slots) for exams so that

* No student has two exams in the same slot

* Every course is in a slot

* The number of slots is as small as possible

This is just the graph coloring problem in disguise!

* Each course is a vertex

 Two vertices are adjacent if the courses share students

e A slot must be an independent set of vertices (that is, a
color class)

Lab | | Notes: Using Graphs

e Create a new graph in structure5
e GraphListDirected, GraphListUndirected,
e GraphMatrixDirected, GraphMatrixUndirected

e Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

Lab || : Useful Graph Methods

void add(V label)
* add vertex to graph

void addEdge(V vtxl, V vtx2, E label)
* add edge between vtx| and vtx2
Iterator<V> neighbors(V vtxl)

* Get iterator for all neighbors to vtx|
boolean isEmpty()

e Returns true iff graph is empty
Iterator<vV> iterator()

e Get vertex iterator

V remove(V label)

* Remove a vertex from the graph

E removeEdge(V vLabell, V vLabel2)
e Remove an edge from graph

Adjacency List : Directed Graph

A —>» B —>» C —>» G —>» H
B —>» D —» G —>» H

C —>» B —>» D

D

E » D —>» H

F —» C —>» D

G —>» F

H —>» E

The vertices are stored in an array V]
V[] contains a linked list of edges having a given source

Adjacency List : Undirected Graph

e
L
i

T (@] M m) @ o~} >

R

o~] o~] lw) T (@] >°) (@] (@]

Y Y Y Y Yy ov oy

> > @ W) o > > w

!

The vertices are stored in an array V]
V[] contains a linked list of edges incident to a given
vertex

GraphlList

e Maintain an adjacency list of edges at each
vertex (no adjacency matrix)

* Keep only outgoing edges for directed graphs

e Support both directed and undirected graphs
(GraphListDirected, GraphListUndirected)

Vertex and GraphListVertex

* We use the same Edge class for all graph types
* We extend Vertex to include an Edge list
e GraphListVertex class adds to Vertex class

* A Structure to store edges adjacent to the vertex

protected Structure<Edge<V,E>> adjacencies; // adjacent edges
— adjacencies is created as a SinglyLinkedList of edges

e Several methods

public
public
public
public
public
// and

void addEdge(Edge<V,E> e)

boolean containsEdge(Edge<V,E> e)
Edge<V,E> removeEdge(Edge<V,E> e)
Edge<V,E> getEdge(Edge<V,E> e)
int degree()

methods to produce Iterators...

GraphListVertex

public GraphListVertex(V key){
super (key); // init Vertex fields
adjacencies = new SinglyLinkedList<Edge<V,E>>();

public void addEdge(Edge<V,E> e){
if (!containsEdge(e)) adjacencies.add(e);

public boolean containsEdge(Edge<V,E> e){
return adjacencies.contains(e);

public Edge<V,E> removeEdge(Edge<V,E> e) {
return adjacencies.remove(e);

GraphlListVertex lterators

// Iterator for incident edges
public Iterator<Edge<V,E>> adjacentEdges() {
return adjacencies.iterator();

}

// Iterator for adjacent vertices
public Iterator<V> adjacentVertices() {
return new GraphListAIterator<V,bE>

(adjacentEdges(), label());

GraphListAlterator creates an lterator over vertices based on
the Iterator over edges produced by adjacentEdges ()

GraphListAlterator

GraphListAlterator uses two instance variables

protected AbstractIterator<kEdge<V,E>> edges;
protected V vertex;

public GraphListAIterator(Iterator<Edge<V,E>> i, V v) {
edges = (AbstractIterator<Edge<V,E>>)1i;
vertex = v;

}

public V next() {
Edge<V,E> e = edges.next();
if (vertex.equals(e.here()))
return e.there();
else { // could be an undirected edge!
return e.here();

GraphlListElterator

GraphListElterator uses one instance variable

protected AbstractIterator<Edge<V,E>> edges;

GraphlListElterator

*Takes the Map storing the vertices

*Uses it to build a linked list of all edges

*Gets an iterator for this linked list and stores it, using it in its own
methods

20

GraphlList

To implement GraphList, we use the GraphListVertex
(GLV) class

GraphListVertex class
e Maintain linked list of edges at each vertex

* Instance vars: label, visited flag, linked list of edges

GraphlList abstract class

* Instance vars:
e Map<V,GraphListVertex<V,E>> dict; // label -> vertex
e boolean directed; // is graph directed?

How do we implement key GL methods!?
e GraphlList(), add(), getEdge(), ...

21

protected GraphList(boolean dir){

dict = new Hashtable<V,GraphListVertex<V,E>>();
directed = dir;

public void add(V label) {
1f (dict.containsKey(label)) return;

GraphListVertex<V,E> v = new
GraphListVertex<V,E>(label);

dict.put(label,v);

public Edge<V,E> getEdge(V labell, V label2) {

Edge<V,E> e = new Edge<V,E> (get(labell),
get(label2), null, directed);

return dict.get(labell).getEdge(e);

22

GraphListDirected

* GraphListDirected (GraphListUndirected) implements
the methods requiring different treatment due to
(un)directedness of edges

e addEdge, remove, removeEdge, ...

23

// addEdge in GraphListDirected.java

// first vertex is source, second is destination

public void addEdge(V vLabell, V vLabel2, E label) {
// first get the vertices
GraphListVertex<V,E> vl = dict.get(vLabell);
GraphListVertex<V,E> v2 = dict.get(vLabel2);

// create the new edge
Edge<V,E> e = new Edge<V,E>(vl.label(), v2.label(), label, true);

// add edge only to source vertex linked list (aka adjacency list)

vl.addEdge(e);

24

public V remove(V label) {
//Get vertex out of map/dictionary
GraphListVertex<V,E> v = dict.get(label);

//Iterate over all vertex labels (called the map “keyset”)
Tterator<v> vi = iterator();
while (vi.hasNext()) {

//Get next vertex label in iterator

V v2 = vi.next();

//Skip over the vertex label we're removing
// (Nodes don't have edges to themselves...)
if (!label.equals(v2)) {
//Remove all edges to "label"
//If edge does not exist, removeEdge returns null

removeEdge (v2,label);

}

//Remove vertex from map
dict.remove(label);
return v.label();

25

public E removeEdge(V vLabell, V vLabel2) {
//Get vertices out of map

GraphListVertex<V,E> vl
GraphListVertex<V,E> v2

//Create a “temporary edge connecting two vertices
Edge<V,E> e = new Edge<V,E>(vl.label(), v2.label(),

//Remove edge from source vertex linked list

e = vl.removeEdge(e);

dict.get(vLabell);
dict.get(vLabel2);

if (e == null) return null;

else return e.label();

null, true);

26

