CSCI 136
Data Structures &
Advanced Programming

Lecture 27
Fall 2017

Instructors: Bil —— Bill

Last Time

* Introduction To Graphs

e Definitions and Properties: Undirected Graphs

Today s Outline

* More on Graphs

* Applications and Problems
e Testing connectedness

e Counting connected components
— Breadth-first and Depth-first search

* Directed Graphs

 Definition and Properties

* Reachability and (Strong) Connectedness
e Graph Data Structures: Preliminaries

* Graph Interface

A Basic Graph Fact

e Denote the degree of a vertex v by deg(v).
 Thm: For any graph G = (V,E)

Edeg(v)=2|EI

vevV

where |E| is the number of edges in G

* Proof Hint: Induction on |E|: How does
removing an edge change the equation?

* |nstead: Count pairs (v,e) where v is incident with e

Reachability and Connectedness

Defn: A vertex v in G is reachable from a
vertex u in G if there is a path from u to v

v is reachable from u iff u is reachable from v

Def'n: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and vice versa)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

Basic Graph Algorithms

* Weé'll look at a number of graph algorithms

e Connectedness: Is G connected!?

* If not, how many connected components does G have!
* Cycle testing: Does G contain a cycle!?
e Does G contain a cycle through a given vertex!

* If the edges of G have costs:

* What is the cheapest subgraph connecting all vertices

— Called a connected, spanning subgraph

* What is a cheapest path from u to v?

e And more....

Operations on Graphs

* What are the basic operations we need to
describe algorithms on graphs!?
* Given vertices u and v: are they adjacent!
* Given vertex v and edge e, are they incident?
* Given an edge e, get its incident vertices (ends)

 How many vertices are adjacent to v! (degree of v)

e The vertices adjacent to v are called its neighbors

* Get a list of the vertices adjacent to v

* From which we can get the edges incident with v

Testing Connectedness

* How can we determine whether G is
connected?

* Pick a vertex v; see if every vertex u is reachable
from v

e How could we do this?

* Visit the neighbors of v, then visit their neighbors,
etc. See if you reach all vertices

e Assume we can mark a vertex as ‘‘visited”

* How do we manage all of this visiting?

e Let’s try an example...

Reachability: Breadth-First Search

BFS(G, v) /7 Do a breadih-first search of G starting at v

// pre: all vertices are marked as unvisited
count €< 0:

Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn t empty
current < ().dequeue();
Jor each unvisited neighbor u of current :

add u to Q; mark u as visited: count++
relurn count;

Now compare value returned from BFS(G,v) to size of V

BFS Reflections

The BFS algorithm traced out a tree T,: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

T, is called a BFS tree of G with root v (or from v)
The vertices of T, are visited in level-order

This reveals a natural measure of distance
between vertices: the length of (any) shortest
path between the vertices

Distance in Undirected Graphs

Def: The distance between two vertices u and v
in an undirected graph G=(V,E) is the minimum
of the path lengths over all u-v paths.

* Itis the depth of uin T :a BFS tree from v

* We write it as d(u,v). It satisfies the properties
° duu) =0, forallue Vv
° d(uv) =d(vu), foralluveV
* d(uyv) < d(uw) + d(w,v), forall uyw& V

* This last property is call the triangle inequality

Reachability: Depth-First Search

DIS(G, v) /7 Do a depth-first search of G starting at v
// pre: all vertices are marked as unvisited
count €< 0:

Create empty stack S; push v; mark v as visited; count++;
While S isn t empty
current < S.pop();
Jor each unvisited neighbor u of current :

add w to S: mark u as vistted: count++
relurn count;

Now compare value returned from DFS(G,v) to size of V

DFS Reflections

The DFS algorithm traced out a tree different
from that produced by BFS

* |t still consists of the edges connecting a visited
vertex to (as yet) unvisited neighbors

It is called a DFS tree of G with root v (or from v)
Vertices are visited in pre-order w.r.t. the tree

By manipulating the stack differently, we could
produce a post-order version of DFS

And perhaps write DFS recursively....

Recursive Depth-First Search

// Before furst call to DFS, set all vertices to unvisited
//Then call DFES(G,v)
DFES(G, v)
Mark v as visted: count = 1 ;
Jor each unvisited neighbor u of v:
count +=DFES(G,u);

return count;

Is it even clear that this method does what we want?!

Let’s prove some facts about it....

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

*Proof: Induction on length d of shortest path
fromvtow
e Basecase:d=0: Thenv=w vV

* Ind. Hyp.: Assume DFS visits all vertices w of
distance at most d from v (for some d > 0).

* |nd. Step: Suppose now that w is distance d+1
from v. Consider a path of length d+1| from v tow
and let u be the next-to-last vertex on the path

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

* Proof: Induction on length d of shortest path
fromvtow

* The pathis v =vy, V|, Vg, c. , V4= U, Vgy =W
* The edges are implied so not explicitly written!

* By Ind. Hyp., u is visited. At this point, if w has not
yet been visited, it will be one of the unvisited
vertices on which DFS() is recursively called, so it
will then be visited.

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v

ldea: Prove by induction on number of times
DFS is called that DFS is only called on vertices
w reachable from v

Claim: DFS counts correctly the number of
vertices reachable from v

e |dea: Induction on number of unvisited
vertices reachable from v

e DFS will never be called on same vertex twice

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited
nodes reachable from v
Proof: Uses previous two observations

* DFS visits every node reachable from v

* DFS doesn’t visit any node not reachable from v

Directed Graphs

S Graphics

Linear Algebra |

Algorithms
Compilers

Discrete Math

Data Structures
Java < .
Organizaton —— Operating Systems

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the

destination/target is v.

Note: (u,v) # (V,Uu)

Directed Graphs

* The (out) neighbors of B
are D, G, H: B has out-
degree 3

* The in neighbors of B are
A, C: B has in-degree 2

« Ahasin-degree O:itis a
source in G; D has out-
degree O: it is a sink in G

A walk is still an alternating sequence of vertices and edges
U=Vye€,V5€5 VeV € Vi =V

but now e, = (v;_4,v;): all edges point along direction of walk
20

Directed Graphs

A, B, H, E, D is awalk from
AtoD

It's also a (simple) path

D, E, H, B, Ais not a walk
from D to A

B, G, F, C, Bis a(directed)
cycle (it's a 4-cycle)
Sois H, E, H (a 2-cycle)

D is reachable from A (via path A, B, D), but A is not
reachable from D
In fact, every vertex is reachable from A

21

