CSCI 136
Data Structures &
Advanced Programming

Lecture 28
Fall 2017

7 A

Instructors: Bill Bill
.

Last Time

* More on Graphs

* Applications and Problems
e Testing connectedness
e Counting connected components
* Breadth-first
e Depth-first search

— And recursive depth-first search

e Directed Graphs : Introduction

Today

* Graph Data Structures: Implementation
e Using the Graph Interface

* Implementing the Graph Interface
e Adjacency Array
* Adjacency List

Implementing Graphs

* Involves a number of implementation
decisions, depending on intended uses

* What kinds of graphs will be availabe!?

e Undirected, directed, mixed
* What underlying data structures will be used!?
* What functionality will be provided
* What aspects will be public/protected/private

* We'll focus on popular implementations for
undirected and directed graphs (separately)

Graphs in structure>

* We want to store information at vertices and
at edges, but we favor vertices

* Let V and E represent the types of information
neld by vertices and edges respectively

* Interface Graph<V,E> extends Structure<V>

* Vertices are the building blocks; edges depend on them

* Type V holds a label for a (hidden) vertex
e Type E holds a label for an (available) edge

* label: Application-specific data for a vertex/edge

Graphs in structure>

* So, the methods described in the Structure
interface are about vertices (but also impact
edges: e.g., clear ())

* We'll want to add a number of similar
methods to provide information about edges,
and the graph itself

Recall: Desired Functionality

* What are the basic operations we need in
order to describe algorithms on graphs?
* Given vertices u and v: are they adjacent?
e Given vertex v and edge e, are they incident!?
e Given an edge e, get its incident vertices (ends)

* How many vertices are adjacent to v! (deg(Vv))

e The vertices adjacent to v are called its neighbors

e Get a list of the neighbors of v (or the edges
incident with v)

Graph Interface Methods

void add(V vLabel), V remove(V vlLabel)

e Add/remove vertex to graph
void addEdge(V vlLabell, V vLabel2, E edgelabel),
E removeEdge(V vlLabell, V vLabel2)

* Add/remove edge between vLabell and vLabel2

boolean containsEdge(V vlLabell, V vlLabel2)

e Returns true iff there is an edge between vLabell and vLabel2
Edge<V,E> getEdge(V vlLabell, V vlLabel2)

* Returns edge between vlLabell and vlLabel2
void clear()

* Remove all nodes (and edges) from graph

Graph Interface Methods

boolean visit(V vLabel)
e Mark vertex as “visited” and return previous value of visited flag
boolean visitEdge(Edge<V,E> e)
e Mark edge as “visited”
boolean isVisited(V vlLabel), boolean isVisitedEdge(Edge<V,E> e)
e Returns true iff vertex/edge has been visited
Iterator<V> neighbors(V vLabel)
* Get iterator for all neighbors of vLabel
* For directed graphs, out-edges only
Iterator<V> iterator()
e Get vertex iterator
void reset()
* Remove visited flags for all nodes/edges

Edge Class

* Graph edges are defined in their own public class

e Edge<V,E>(V vLabell, V vLabel2,
E label, boolean directed)

e Construct a (possibly directed) edge between two labeled
vertices (vLabell - vLabel?)

e vlLabell : here; vLabel2 : there
* Useful methods (getters and setters):

label (), here(), there()
setLabel (), isVisited(), isDirected()

Reachability: Breadth-First Search

BES(G, v) /7 Do a breadih-first search of G starting at v

// pre: all vertices are marked as unvisited

// post: return number of visited vertices
count € 0

Create empty queue (J;
addv to Q, mark v as visited, add v’ to count
While Q isn t empty
current < Q.dequeue();
Jor each unvisited neighbor u of current :

add u to Q, mark u as visited, add ‘'’ to count
relurn count;

How does this translate to code!?

Breadth-First Search

int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo =
todo.enqueue(src) ;
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();

new QueueList<V>();

Iterator<vV> neighbors = g.neighbors(vertex);

while (neighbors.hasNext()) {

V next = neighbors.next();

if (!g.isVisited(next)) {
todo.enqueue (next);

g.visit(next); count++;

}

return count;

Breadth-First Search of Edges

int BFS(Graph<V,E> g, V src) {
int count = 0; Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src); count++;
while (!todo.isEmpty()) {
V vertex = todo.dequeue();
ITterator<v> neighbors = g.neighbors(vertex);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(vertex, next))
g.visitEdge(vertex, next);
if (!g.isVisited(next)) {
todo.enqueue (next);
g.visit(next); count++;

}

return count;

Recursive Depth-First Search

/7 Before furst call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as visied: count=1;
Jor each unvisited neighbor u of v:
count +=DFS(G,u);

relurn count;

How does this translate to code?

Recursive Depth-First Search

int depthFirstSearch(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
ITterator<v> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();

if (!g.isVisited(next))

count += depthFirstSearch(g, next);
}
}

return count;

Beyond the API

* So far we have used the structure5 graph
interface methods in graph traversal algorithms

* How would we design classes that implement
the interface!?

* What data structures should store the vertices?

* What data structures should store the edges!?

Representing Graphs

* Two standard approaches
e Option |: Array-based (directed and undirected)
e Option 2: List-based (directed and undirected)

e We'll look at both

* Array-based graphs store the edge information in a 2-
dimensional array indexed by the vertices

e List-based graphs store the edge information in a (I-
dimensional) array of lists
* The array is indexed by the vertices

e Each array element is a list of edges incident with that vertex

Adjacency Array: Directed Graph

T o|mMmMo0|® >

o|lo|lo|o|o|o|o|o|>»
o|lo|lo|o|o|—|o|—|w
o|lo|—|o|lo|o|o|—|0
olo|—|—|o|—|—|o|O
—|lo|lo|o|o|o|o|o|m
o|l—|lo|o|o|o|o|o|m
o|lo|lo|o|o|lo|—|—|0O
o|lo|lo|—|o|lo|—|—|T

Entry (i,j) stores 1 if there is an edge from i to j; O otherwise
E.G.: edges(B,C) = 1 but edges(C,B) =0

Adjacency Array: Undirected Graph

A|B|C|D|E|F |G|H
Ao I T 100 |0 |I |I
B |l [O (I (I [0 |O (I |I
c(r|rj{oijf{r (ojl@ o {o
Do I {1 joj|rjrjojo
E |0 |O|O I |O]|O |0 |I
F |10 [O (I (I |O|O |I |O
G|l |l {0 (O (O]|I |O|O
Hi|l |I 0|0]|l |0 |0 |O

Entry (i,j) store 1 if there is an edge between i and j; else 0
E.G.: edges(B,C) =1 = edges(C,B)

Adjacency List : Undirected Graph

Y VYV VY ¢
milo|lo]||lo
Y VYV VY ¢

- - () T
Y
T

T (o) M m lw) @] w >

LYy vy

w o~} O T (@] [o~] @] (@]

(1111117
!

> > (@) W) w > > w

The vertices are stored in an array V]
V[] contains a linked list of edges incident to a given
vertex

20

Adjacency List : Directed Graph

A —>» B —>» C —>» G —>» H
B —>» D —» G —>» H

C —>» B —>» D

D

E —>» D —>» H

F —>» C —>» D

G —>» F

H —>» E

The vertices are stored in an array V]
V[] contains a linked list of edges having a given source

21

Graph Classes in structure5

Interface Abstract Class
Structure
Graph
A
GraphMatrix
GraphMatrixDirected GraphMatrixUndirected

Class

AbstractStructure

A

GraphlList

GraphlListDirected

Vertex

AN

GraphMatrixVertex

GraphListVertex

Edge

GraphListUndirected

Graph Classes in structure5

Why so many?!

e There are two types of graphs: undirected & directed

e There are two implementations: arrays and lists
 We want to be able to avoid large amounts of identical

code in multiple classes
e We abstract out features of implementation common to

both directed and undirected graphs

WEe'll tackle array-based graphs first....

23

