CSCI 136 Data Structures & Advanced Programming

Lecture 24

Fall 2017

Instructor: Bills

Administrative Details

- Lab 9 today!
- You can work with a partner
- Bring a design to lab
- You can deviate from our suggestions but you should try to take advantage of
 - Abstract base classes/inheritance
 - Data structures you've learned

Last Time

- Finished array-based heaps
- Some heapsort observations
- Skew heaps

Today's Outline

- Binary search trees (Ch 14)
 - Overview
 - Definition
 - Some Applications
 - The locate method
 - Further Implementation
 - Tree balancing to maintain small height
 - Partial taxonomy of balanced tree species

Search

- Some data structures we have discussed do not support searching:
 - Queue, Stack, PriorityQueue, Heap
- How fast can we search (get(E value)) in:
 - Array/Vector
 - O(n)
 - Linked List
 - O(n)
 - OrderedVector
 - O(log n)

Improving on OrderedVector

- The OrderedVector class provides O(log n) time searching for a group of n comparable objects
 - add() and remove(), though, take O(n) time in the worst case (and on average)
- Goal: improve update times without sacrificing the O(log n) search time

Binary Trees and Orders

- Binary trees impose multiple orderings on their elements (pre-/in-/post-/level-orders)
- In particular, in-order traversal suggests a natural way to hold comparable items
 - For each node **v** in tree
 - All values in left subtree of \mathbf{v} are $\leq \mathbf{v}$
 - All values in right subtree of \mathbf{v} are $\geq \mathbf{v}$
- This leads us to...

Binary Search Trees

- Binary search trees maintain a total ordering among elements
- Definition: A BST is either:
 - Empty
 - A tree where root value is greater than or equal to all values in left subtree, and less than or equal to all values in right subtree; left and right subtrees are also BSTs
- Examples:data = { 3, 9, 2, 4, 5, 5, 0, 6 }

BST Observations

 The same data can be represented by many BST shapes

Observations:

- Searching for a value in a BST takes time proportional to the height of the tree
- Additions to a BST happen at nodes missing at least one child
- Removing from a BST can involve any node

BST Operations

- BSTs will implement the OrderedStructure Interface
 - add(E item)
 - contains(E item)
 - get(E item)
 - remove(E item)
 - Runtime of above operations?
 - All O(h) where h is the tree height
 - iterator()
 - This will provide an in-order traversal

BST Implementation

- The BST holds the following items
 - BinaryTree root: the root of the tree
 - BinaryTree EMPTY: a static empty BinaryTree
 - To use for all empty nodes of tree
 - int count: the number of nodes in the BST
 - Comparator<E> ordering: for comparing nodes
 - Note: E must implement Comparable
- Two constructors: One takes a Comparator

BST Implementation: locate

- Several methods search the tree:
 - add, remove, contains, ...
- We factor out common code: locate method
- protected locate(BinaryTree<E> node, E v)
 - Returns a BinaryTree<E> n in the subtree
 whose root is node such that either
 - n has its value equal to v, or
 - v is not in this subtree and n is the node whose child v should be
- How would we implement locate()?

BST Implementation: locate

```
BinaryTree locate(BinaryTree root, E value)
     if root's value equals value return root
     child \ child of root that should hold value
     if child is empty tree, return root
           // value not in subtree based at root
     else //keep looking
           return locate(child, value)
```

BST Implementation: locate

- What about this line?
 - child \(\bigcup \) child of root that should hold value
- If the tree can have multiple nodes with same value, then we need to be careful
 - Convention: During add operation, only move to right subtree if value to be added is greater than value at node
- We'll look at add later
- Let's look at locate now....

The code: locate

```
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
       E rootValue = root.value();
       BinaryTree<E> child;
       // found at root: done
       if (rootValue.equals(value)) return root;
       // look left if less-than, right if greater-than
       if (ordering.compare(rootValue, value) < 0)</pre>
           child = root.right();
       else
           child = root.left();
       // no child there: not in tree, return this node,
       // else keep searching
       if (child.isEmpty()) return root;
       else
           return locate(child, value);
```

Other core BST methods

- locate(v) returns either a node containing v or a node where v can be added as a child
- locate(E value) is used by:
 - public boolean contains(E value)
 - public E get(E value)
 - public void add(E value)
 - Public void remove(E value)
- Some of these also use another utility method
 - protected BT predecessor(BT root)
- Let's look at contains() first...

Contains

```
public boolean contains(E value){
   if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}
```

First (Bad) Attempt: add(E value)

```
public void add(E value) {
    BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
    if (root.isEmpty()) root = newNode;
    else {
        BinaryTree<E> insertLocation = locate(root,value);
        E nodeValue = insertLocation.value();
    if (ordering.compare(nodeValue,value) < 0)
        insertLocation.setRight(newNode); // value > nodeValue
    else
        insertLocation.setLeft(newNode); // value <= nodeValue
    }
    count++;
}</pre>
```

Problem: If duplicate values are allowed in the BST, the left subtree might not be empty when setLeft is called

Add: Repeated Nodes

Where would a new K be added?

A new V?