
Williams College Lecture 8 Brent Heeringa, Bill Jannen

1 Lists

To construct a list, one can use the list constructor, so l = list() returns an empty list. The constructor also
takes any iterable object in Python and constructs a list from it. For example list(range(5)) returns a new
list equal to [0,1,2,3,4] and list("cow") returns a new list equal to [’c’,’o’,’w’]. One can use the
square bracket notation to create lists too, so [3,1,4,1,5,9] returns an appropriate list of length 6.

Operations

Lists, like strings, are sequences of objects, so they support the sequence operations:

• indexing,

• slicing, and

• length.

These operations are not side-effecting—they won’t affect the old list—however, there are many differences between
lists and strings:

• Lists are mutable, which means that we can change the contents of the list several of its methods. If l is a list,
then the following operations are all popular methods for manipulating l:

index assignment l[i] = obj means replace the object at index i of l with obj.

appending l.append(obj) means append obj to l so that the length of l increases by one.

inserting l.insert(i,obj) means insert obj at index i of l; the length of the list increases by one.

popping l.pop(i) means delete the the object at index i; l.pop() means delete the last object.

deleting del l[i] means delete the object at index i of l; this decreases the length of the list by one.

removing l.remove(obj) means remove the first item in l that equals obj.

• Sort lists using the sort() method.

• Lists are heterogenous, which means they can simultaneously store objects of different type.

• Lists are really adjustable arrays, which we will examine in detail later.

• Lists support list comprehensions, which allow you to make new lists from other iterables. For example, to
generate the first five non-negative multiples of 5, one could write:

[5*i for i in range(10)]

Let l = list(range(10)). What does l equal after the following operations?

l.append(11)
del l[0]
l.remove(1)

Let l = list(‘sub pop’). What does l equal after the following operations?

l.insert(3,‘*’)
l[len(l)-2] = ‘u’
l.append(‘!’)
l.append(l.pop())

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 8 Brent Heeringa, Bill Jannen

2 Searching

A fundamental operation in computer science in search. Suppose we have the following list of strings:

l = ["The Strokes", "Bon Iver", "Arcade Fire", "The Black Keys",
"Pixies", "The White Stripes", "Neutral Milk Hotel",
"The National", "Yo La Tengo"]

If we call the sort method l.sort() then the list l of strings becomes:

l = [’Arcade Fire’, ’Bon Iver’, ’Neutral Milk Hotel’, ’Pixies’,
’The Black Keys’, ’The National’, ’The Strokes’,
’The White Stripes’, ’Yo La Tengo’]

Notice that sort is side-effecting—it changes the current list. The sort method returns None so you should not
use it where you expect a return value. If you want a new sorted list, then call sorted(l) which makes a copy of
l, sorts it, and then returns it.

Suppose we want to be able to find a string in the list that begins with a certain prefix.
Call this function find startswith(last,searchstr) and consider it’s natural definition below:

1 def find startswith(lst,searchstr):
2 ’’’linear search through lst to find the first string starting with searchstr’’’
3 for s in lst:
4 if s.startswith(searchstr):
5 return s
6 return None

Question 1. In the worst case, if lst has n elements, how many elements will find startswith examine?

Can we do better?

1 def find startswith(lst, searchstr):
2 low = 0
3 high = len(lst)−1
4 while (low <= high):
5 mid = (high + low) // 2
6 if lst[mid].startswith(searchstr):
7 return lst[mid]
8 elif lst[mid] < searchstr:
9 low = mid+1

10 else:
11 high = mid−1
12 return None

Question 2. In the worst case, if lst has n elements, how many elements will find startswith examine?

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data


