CSCI 136
Data Structures &
Advanced Programming

Lecture 24
Fall 2017

Instructor: Bills

Administrative Details

Lab 9 today!

You can work with a partner
Bring a design to lab

You can deviate from our suggestions but you
should try to take advantage of

* Abstract base classes/inheritance

e Data structures you've learned

Last Time

* Finished array-based heaps
* Some heapsort observations

e Skew heaps

Today s Outline

e Binary search trees (Ch [4)
e Overview
e Definition
e Some Applications
* The locate method
* Further Implementation
* Tree balancing to maintain small height

* Partial taxonomy of balanced tree species

Search

e Some data structures we have discussed do
not support searching:

e Queue, Stack, PriorityQueue, Heap

* How fast can we search (get (E value)) in:
* Array/Vector
* O(n)
e Linked List
* O(n)
e OrderedVector
* O(log n)

Improving on OrderedVector

 The OrderedVector class provides O(log n)
time searching for a group of n comparable
objects

* add() and remove(), though, take O(n) time in the
worst case (and on average)

e Goal: improve update times without sacrificing
the O(log n) search time

Binary Trees and Orders

* Binary trees impose multiple orderings on
their elements (pre-/in-/post-/level-orders)

* |n particular, in-order traversal suggests a
natural way to hold comparable items

e For each node v in tree
o All values in left subtree of v are < v

 All values in right subtree of vare > v

* This leads us to...

Binary Search Trees

* Binary search trees maintain a total ordering

among elements
e Definition: A BST is either:
* Empty
* A tree where root value is greater than or equal
to all values in left subtree, and less than or equal

to all values in right subtree; left and right
subtrees are also BSTs

* Examples:
data={3,9,2,4,55,0,6}

BST Observations

* The same data can be represented by many
BST shapes

e Observations:

* Searching for a value in a BST takes time
proportional to the height of the tree

e Additions to a BST happen at nodes missing at
least one child

* Removing from a BST can involve any node

BST Operations

e BSTs will implement the OrderedStructure Interface
* add(E item)
e contains(E item)
e get(E item)
e remove(E item)
e Runtime of above operations!?
e All O(h) — where h is the tree height
e iterator()

e This will provide an in-order traversal

BST Implementation

 The BST holds the following items
e BinaryTree root: the root of the tree
e BinaryTree EMPTY: a static empty BinaryTree

* To use for all empty nodes of tree
e int count: the number of nodes in the BST
* Comparator<E> ordering: for comparing nodes

* Note: E must implement Comparable

* Two constructors: One takes a Comparator

BST Implementation: locate

Several methods search the tree:

e add, remove, contains,
We factor out common code: 1locate method

protected locate(BinaryTree<E> node, E v)
e Returns a BinaryTree<E> n in the subtree
whose root is node such that either

* n has its value equal to v, or

e vis notin this subtree and n is the node whose child v
should be

How would we implement locate()?

BST Implementation: locate

BinaryTree locate(Binary1ree root, I value)
if root s value equals value return root
child € child of root that should hold value
if child is empty tree, return root
/7 value not in subtree based at root
else //keep looking

return locate(child, value)

BST Implementation: locate

What about this line!?
child € child of root that should hold value

If the tree can have multiple nodes with
same value, then we need to be careful

e Convention: During add operation, only move to
right subtree if value to be added is greater than
value at node

We'll look at add later

Let’s look at locate now....

The code : locate

protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootvValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)
child = root.right();
else
child

root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else
return locate(child, value);

Other core BST methods

locate(v) returns either a node containing v
or a node where v can be added as a child

locate(E value) is used by:

e public boolean contains(E value)
e public E get(E value)

e public void add(E value)

e Public void remove(E value)

Some of these also use another utility method

e protected BT predecessor (BT root)

Let’s look at contains() first...

Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possiblelLocation = locate(root,value);

return value.equals(possibleLocation.value());

First (Bad) Attempt: add(E value)

public void add(E value) {
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {
BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodeValue,value) < 0)

insertLocation.setRight(newNode); // value > nodeValue
else

insertLocation.setLeft(newNode); // value <= nodeValue
}
count++;

Problem: If duplicate values are allowed in the BST, the left
subtree might not be empty when setLeft is called

Add: Repeated Nodes

Where would a new K be added?
A new V?

