Williams College Lecture 16 Brent Heeringa

Counting in Binary

The polynomial expansion of the decimal number 362 is 3 x 10% + 6 x 10! + 2 x 10°. Binary numbers work in
exactly the same way, but with powers of 2 instead of powers of 10. So the number 00100101 = 2° + 22 420 = 37.

Data and Encodings

Imagine that we write a small amount of textual data to file a file called output . t xt using the following Python
code.

with open(’output.txt’, "'wt’, encoding="ASCII’) as fout:
print(’De La Soul is Dead”, file=fout,)

If we cat the file in unix we see

$ cat output.txt
De La Soul is Dead

We also know that the data must really just be a sequence of zeros and ones, so we can use the xxd command to see
this underlying representation

$ xxd -b output.txt

0000000: 01000100 01100101 00100000 01001100 01100001 00100000 De La
0000006: 01010011 01101111 01110101 01101100 00100000 01101001 Soul i
000000c: 01110011 00100000 01000100 01100101 01100001 01100100 s Dead
0000012: 00001010

Each line tells you the start of the next byte, in hexadecimal, the next 6 bytes, and then the fextual interpretation
of the bytes. Bytes are just 8 bits of data. Notice that the first byte is 01000100, which is 26 + 22 = 68. The
first character is “D”. This is not a coincidence. When the “D” was written to disk, it was written using the ASCII
encoding. ASCII stands for American Standard Code for Information Interchange. It encodes the character “D”
using the integer 68. ASCII encodes 128 characters, requiring 7 bits, which you can see in the cart below.

Dec Hxoct Char Dec Hx Oct Himl Chr |Dec Hx Oct Himl Chr| Dec Hx Oct Himl Chr
0 0 000 NOL (mall) 32 20 040 3pace| 64 40 100 s#64; @ 96 B0 140 `
1 1 001 30H (start of heading) 33 21 041 ! ! 65 41 101 A 4 | 97 61 141 «#97r a
2 2 00Z 3T (start of text) 34 Z2 04z " " 66 42 10Z «#66; B 98 62 14z b b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C 99 A3 143 c ©
4 4 004 EOT {(end of transmission) 36 24 044 ů § 65 44 104 D D |100 g4 144 d d
5 5 005 EMOQ (encquiry) 37 25 045 % % 63 45 105 «#62; E [101 65 145 &«#1l0Ll; =
6 6 006 ACE [acknowleddge) 35 26 046 & & 70 46 106 «#70; F |102 66 146 f €
7 7 007 BEEL (bhell) 39 27 047 ' 71 47 107 G: G |103 67 147 g: O
8 8 010 BS (backspace) 40 25 050 (| 72 48 110 «#72; H (104 63 150 s#104; h
9 9 011 TAE (horizontal tah) 41 29 051 «#4l:) 73 49 111 I I |105 69 151 i 1
10 A 012 LF (HL line feed, new line)| 42 ZA 052 &#d2; 7 74 4h 117 J T |106 64 152 j 1
11 B 013 ¥T (wertical tab) 43 2B 053 «#43; + 75 4B 113 «#75; K |107 6B 153 k k
12 C 014 FF (NP form feed, new page)| 44 2C 054 &fdd; | 76 4C 114 «#76; L |106 6C 154 g 1
13 D 015 CR [carriage return) 45 2D 055 - - 77 4D 115 M: M |109 6D 155 m: .
14 E 016 30 (shift out) 46 ZE 056 &«#d6; . 78 4E 116 «#78; N |110 6E 156 «#110: 1
15 F 017 5T (shift in) 47 ZF 0587 &«#47; / 79 4F 117 «#79; 0 (111 6F 157 &#lll; o
16 10 020 DLE (data link escape) 48 30 060 -: 0 g0 50 120 «#380; P (112 70 160 p p
17 11 021 DC1l (device control 1) 49 31 061 1 1 gl 51 121 «#81l; 0 |113 71 16l &#l13:; 4
1§ 12 022 DCZ (device control Z) 50 32 062 2 2 82 52 12z Z; R (114 72 1leZ eflld; T
19 13 023 DC3 (device control 3) 51 33 063 3: 3 83 53 123 S: 5 (115 73 1le3 &#ll5: 3
20 14 024 DC4 (device control 4) 52 34 064 4 4 g4 54 124 «#84; T |116 74 164 &#ll6; ©
21 15 025 NAE (negatiwve acknowledge) 53 35 065 5 5 g5 55 125 «#385; U (117 75 165 u: u
Z2 16 026 5YN (synchronous idle) 54 36 066 d; 6 36 56 126 «#86; V (118 76 166 v: v
23 17 027 ETE (end of trans. block) 55 37 067 š 7 g7 57 127 «#87; W |119 77 167 &«#ll9; W
24 15 030 CAN (cancel) 56 35 070 8 8 85 55 130 «#88; X (120 78 170 &#le0; x
25 19 031 EM (end of medium) 57 39 071 «#57: 9 89 59 131 Y: ¥ |121 79 171 &#lil: ¥
26 1l 032 5UB (substitute) 55 3A 072 &«#58; : 90 BA 132 Z £ (122 7A 172 l22; =
27 1B 033 ESC (escape) 59 3B 073 ; ; 91 5B 133 [[|123 7B 173 &#l23;: {
28 1C 034 F3 (file separator) 60 3C 074 &f6l; < 9z 5C 134 \ Y |124 7C 174 «#124; |
29 1D 035 G3 (group Separator) 61 3D 075 s#6l; = 93 5D 135] 1 |125 7D 175 &#l25; }
30 1E 036 B3 (record separator) 62 3E 076 > > 94 5E 136 ^ * |1z 7E 176 &#lag; ~
31 1F 037 US [(unit separator) 63 3F 077 s#63; 7 95 5F 137 _: _ |127 7F 177 «#127; DEL

Source: www.LookupTables .com

Spring Semester 2015 1 CS 135: Diving into the Deluge of Data

Williams College Lecture 16 Brent Heeringa

ASCII is so 1997

There’s a sociology thesis to be written about ASCII—it encodes the English alphabet, numbers, some punctuation,
and a few out-of-date control characters for your dot matrix printer and terminal like a LINE FEED (ASCII 10) and
BELL (ASCII 7)—but nothing more. It is like saying the world is all of Iowa or any other state in the union. But it
is also pervasive, so we need to deal with it intelligently.

Unicode

Unicode recognizes that the world doesn’t start and end with the English alphabet. It associates an integer (called a
code point) with a platonic character, like the symbol “@”” (U+0040, 64 in decimal) or a glyph of an anchor (U+2693,
9875 in decimal). There are 1,114,112 code points overall, in the range from 0 to 10FFFF in hexadecimal.

Encodings

One represents unicode through encodings. For example, one could represent strings of characters as code points
directly. For example, we could just use a standard 32-bit integer to store a code point and then strings would be lists
or arrays of integers. This has several disadvantages:

e Because code points are grouped by locale, most of the bits in single encoded code point will be 0. This seems
wasteful.

e Each character requires 21 bits to represent it. Because the basic unit of addressable memory on a computer
is the byte, which is traditionally 8-bits, we are really working with 24 bits, so even going with a fixed-length,
3-byte encoding seems wasteful.

e Different processors order bytes differently, so a fixed-length encoding is not portable.

UTF-8

UTEF-8 stands for Unicode Transformation Format. The 8 means that encodings are done in 8-bit blocks (called
octets by UTF-8). UTF-8 is a variable-length encoding, meaning that depending on which unicode code point it’s
transforming, the corresponding encoding will either be 1,2,3 or 4 bytes long. Here is a schematic of how UTF-8
encodes data.

Bits in code pt | First code pt | Last code pt | # Bytes Byte 1 Byte 2 Byte 3 Byte 4
7 U+0000 U+007F 1 OXXXXXXX
11 U+0080 U+07FF 2 110xxxxx | 10XxxXXXXX
16 U+0800 U+FFFF 3 1110xxxx | 10xxxxxx | 10XXXXXX
21 U+10000 U+1FFFFF 4 11110xxx | 10xxxxxx | 10xxxxxx | 10xxXxXXxx

Here are several advantages of UTF-8.

e UTF-8 is compatible with ASCII because it encodes all ASCII characters as ASCII values;

e UTF-8 can encode all the unicode code points; and

e UTF-8 is self-synchronizing—one can use the byte signatures to both determine the number of bytes and the

order of the bytes.

Spring Semester 2015

CS 135: Diving into the Deluge of Data

Williams College Lecture 16 Brent Heeringa

Unicode in Python

The str type in Python is a sequence of unicode code points. Those points are stored compactly, under-the-hood,
so space is not wasted. Given a character, one can grab it’s code point using the ord built-in function.

>>> print(” ”.join([str(ord(c)) for c in 'De La Soul is Dead’]))
>>>681013276973283 111117108 32 105 11532 68 101 97 100

One can convert a unicode code point into a character using the built-in function chr.

>>> codepoints = [int(x) for x in 768 101 3276973283 111 117 108 32 105 115 32 68 101 97 100”.split()]
>>> print(”” join([chr(cp) for cp in codepoints]))
>>> De La Soul is Dead

One can embed unicode code points in hexadecimal directly in string literals using the
u preface, so

>>> "\u2603’

represents a picture of a snowman.

Encoding Unicode

Writing strings to files mean encoding them in some format. By default this is UTF-8, but Python supports writing in
many different formats including ASCII. Use the encode method of Python to encode unicode data in a particular
format.

>>> "De La Soul is Dead".encode ("utf-8")
b’De La Soul is Dead’

Notice the b prefix means this is binary data—the interpreter is printing those characters to the screen by actually
decoding them (it will do this for any ASCII character) but if we throw on a unicode star (U+2b50) we’ll see some
raw hex.

>>> "De La Soul is Dead\u2b50".encode ("utf-8")
b’De La Soul is Dead\xe2\xad\x90’

Notice that in UTF-8, it takes three bytes to encode a star. These bytes in binary are

>>> " " jJoin (["{0:b}".format (x) for x in "\u2b50".encode ("utf-8")])
11100010 10101101 10010000

So if we wrote this string out to disk

with open(’output2.txt’, *wt’) as fout:
print(”De La Soul is Dead\u2b50”, file=fout, end=""")

we see that the final three bytes are faithfully preserved and xxd does not know how to decode them, so it uses the
period. Here you see firsthand that UTF-8 uses ASCII encodings for ASCII characters and is also variable length.

$ xxd -b output2.txt

0000000: 01000100 01100101 00100000 01001100 01100001 00100000 De La

0000006: 01010011 01101111 01110101 01101100 00100000 01101001 Soul i
000000c: 01110011 00100000 01000100 01100101 01100001 01100100 s Dead
0000012: 11100010 10101101 10010000

Spring Semester 2015 3 CS 135: Diving into the Deluge of Data

