CSCI 136
Data Structures &
Advanced Programming

Lecture 16
Fall 2017

The Bills

Administrative Details

e Lab 7: PostScript
* Will be posted this weekend
e Can’t wait!?
e Read about it in Java Structures: Section 10.5

* No partners this time

e Review before lab & come to lab with design doc

Last Time : Linear Structures

 Stack applications
* Postscript
e Mazerunning (Depth-First-Search)
* (Implicit) program call stack

Today: Linear Structures

e Queues
* Implementations Details
* Applications

* |terators

Stacks vs. Queues

e Stacks are LIFO (Last In First Out)
e Methods: push, pop, peek, empty
e Used for:

 Evaluating expressions (postfix)
e Solving mazes

e Evaluating postscript
* JVM method calls

* Queues are FIFO (First In First Out)

* Another linear data structure (implements Linear interface)

* Queue interface methods: enqueue (add), dequeue (remove),
getFirst (get), peek (get)

Queues

tail head |

* Examples:
* Lines at movie theater, grocery store, etc.

e OS event queue (keeps keystrokes, mouse clicks,
etc, in order)

* Printers

e Routing network traffic (more on this later)

Queue Interface

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);
public E dequeue();
public E getFirst(); //value not removed
public E peek(); //same as get()

Implementing Queues

As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> ({

protected Object[] data; //can’t instantiate E[]
int head;

int count; // can be used to determine tail...

}
QueueVector

class QueueVector<E> implements Queue<E> {
protected Vector<E> data;

}
Queuelist

class QueuelList<E> implements Queue<E> {
protected List<E> data; //uses a CircularList

}

Tradeoffs:

* QueueArray:
e enqueue is O(l)
e dequeue is O(l)
* Faster operations, but limited size
e QueueVector:
e enqueue is O(l) (but O(n) in worst case - ensureCapacity)
e dequeue is O(n)
e Queuelist:
e enqueue is O(l) (addlast)
e dequeue is O(l) (CLL removeFirst)

QueueArray

* Let s look at an example...

e How to implement!?

* enqueue(item), dequeue(), size()

A | B = [A | B C | = B C
O kot
o >
3 o
head tail £ head ftail © tail head
head points to front of head and tail “wrap After wrap around,
queue; tail points to next around” array; head > tail in some
empty space (where next when queue is full, cases!

item will be added) head == tail

public class queueArray<E> {

protected Object[] data; // Must use object because...
protected int head;

protected int count;

public queueArray(int size) {
data = new Object[size]; // ... can’'t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count < data.length, ”"Queue is full.");

int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
Assert.pre(count>0, "The queue is empty.");

E value = (E)data[head];
data[head] = null;

head = (head + 1) % data.length;
count--;

return value;

public boolean empty() ({
return count>0;

}

Routing With Queues

Slides by Stephen Freund

moo.cs.williams.edu
(137.165.8.3)

Message:

The Network

www.google.com
[(216.239.37.99)

137.165.8.3

216.239.37.99

"Search for ..."

Moo

(137.165.8.3)

Message:

www.google.com
(216.239.37.99)

137.165.8.3

216.239.37.99

"Search for ..."

Mmoo
(137.165.8.3)

google
(216.239.37.99)

Routing Algorithm

|. Receive message

2. Look up Destination Address
a) Deliver message to Dest
b) Forward to next Router

RI

R4

Router Internals

"

R2
Lookup
Dest Addr
-'.i
A'...
137.165.8.3 RI
216.239.37.99 R4

\/

RI

R4

Buffering Messages

* There may be delays

* Router receives messages faster than it
can process and send

e Some links are slower than others
» Common speeds: 10 Mbs, 100Mbs, 1Gbs.
» Wireless, satellite, infra-red, telephone line, ...

* Hardware problems

e Want to be able to handle short-term
congestion problems

Router Internals

j Lookup

>DDDD

LDest Addr

<

o"

137.165.8.3
216.239.37.99

Rl
R4

\/

— RI

—— R4

-

Firewall

Check Source

500C

bad

S

00—

Lookup
Dest Addr

K

— discard

— RI

—— R4

Priority Scheduling

Priority of
Source/Dest Scheduler

| | S

—> —

Lookup
Dest Addr

o

____/'

Bandwidth Shaper

Classify Limit(100)
Message Scheduler

A

RI
>] Dest Addr
R4

Lookup } <:

N

More On Modular Routers

"The Click Modular Router", Eddie Koller
and Robert Morris, Jr.

Visiting Data from a Structure

* Take a minute and write a method
(numOccurs) that counts the number of times
a particular Object appears in a structure.

public int numOccurs (List data, E o) {
int count = 0;
for (int i=0; i<data.size(); i++) {
E obj = data.get(i);
if (obj.equals(o)) count++;
}

return count;

}
* Does this work on all structures (that we

have studied so far)?

Problems

e get() not defined on Linear structures (i.e.,
stacks and queues)

 get() is “slow on some structures
e O(n) on SLL (and DLL)
e So numOccurs = O(n?)
* How do we traverse data in structures in a
general, efficient way!?
e Goal: data structure-specific for efficiency

e Goal: use same interface to make general

Recall : Structure Operations

size()
1sEmpty ()
add ()
remove ()
clear()
contains()

But also

e Method for efficient data traversal
e iterator()

|terators

e lIterators provide support for efficiently visiting all
elements of a data structure

e An lterator:

* Provides generic methods to dispense values
* Traversal of elements : Iteration
* Production of values : Generation

e Abstracts away details of how to access elements
e Uses different implementations for each structure

public interface Iterator<iE> {

boolean hasNext() — are there more elements in iteration?
E next() — return next element
default void remove() — removes most recently returned value

e Default : Java provides an implementation for remove
e |t throws an UnsupportedOperationException exception

A Simple lterator

e Example: FibonacciNumbers. An iterator for the first
n Fibonacci numbers.

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10; // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;

int temp = current;

current = next;

next = temp + current;

return temp;

Why Is This Cool? (it is)

e We could calculate the it Fibonacci number
each time, but that would be slow

e Observation: to find the nt™ Fib number, we
calculate the previous n-1 Fib numbers...

* But by storing some state, we can easily generate
the next Fib number in O(1) time

* Knowledge about the structure of the
problem helps us traverse the Fib space
efficiently one element at a time

e Let’s do the same for data structures

Iterators Of Structures

Goal: Have data structures produce iterators. How!?
* Define an iterator class for the structure, e.g.

public class VectorIterator<kE>
implements Iterator<gE>;

public class SinglyLinkedListIterator<gE>
implements Iterator<E>;

* Provide a method in the structure that

returns an iterator
public Iterator<E> iterator(){ .. }

Iterators Of Structures

The details of hasNext() and next() depend on the
specific data structure, e.g.

* Vectorlterator holds an array reference and index of
next element
* A reference to the data array of the Vector
e The index of the next element whose value to return

 SinglyLinkedListlterator holds
e a reference to the head of the list
* A reference to the next node whose value to return

lterator Use : numQOccurs

public int numOccurs (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())
if(o.equals(iter.next()))
count++;
return count;

}

// Or...
public int numOccurs (List<E> data, E o) {

int count = 0;

for(Iterator<E> i1 = data.iterator(); i.hasNext();)
if(o.equals(i.next()))
count++;

return count;

Implementation Details

We use both an Iterator interface and an
Abstractlterator class

All specific implementations in structure5 extend
Abstractlterator

e Abstractlterator partially implements lterator

Importantly, Abstractlterator adds two methods
» get() — peek at (but don’t take) next element, and

* reset() — reinitialize iterator for reuse

Methods are specialized for specific data structures

