CSCI 136
Data Structures &
Advanced Programming

Lecture 20
Fall 2017

Instructor: Bills

Administrative Details

* Lab 8 is available online
* No partners this week
* Review before lab; come to lab with design doc

* We'll give an overview shortly

Tonight

COMPUITER SCIENCE
PREREGISTRATION
INFO SESSION

Learn about Computer Science courses
offered Spring 2017.

Talk to professors about their classes.
Meet other Computer Science students.

Most importantly... IBAIF IPIIZZZ2A%

Monday, October 30
at 9:00 pm
Biology Lounge
TBL 211

Last Time

* Trees
* Implementation
* Recursion/Induction on Trees
* Applications: Decision Trees

Today

* Trees with more than 2 children
* Representations
* Application: Lab 8: Lexicon!

* Binary Trees

* Traversals
* As methods taking a BinaryTree parameter
e With lterators

Representing Arbitrary Trees

What if nodes can have many children!?

* Example: Game trees

Replace left/right node references with a list of
children (Vector, SLL, etc)

 Allows getting “i*"” child

Should provide method for getting degree of a
node

Degree 0 <>Empty list €<>No children <> Leaf

Lab 8 : Lexicon

e Goal: Build a data structure that can efficiently
store and search a large set of words

* A special kind of tree called a trie

SENCEONo

Lab 8 : Tries

o A trie is a tree that stores words where

* Each node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

e All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

Tries

AN
SECEONC

Now add “dot” and “news”

Now remove “not” and “zen”

Tries

Lab 8 : Lexicon

An inteface that provides the methods

public interface Lexicon {
public boolean addWord(String word);
public int addWordsFromFile(String filename);
public boolean removeWord(String word);
public int numWords();
public boolean containsWord(String word);
public boolean containsPrefix(String prefix);
public Iterator<String> iterator();
public Set<String> suggestCorrections(String

target, int maxDistance);

public Set<String> matchRegex(String pattern);

Lab 8

* Implement a program that creates, updates,
and searches a Lexicon

e Based on a LexiconTrie class
* Each node of the Trie is a LexiconNode

e Analogous to a SLL consisting of SLLNodes

* LexiconTrie implements the Lexicon Interface

e Supports
 adding/removing words
e searching for words and prefixes
* reading words from files

* Iterating over all words

Tree Traversals

* In linear structures, there are only a few basic
ways to traverse the data structure

e Start at one end and visit each element

e Start at the other end and visit each element

* How do we traverse binary trees!

* (At least) four reasonable mechanisms

Tree Traversals

Lucas

/N

Jacob Nambi

/NN

Aria Kelsie Tongyu

In-order: Aria, Jacob, Kelsie, Lucas, Nambi, Tongyu
Pre-order: Lucas, Jacob, Aria, Kelsie, Nambi, Tongyu
Post-order: Aria, Kelsie, Jacob, Tongyu, Nambi, Lucas,
Level-order: Lucas, Jacob, Nambi, Aria, Kelsie, Tongyu

+
Tree Traversals ./ \7
/N
2 3
e Each node is visited before any children. Visit
node, then each node in left subtree, then each

node in right subtree. (node, left, right)
o +%237

e Pre-order

* |n-order

* Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.
(left, node, right)

o 2%3+7

(“pseudocode”)

AN
x 7
N
2 3

Tree Traversals

e Post-order

 Fach node is visited after its children are visited.
Visit all nodes in left subtree, then all nodes in
right subtree, then node itself. (left, right, node)
o 23%7+

* Level-order (not obviously recursive!)

* All nodes of level i are visited before nodes of
level i+1. (visit nodes left to right on each level)

o +¥723

(“pseudocode”)

Tree Traversals

public void pre-order(BinaryTree t) {
if(t.isEmpty()) return;
touch(t); // some method
preOrder(t.left());
preOrder (t.right());

For in-order and post-order: just move touch(t)!

But what about level-order???

/ N\
/ N\

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue Violet
/\

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue *_Violet
T

Orange Yellow

N

Indigo Red

8

GB

L evel-Order Traversal

Green

/\

Blue Violet

T
Orange Yellow

N

Indigo Red

GBV

L evel-Order Traversal

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

Indigo Red

GBVOY

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N
Indigo

GBVOYI

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

GBVOYIR

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

/\
Blue Violet 1
T~ Green
Orange Yellow) 1
/\ todo queue

Indigo Red

L evel-Order Traversal

Green 1
/\ .
Violet
Blue Violet =
/\ Blue
Orange Yellow 1
/\ todo queue
Indigo Red

L evel-Order Traversal

Green
/\
Blue 1
PNy Violet
Orange Yellow 1
/\ todo queue
Indigo Red

GB

L evel-Order Traversal

Green 1
/\
. Yellow
Blue Violet
Py Orange
Orange Yellow 1
/\ todo queue
Indigo Red

GBV

Level-Order Traversal

Green

Blue Violet

todo queue

GBVO

L evel-Order Traversal

Green 1
/\
Red
Blue Violet =
Py Indigo
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOY

L evel-Order Traversal

Green
/\
Blue Violet l
Py Red
Orange Yellow 1
/\ todo queue
Indigo

GBVOYI

L evel-Order Traversal

Green
/\
Blue Violet
T |
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOYIR

L evel-Order Tree Traversal

public static <E> void levelOrder(BinaryTree<E> t) {

if (t.isEmpty()) return;

// The queue holds nodes for in-order processing

Queue<BinaryTree<E>> g = new QueueList<BinaryTree<E>>();

g.enqueue(t); // put root of tree in queue

while(!qg.isEmpty()) {
BinaryTree<E> next = g.dequeue();
touch(next);
if(!next.left().isEmpty()) g.enqueue(next.left());
if(!next.right().isEmpty()) g.enqueue(next.right());

Iterators

* Provide iterators that implement the different
tree traversal algorithms

* Methods provided by BinaryTree class:
* preorderlterator|()
* inorderlterator()

e postorderlterator()

* levelorderlterator()

Implementing the Iterators

* Basic idea

e Should return elements in same order as
corresponding traversal method shown

e Recursive methods don’t convert as easily: must
phrase in terms of next() and hasNext()

e So, let’s start with levelOrder!

Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root)

{

}

todo = new Queuelist<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

public void reset()

{

todo.clear();
// empty queue, add root
1f (!root.isEmpty()) todo.enqueue(root);

public

h

public

Level-Order lterator

boolean hasNext() {
return !todo.isEmpty(Q);

E next() {

BinaryTree<E> current = todo.dequeue();

E result = current.value();

1f (lcurrent.left().isEmpty())
todo.enqueue(current.left());

1f (lcurrent.right().isEmpty())
todo.enqueue(current.right());

return result;

Pre-Order lterator

* Basic idea

* Should return elements in same order as
processed by pre-order traversal method

* Must phrase in terms of next() and hasNext()

* We “simulate recursion’ with stack

e The stack holds “partially processed” nodes

Pre-Order lterator

e Qutline: node - left tree — right tree
|. Constructor: Push root onto todo stack
2. On call to next():

* Pop node from stack

e Push right and then left nodes of popped node onto
stack

e Return node’s value

3. On call to hasNext():
e return !stack.isEmpty()

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green
/\
(Blue | Violet > Blue

/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue
T Violet

Orange Yellow

/\ todo stack

Indigo Red

GB

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet Orange

T Yellow

Orange Yellow
/\ todo stack

Indigo Red

GBV

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

T Indigo
Blue Violet Red

Yellow

todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

Blue Violet Red

Yellow

todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

T Yellow
Orange

/\ todo stack

Indigo Red

GBVOIR

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

/\ todo stack

Indigo Red

GBVOIRY

Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root)

{

todo = new StacklList<BinaryTree<E>>();
this.root = root;
reset();

¥

public void reset()

{
todo.clear(); // stack 1s empty; push on root

1f ((!root.1sEmpty()) todo.push(root);

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

h

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

if (lold.right().isEmpty())
todo.push(old.right());

1f (lold.left().1sEmpty())
todo.push(old.left());

return result;

Tree Traversal Practice Problems

* Prove that levelOrder() is correct: that is, that
it touches the nodes of the tree in the correct
order (Hint: induction by level)

* Prove that levelOrder() takes O(n) time,
where n is the size of the tree

* Prove that the PreOrder (LevelOrder)
Iterator visits the nodes in the same order as
the PreOrder (LevelOrder) traversal method

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

reen

Blue Violet Blue

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

/\

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Indigo

Orange

Violet

todo stack

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
Blue Orange
Violet
Orange | Yellow
/\ todo stack

Indigo Red

BGI

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Red
Violet

todo stack

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
/\

Blue
/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

BGIOR

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

T Yellow

Orange
/\ todo stack

Indigo Red

BGIORYV

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

/\ todo stack

Indigo Red

BGIORVY

In-Order lterator

* Outline: left - node - right
|. Push left children (as far as possible) onto stack
2. On call to next():

e Pop node from stack
e Push right child and follow left children as far as possible

e Return node’s value

3. On call to hasNext():
e return !stack.isEmpty()

Post-Order lterator

e |eft as an exercise...

Alternative Tree Representations

Green e Total # “slots” = 4n
T * Since each BinaryTree
Blue Violet maintains a reference to

/\ left, right, parent, value

Orange Yellow e 2-4x more overhead than

/\ vector, SLL, array, ...

. * But trees capture
Indigo Red P
successor and predecessor
relationships that other
data structures don ' t...

Array-Based Binary Trees

* Encode structure of tree in array indexes

 Put root at index 0

* Where are children of node i?
e Children of node i are at 2i+1| and 2i+2
* Look at example

* Where is parent of node j!
e Parent of node j is at (j-1)/2

ArrayTree Tradeoffs

* Why are ArrayTrees good!

e Save space for links
* No need for additional memory allocated/garbage
collected

* Works well for full or complete trees
e Complete: All levels except last are full and all gaps are at right

e “A complete binary tree of height h is a full binary tree with 0 or
more of the rightmost leaves of level h removed”

* Why bad?
e Could waste a lot of space

e Tree of height of n requires 2"*!-1 array slots even if only
O(n) elements

