CSCI 136
Data Structures &
Advanced Programming

Lecture |3
Fall 2017

Instructors: Bill & Bill



Administrative Details

e Lab 5 Today!

* Bring a design document!

* Try to answer questions before lab

Today was supposed
to be Mountain Day...



Last Time

 The Comparable Interface
* Including: how to write a generic static method

e Generic Linear and Binary Search methods

* Basic Sorting

e Bubble, Insertion, Selection Sorts



Today s Outline

e Comparator interfaces for flexible sorting

* More Efficient Sorting Algorithms
e MergeSort
e QuickSort



Basic Sorting Algorithms

e BubbleSort

* Swaps consecutive elements of a[0..k] until largest
element is at a[k]; Decrements k and repeats

* |nsertionSort

e Assumes a[0..k] is sorted and moves a[k+1] left
until a[0..k+1] is sorted; Increments k and repeats

e SelectionSort

e Finds largest item in a[0..k] and swaps it with a[k];
Decrements k and repeats



Basic Sorting Algorithms
(All Run in O(n?) Time)

e BubbleSort

* Might need to perform cn? comparisons and cn?
swaps

* |nsertionSort

* Might need to perform cn? comparisons and cn?
swaps

e SelectionSort

e Might need to perform cn? comparisons but only
O(n) swaps



Lower Bound Notation

Definition: A function f(n) is £2(g(n)) if for some constant c
>0 and all n 2 n,

f(n) = cgn)
So, f(n) is L2(g(n)) exactly when g(n) is O(f(n))

The previous slide says that all three sorting algorithms
have time complexity

e O(n?) : Never use more than c n? operations
e Q(n?) : Sometimes use at least ¢ n? operations

When f(n) is O(g(n)) and f(n) is (g(n)) we write
f(n) is O(g(n))



Comparators

e Limitations with Comparable interface
* Only permits one order between objects
* What if it isn’t the desired ordering?
 What if it isn’t implemented!?

e Solution: Comparators



Comparators (Ch 6.8)

e A comparator is an object that contains a method that
is capable of comparing two objects

e Sorting methods can be written to apply a comparator
to two objects when a comparison is to be performed

e Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by

// whether a is less than, equal to, or greater than b
public int compare(E a, E b);



Example

Note that Patient does

class Person { not implement

protected String name; Comparable or
protected int height; Comparator!
public Patient (String s, int a) {name = s; height = a;}

public String getName() { return name; }

public int getHeight() {return height;}

class NameComparator implements Comparator <Person>{
public int compare(Person a, Person b) {
return a.getName().compareTo(b.getName());

}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {

if (c.compare(a[i], a[max]) > 0) {..}

sort (people, new NameComparator());



Comparable vs Comparator

e Comparable Interface for class X
e Permits just one order between objects of class X
e Class X must implement a compareTo method
* Changing order requires rewriting compareTlo
* And recompiling class X
e Comparator Interface
e Allows creation of “Compator classes” for class X
e Class X isn’t changed or recompiled

e Multiple Comparators for X can be developed
e Sort Strings by length (alphabetically for equal-length)



Selection Sort with Comparator

public static <E> int findPosOfMax(E[] a, int last,
Comparator<iE> c) {
int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)
if (c.compare(a[maxPos], a[i]) < 0) maxPos = 1i;
return maxPos;
}
public static <E> void selectionSort(E[] a, Comparator<E> c) {
for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMax(a,i,c);
swap(a, i, big);

}

e The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;



Merge Sort

A divide and conquer algorithm

Merge sort works as follows:
* If the list is of length O or |, then it is already sorted.

* Divide the unsorted list into two sublists of about half the
size of original list.

e Sort each sublist recursively by re-applying merge sort.
e Merge the two sublists back into one sorted list.
Time Complexity!?
e Spoiler Alert! Weé'll see that it’s O(n log n)
Space Complexity?
e O(n) (with tricks)



8 14
8 14
8 4]
8] [14]
8 14]
I

I

Merge Sort

29
29 1]
29 ]
291 [1]
1 29]
14 29]
9 14

17
17
7]
17
9

17

16

39
39
39]
[39]
39]
16
17

|6
|6
16
16]
9
| 7
29

9
4
9.
[]

16
39°
39°

Transylvanian Merge Sort Folk Dance

split
split

merge
merge

merge



Merge Sort

e How would we implement it?

* First pass...

// recurstvely mergesorts Affrom .. 1o/ “in place”

void recMergeSortHelper(A[/, intfrom, int to)

if (from=to)

mid = (from +t0)/2
recMergeSortHelper(A, from, mid)
recMergeSorttelper(A, mid+1, o)
merge(A, from, (o)

But merge hides a number of important details....



Merge Sort

e How would we implement it?
e Review MergeSort.java
* Note carefully how temp array is used to reduce copying
* Make sure the data is in the correct array!
e Space Complexity?
* Naively, O(n log n)... but MergeSort.java does better...
e O(n) with temporary storage and “ping-pong” merges
* Need an extra array, so really O(2n)! But O(2n) = O(n)



Merge Sort

e How would we implement it?
e Review MergeSort.java
* Note carefully how temp array is used to reduce copying
* Make sure the data is in the correct array!

e Time Complexity?
e Takes at most 2k comparisons to merge two lists of size k
e Takes log n splits/merges for list of size n
e Claim: At most time O(n log n)...



8
8
8

4
4
4]

8] [14]

8
L

\

1 4]
8
8

Merge Sort = O(n log n)

29
29 1]
29 1]
29] [1]
1 29]
14 29]
9 14

17
17
7]
17
9

17

16

39
39
39]
[39]
39]
16
17

|6
|6
16
16]
9
| 7
29

4
9.
4
[]

6]
39°
39°

|

merge takes at most n comparisons per line

split
split

split
merge
merge

merge

L log n

_ log n




Time Complexity Proof

Prove for n = 2% (true for other n but harder)

* Proof by induction. MergeSort performs at most

n * log (n) = 2% * k comparisons of elements

e Base case: k< I:

e 0 comparisons
c0<2'*] Vv



Time Complexity Proof

Prove for n = 2% (true for other n but harder)

* Proof by induction. MergeSort performs at most

n * log (n) = 2% * k comparisons of elements

* Inductive hypothesis: Suppose true for all
integers smaller than k.

o Let T(k) be # of comparisons for 2 elements.
Then:

o T(k) <2k + 2%T(k-1)
e By LLH,, T(k-1) performs < 2! * (k-1) comparisons
o T(k) < 2k+ 2%(2k! * (k-1)) < k*2kv 2



Merge Sort

* Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm

* Bubble, Insertion, Selection sort complexity: O(n?)
e Merge sort complexity: O(n log n)

* Are there any problems or limitations with
Merge sort!

* Why would we ever use any other algorithm
for sorting?

21



Problems with Merge Sort

* Need extra temporary array

* |f data set is large, this could be a problem

* Waste time copying values back and forth
between original array and temporary array

e Can we avoid this?

22



Quick Sort

e Quick sort is designed to behave much like
Merge sort, without requiring extra storage

space

Merge Sort

Quick Sort

Divide list in half

Partition™ list into 2 parts

Sort halves

Sort parts

Merge halves

Join™ sorted parts

23




Recall Merge Sort

private static void mergeSortRecursive(Comparable datal],
Comparable temp[], int low, int high) {
int n = high-low+l;
int middle = low + n/2;
int 1i;

if (n < 2) return;
// move lower half of data into temporary storage
for (1 = low; i < middle; i++) {

temp[i] = data[i];
}
// sort lower half of array
mergeSortRecursive(temp,data,low,middle-1);
// sort upper half of array
mergeSortRecursive(data,temp,middle,high);
// merge halves together
merge (data,temp,low,middle,high);

24



Quick Sort

public void quickSortRecursive(Comparable datal[],
int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order
int pivot;
if (low >= high) return;

/* 1 - place pivot */

pivot = partition(data, low, high);

/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+l, high);

25



Partition

|. Put first element (pivot) into sorted position

2. All to the left of “pivot™ are smaller and all
to the right are larger

3. Return index of “pivot”

Partition by Hungarian Folk Dance

26



Partition

int partition(int data[], int left, int right) {
while (true) {

// find rightmost element less than data[left]

while (left < right && data[left] < data[right])
right--;

if (left < right) {
swap(data,left++,right);

} else {

return left; // partition is sorted, return pivot
}
// find leftmost element greater than data[right]

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data,left,right--);
} else {

return right; // partition is sorted, return pivot



Complexity

* Time:
e Partition is O(n)
* |If partition breaks list exactly in half, same as
merge sort, so O(n log n)
* |f data is already sorted, partition splits list into
groups of | and n-1, so O(n?)
* Space:
* O(n) (so is MergSort)

* In fact, it's n + ¢ compared to 2n + c for MergeSort

— (no extra array is required — swaps happen in-place)

28



3500

3000

2500

2000

1500

1000

500

Merge vs. Quick

0

500000

1000000

1500000

2000000

2500000

3000000

3500000 4000000 4500000

29



Food for Thought...

* How to avoid picking a bad pivot value!?

e Pick median of 3 elements for pivot (heuristic!)

* Combine selection sort with quick sort
* For small n, selection sort is faster
e Switch to selection sort when elements is <=7

* Switch to selection/insertion sort when the list is
almost sorted (partitions are very unbalanced)

* Heuristic!

30



Sorting VWrapup

Time Space
Bubble Worst: O(n?) O(n):n+c
Best: O(n) - if “optimiazed”
Insertion Worst: O(n?) O(n) :n+c
Best: O(n)

Selection Worst = Best: O(n?) O(n):n+c
Merge Worst = Best:: O(n log n) O(n) :2n + ¢
Quick Average = Best: O(n log n) O(n) :n+c

Worst: O(n?) N




More Skill-Testing
(Try these at home)

Given the following list of integers:
292561 101524
|) Sort the list using Bubble sort. Show your work!

2) Sort the list using Insertion sort. . Show your work!

3) Sort the list using Merge sort. . Show your work!

4) Verify the best and worst case time and space
complexity for each of these sorting algorithms as
well as for selection sort.

32



