CSCI 136
Data Structures &
Advanced Programming

Lecture 30
Fall 2017

Instructors: |BillJ| —BillL
Bill L| ~——Bill J

Last Time

e Graph Interface
e Adjacency Array Implementation Basic Concepts

* Adjacency List Implementation Basic Concepts

e Structure5 Graph classes + hierarchy

Today s Outline

* Graph Data Structures: Implementation

* Adjacency Array Implementation Details
e Greedy Algorithms for Optimization

e Lab || : Exam Scheduling
* Defining the problem
* Sketching a design

Graph Classes in structure5

Interface Abstract Class
Structure
Graph
A
GraphMatrix
GraphMatrixDirected GraphMatrixUndirected

Class

AbstractStructure

A

GraphlList

GraphlListDirected

Vertex

AN

GraphMatrixVertex

GraphListVertex

Edge

GraphListUndirected

Graph Classes in structure5

Why so many?!

* There are two types of graphs: undirected &
directed

* There are two implementations: arrays and
lists
e Strategy: implement as much code as can be

written without assuming directedness
* (Un)Directed Subclasses implement the rest

We'll tackle array-based graphs first....

Adjacency Array: Directed Graph

T o|mMmMo0|® >

o|lo|lo|o|o|o|o|o|>»
o|lo|lo|o|o|—|o|—|w
o|lo|—|o|lo|o|o|—|0
olo|—|—|o|—|—|o|O
—|lo|lo|o|o|o|o|o|m
o|l—|lo|o|o|o|o|o|m
o|lo|lo|o|o|lo|—|—|0O
o|lo|lo|—|o|lo|—|—|T

Challenges to having our rows/columns be “vertices”
*Can’t use Objects as array indices
How does adding/deleting a vertex work™!

Adjacency Array: Undirected Graph

Halving the Space (not in structureb)

0 0
| |1 I
2 (1|1 {0 |l (0 |I (O 2
3 (0|1 {1 {0 I |l |O 3
4 10 (O (O (I |O |O (O 4
5(0 10 (1 {1 (0|0 |I 5
6 (I |I {0 [0 (O |I |O 6

Ol 23 456789 ..

(i,3j) mapsto i*7+7

Vertex and GraphMatrixVertex

* We need to define a Vertex class
* Unlike the Edge class, Vertex class is not public

e Useful Vertex methods:
V label(), boolean visit(),
boolean isVisited(), void reset()

* GraphMatrixVertex class adds one more useful attribute to
Vertex class
* Index of node (int) in adjacency matrix
int index()
* Why do we only need one int to represent index?

Choosing a Dictionary Structure

We need a structure that will let us retrieve the index
of a vertex given the vertex label (a dictionary)

Many choices

e Vector of Associations:
e Vector<Association<V, GraphMatrixVertex<v>>>

e OrderedVector of Associations
e BinarySearchTree of Associations

Problem: We don’t want to allow multiple vertices
with same label.... [Why?]

WEe'll use the Map Interface [Chapter |5]
e Maps require a unique key for each entry

Digression : Map Interface

* Maps unique keys to values (V is value not vertex!!!)
e Methods for Map<K, V>

int size() - returns number of entries in map
boolean isEmpty() - true iff there are no entries
boolean containsKey(K key) - true iff key exists in map

boolean containsValue(V val) - true iff val exists at least
once in map

V get(K key) - get value associated with key

V put(K key, V val) - insert mapping from key to val,
returns value replaced (old value) or null

V remove(K key) - remove mapping from key to val
void clear() - remove all entries from map

* Weé'll study this more in a week or so....

Implementing the Matrix Model

e Abstract class — partially implements Graph

public abstract class GraphMatrix<V,E> implements Graph<V,E>

* This class will implement features common to
directed and undirected graphs

e |nstance variables

protected int size; //max size of matrix
protected Object data[][]; //matrix of edges
protected Map<V, GMV<V>> dict; //labels -> vertices
// This is structure5.Map, NOT java.util.Map!
protected List<Integer> freeList; //avail indices
protected boolean directed;

GraphMatrix Constructor

(Yes, abstract classes can have constructors!)

protected GraphMatrix(int size, boolean dir) {
this.size = size; // set maximum size
directed = dir; // fix direction of edges

// the following constructs a size x size matrix
// (the “Objects” will be “Edges”)

// (can’'t use generics with arrays!)

data = new Object([size][size];

// label—>index translation table
dict = new Hashtable<V,GraphMatrixVertex<V>>(size);

// put all indices in the free list

freeList = new SinglyLinkedList<Integer>();

for (int row = size-1; row >= 0; row--)
freeList.add(new Integer(row));

GraphMatrix add()

public void add(V label) {
// if there already, do nothing

if (dict.containsKey(label)) return;

Assert.pre(!freelList.isEmpty(), "Matrix not full");
// allocate a free row and column

int row = freelList.removeFirst().intValue();
// add vertex to dictionary

dict.put(label, new GraphMatrixVertex<V>(label, row));

GraphMatrix remove()

public V remove(V label) {

// find and extract vertex

GraphMatrixVertex<V> vert;

vert = dict.remove(label);

if (vert == null) return null;

// remove vertex from matrix

int index = vert.index();

// clear row and column entries

for (int row=0; row<size; rowt+) {
data[row][index] = null;
data[index][row] = null;

}

// add node index to free list
freeList.add(new Integer(index));
return vert.label();

Neighbors Iterator : GraphMatrix

neighbors Iterator

public Iterator<V> neighbors(V label) {

GraphMatrixVertex<V> vert = dict.get(label);

List<V> list = new SinglyLinkedList<V>();

for (int row=size-1; row>=0; row--) {
Edge<V,E> e = (Edge<V,E>)data[vert.index()][row];
if (e != null)

if (e.here().equals(vert.label()))
list.add(e.there());

else list.add(e.here());
}

return list.iterator();

GraphMatrixDirected

e Completes the implementation of
GraphMatrix to ensure graph is directed

e GraphMatrixUndirected is very similar...

* How do we implement GraphMatrixDirected?

e We'll discuss some methods

* Read Ch |6 for complete details...

GraphMatrixDirected

e Constructor

public GraphMatrixDirected(int size) {
// pre: size > 0
// post: constructs an empty graph that may be

// expanded to at most size vertices. Graph
// is directed if dir true and undirected
// otherwise

// call GraphMatrix constructor

super(size,true);

GraphMatrixDirected

* addEdge

// pre: vLabell and vLabel2 are labels of existing vertices
public void addEdge(V vLabell, V vLabel2, E label) {
GraphMatrixVertex<vV> vtxl,vtx2;
vtxl = dict.get(vLabell);
vtx2 = dict.get(vLabel2);

Edge<V,E> e = new Edge<V,E>(vtxl.label(), vtx2.label(),
label, true);

data[vtxl.index()][vtx2.index()] = e;

GraphMatrixDirected

* removekdge

// pre: vLabell and vLabel2 are labels of existing vertices
public E removeEdge(V vLabell, Vlabel2) {

// get indices

int row = dict.get(vLabell).index();

int col = dict.get(vLabel2).index();

// cache old value

Edge<V,E> e = (Edge<V,E>)data[row][col];
// update matrix

data[row][col] = null;

if (e == null) return null;

else return e.label(); // return old value

GraphMatrix Efficiency

Assume Map operations are O(l) (for now)
* |E| = number of edges

* |V| = number of vertices

Runtime of add, addEdge, getEdge, removeEdge,
remove!

Space usage!
Conclusions

e Matrix is good for dense graphs

e Have to commit to maximum # of vertices in advance

20

Efficiency : Assuming Fast Map

GraphMatrix
add O(l)
addEdge O(l)
getEdge O(l)
removeEdge O(1)
remove O(|V])
space O(IV]?)

21

Lab | | Overview:
Graph Algorithms using structure5

22

Greedy Algorithms

* A greedy algorithm attempts to find a globally optimum

solution to a problem by making locally optimum
(greedy) choices

* Example: Walking in Manhattan
e Example: Graph Coloring

* A (proper) coloring of a graph G=(V,E) is an
assighment of a value (color) to each vertex so that
adjacent vertices get different values (colors)

e Typically one strives to minimize the number of colors
used

23

Graph Coloring Example

L0 eet

24

Greedy Coloring : Math

Here’s a greedy coloring algorithm
Build a collection C={C,, ..., C}} of sets of vertices

[=0; C.={} // empry set
while G is has more veriices
Jor each vertex uin G

if u ts not adjacent to any vertex of C,
remove u from G and add u to C,

add C:to C

[T +)-

Return C as the coloring
25

Greedy Coloring : CS

Here’s a greedy coloring algorithm
Create a structure C to hold a collection of lists

while G is not empty
pick avertex v in G; create an empty list [; add v to L

Joreach vertexu=vinG
if u ts not adjacent to any vertex of 1.
adduto L
remove all vertices of L. from G

add l o C

Return C as the coloring

26

Greedy Coloring

O—C

27

Greedy Coloring

Some observations

e Each list (color class) L is a set of vertices no two of
which are adjacent (an independent set)

e Each color class is maximal: cannot be made any larger
e The hope is that this results in fewer colors being needed
e But the solution is not always optimum!
e This is a very hard problem
* The coloring problem is the same as finding a partition of
the vertex set into independent sets

* Partition means union of disjoint sets

28

Lab || : Exam Scheduling

Find a schedule (set of time slots) for exams so that

* No student has two exams in the same slot

* Every course is in a slot

* The number of slots is as small as possible

This is just the graph coloring problem in disguise!

* Each course is a vertex

* Two vertices are adjacent if the courses share students

* A slot must be an independent set of vertices (that is, a
color class)

29

Lab || Notes: Using Graphs

* Create a new graph in structure5
e GraphListDirected, GraphListUndirected,
e GraphMatrixDirected, GraphMatrixUndirected

e Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

30

Lab || : Useful Graph Methods

void add(V label)
e add vertex to graph

void addEdge(V vtxl, V vtx2, E label)
e add edge between vtx| and vtx2
Tterator<V> neighbors(V vtxl)

e Get iterator for all neighbors to vtxl|
boolean isEmpty()

e Returns true iff graph is empty
Tterator<V> iterator()

e Get vertex iterator
V remove(V label)

* Remove a vertex from the graph

E removeEdge(V vLabell, V vLabel2)
¢ Remove an edge from graph

31

