
Williams College Lecture 25 Brent Heeringa, Bill Jannen

Iterators and Generators

More on Iterators

A Python object is iterable if it supports the iter function—that is, it has the magic method iter defined—and
returns an iterator object. An iterator is an object that supports the next function—that is, it has the magic method
iter defined—, throws a StopIteration when the iterator is empty, and returns itself under an iter call.

Last lecture we defined an iterator class that yields squares of consecutive integers that fall below some threshold.
Here it is again for reference.

1 class SquaresIter:
2
3 def init (self, threshold=None):
4 self. state = 1
5 self. threshold = threshold
6
7 def below threshold(self):
8 return self. threshold is None or self. state∗∗2 < self. threshold
9

10 def iter (self):
11 return self
12
13 def next (self):
14 if self. below threshold():
15 sq = self. state∗∗2
16 self. state += 1
17 return sq
18 else:
19 raise StopIteration()

Suppose we want to define another iterator class that yields squares of consecutive integers that fall below some
threshold and are even. We can take advantage of inheritance to reuse much of this code. Here is an iterator class
EvenSquaresIter that inherits from the SquaresIter class.

1 class EvenSquaresIter(SquaresIter):
2
3 def next (self):
4 sq = super(). next ()
5 while (sq % 2 != 0):
6 sq = super(). next ()
7 return sq

• The EvenSquaresIter class inherits the behavior of SquaresIter for all methods by default, including
the init method.

• We override the the next method so that it calls the next method of its superclass until it reaches an even
square.

• Since the SquaresIter class’s next method raises a StopIteration exception, that exception is
passed to our EvenSquaresIter class’s next method, which is in turn passed to its caller.

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 25 Brent Heeringa, Bill Jannen

So far we have defined iterable classes that were themselves iterators. But consider what happens when we try
to use the SquaresIter iterator to create multiple lists.

>>> si = SquaresIter(10)
>>> si
<SquaresIter object at 0x7f2ae6fd9278>
>>> list(si)
[1, 4, 9]
>>> list(si)
[]

This is becuase our SquaresIter class, like many iterators, yields items in order until all items exhausted,
at which point it raises a StopIteration exception. By its nature, the next () method moves an object’s internal
state in one direction: forward.

We can, however, separate our iterable class from its iterator. In this way, we can create iterables whose data is
not exhausted.

1 class Squares:
2 def init (self, threshold=None):
3 self. threshold = threshold
4
5 def iter (self):
6 return SquaresIter(self. threshold)

>>> sq = Squares(10)
>>> sq
<Squares object at 0x7fb529e3c2b0>
>>> list(sq)
[1, 4, 9]
>>> list(sq)
[1, 4, 9]

We have modified our functions to print each time they are executed. This lets us see what is happening internally.
It looks something like this:

>>> sq = Squares(10)
Squares: __init__()
>>> list(si)
Squares: __iter__()
SquaresIter: __init__()
SquaresIter: __next__()
SquaresIter: __next__()
SquaresIter: __next__()
SquaresIter: __next__()
SquaresIter: raise StopIteration()
[1, 4, 9]

Creating a list first calls iter() to create an iterator object. Then it calls next() on that iterator object until
a StopIteration exception is raised. So each time we create a list from a SquaresIter object, it returns a new
iterator. An individual iterator may exhaust its data, but the Squares object just create a new one when iter()
is called.

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data



Williams College Lecture 25 Brent Heeringa, Bill Jannen

Generators

We can accomplish the same tasks using a generator. Let’s reexamine our previous example where we want to
generate all squares below a certain threshold. We could use the following generator function:

1 def squares gen(threshold=None):
2 i = 1
3 while threshold is None or i∗∗2 < threshold:
4 yield i∗∗2
5 i += 1

Normally, a function exectes line by line, in order, until a return statement is found (or the function ends).
return causes the flow of our code to leave the function; the state of all local variables is lost, and a single value
is passed to the fucntion’s caller.

The yield statement is similar to return in that it causes the flow of code to leave the function, and passes a
single value to the caller. However, the function state is preserved. We may renter the function at the exact same
point, and all of the local variables’ values are restored.

Generators are a powerful tool that let us create iterable objects with very few lines of code.

>>> sg = squares_gen(10)
>>> sg
<generator object squares_gen at 0x7f16396dbd58>
>>> next(sg)
1
>>> next(sg)
4
>>> next(sg)
9
>>> next(sg)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration
>>>
>>> sg = squares_gen(10)
>>> sg
>>> list(sg)
[1, 4, 9]
>>> list(sg)
[]

Fall Semester 2016 3 CS 135: Diving into the Deluge of Data



Williams College Lecture 25 Brent Heeringa, Bill Jannen

Class Exercise: Powers of k

Define an iterator for powers of k with an optional second argument length argument specifying how many of the
first k powers to generate.

1 class PowersOfK:
2
3 def init (self, k, length=None):
4 self. k = k
5 self. pow = 0
6 self. length = length
7
8 def below threshold(self):
9 return self. length is None or self. pow < self. length

10
11 def iter (self):
12 return self
13
14 def next (self):
15 if self. below threshold():
16 v = self. k∗∗self. pow
17 self. pow += 1
18 return v
19 else:
20 raise StopIteration()

Define a generator function for powers of k with an optional second argument length argument specifying
how many of the first k powers to generate.

1 def powers of k(k, length=None):
2 ”””
3 generator for powers of k
4 Args:
5 k (int): base that we exponentiate
6 length (int): how many of the first k powers to generate
7 ”””
8 i = 0
9 while length is None or i < length:

10 yield k∗∗i
11 i += 1

Fall Semester 2016 4 CS 135: Diving into the Deluge of Data


