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Figure 1: The CoAutoML Framework. Our system integrates three core components: (1) a conversational LLM interface (left) for
ML task guidance, (2) a visual workflow panel (center) displaying step-by-step progress (data upload — domain knowledge —
test-cases — ML task formulation — AutoML process), and (3) an interactive test-cases flowchart (right) aligning with novices’
mental models of input-output mapping.

Abstract

An explosion in automated machine learning (AutoML) tools has
led to numerous back-end frameworks enabling users with machine
learning expertise to leverage the power of Machine Learning (ML).
However, to ensure that ML tools are openly accessible to all who
stand to benefit from their predictive and analytical powers, we
must examine how true novices without ML knowledge interact
with AutoML tools, perceive ML, and form their mental models of
ML processes. We achieve this goal with our user-facing framework

that combines the understandability of conversation with Large
Language Models (LLMs) and the interface scaffolding necessary
to support true machine learning novices in building their own
models. We then evaluate the effectiveness of our framework in
a user study. Results show that our ML-novice participants felt
confident performing ML tasks independently, citing the tool’s ease
of use and its ability to help them formalize their ML goals.
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1 Introduction

As Artificial Intelligence (AI) moves towards becoming a General
Purpose Technology (GPT) of the 21st century [3, 25], the ability to
create Al systems becomes more confined to a smaller set of people—
AI/ML experts. Many steps of a machine learning pipeline are highly
iterative and could be automated. As a result, Automated Machine
Learning (AutoML) [32] emerged with the goal of automating parts
of the ML process, including data processing, feature engineering,
model selection, and hyper-parameter optimization. The ultimate
goal of AutoML is to automate all steps of machine learning, from
dataset processing to model deployment. This would have the effect
of easing the job for Al experts, as well as democratizing Al by
enabling non-experts to build their own ML models.

However, most current AutoML tools such as Auto-WEKA, Google
AutoML, and H20 AutoML [4, 5, 23] primarily cater to the ML expert
audience. They overlook the unique needs of non-experts, those
who may possess domain knowledge but have little ML exper-
tise. Opening up this ability to everyday users could allow citizen
scientists, journalists, teachers, etc. to solve issues in their local
communities. However, studies reveal a low user adoption of Au-
toML tools [28] even among experts. Recognizing this challenge,
the HCI community has recently started to advocate for a more
“Human-Centered AutoML Paradigm” to address the limitations of
existing ML systems by empowering non-experts to engage directly
in model development [1, 15, 19]. Furthermore, few research efforts
have bridged the gap between novices and ML in practice. Existing
studies primarily focus on users with prior technical backgrounds
or propose conceptual guiding frameworks without building em-
pirical tools to test their effectiveness [15, 33, 35]. To that end, we
run a baseline study showing that ML novices cannot use existing
AutoML systems and then build an empirical AutoML framework
specifically catered to a non-expert’s mental model of Machine
Learning. By integrating Large Language Models (LLMs) into our
AutoML tool, we enable non-experts to communicate their require-
ments directly to the platform, reducing reliance on intermediaries
such as data scientists.

Building on principles from human-centered AutoML and recent
advancements in LLM-based AutoML, we propose CoAutoML, a
novel framework that integrates mixed-initiative LLM interfaces,
Test-Driven Machine Teaching (TDMT), and LLM-based AutoML
tools. The proof-of-concept system in this article demonstrates the
feasibility of creating human-facing AutoML solutions for novice
users. This project marks a move toward more accessible Al allow-
ing people from all walks of life to engage in ML-creation process
and solve issues in their local communities without extensive ML
expertise. Furthermore, by allowing non-expert users to deeply
engage in and understand how an ML algorithm works in an acces-
sible manner, we can equip them with the necessary critical lens to
navigate the modern world where ML has become so ubiquitous.
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2 Prior Work
2.1 Automated Machine Learning

Conventional ML processes can be divided into four primary phases [7]:

data preparation, feature engineering, model creation, and model
evaluation. In the first stage, data scientists carry out a number
of tasks to clean and pre-process the raw data. This could involve
encoding the categorical variables, normalizing, handling missing
values, and more. Since the quality of the input data directly affects
how well the developed models perform in the future, this is one of
the most important phases in machine learning. The next step is fea-
ture engineering, which involves extracting relevant features from
the data, transforming them, or creating new features. The third
stage is model generation, during which users explore a range of
machine learning algorithms to identify the most suitable one. This
step also involves tuning the hyperparameters for some models,
which cannot be learned and must be hand-picked by a human. The
last step is model evaluation, when data scientists evaluate the ML
models’ performance using evaluation metrics such as accuracy,
precision, recall, F1 score, etc. to examine how well the models
perform on unseen data.

Throughout this process, data scientists frequently perform all
these steps, often by trial and error. For example, hyperparameter
optimization requires iteratively testing combinations of parame-
ters to find the best-performing set. These problems make conven-
tional machine learning processes human resource-intensive.

AutoML addresses this inefficiency by automating the complex
process of hyperparameter tuning and algorithm selection [32].
The goal of AutoML is to identify the combination of algorithms
and hyperparameters, referred to as the pipeline, that minimizes a
k-fold cross-validated loss [18].

Over the years, the scope of algorithmic AutoML expanded to
include automatization of other stages of the ML pipeline, such as
feature engineering and model deployment, eventually leading to
end-to-end automation of the entire ML pipeline [30], now present
in solutions like Google Cloud AutoML, Microsoft Azure Machine
Learning, and AutoKeras [10]. This leap forward, with AutoML’s
promise of automating all steps of an ML pipeline, allows data
scientists to find optimal models much easier and non-experts to
be able to engage in ML without requiring extensive expertise.

2.2 Human-Centered AutoML

Current discourse on Human-Centered AutoML primarily addresses
machine learning practitioners or non-experts with some cod-
ing/ML experience [15, 22, 35]. However, they overlook the needs
of true novice users—those with zero programming and machine
learning experience.

Nevertheless, insights from these papers offer valuable perspec-
tives on human-centered AutoML that can inform our own re-
search. For instance, prior work identified three key challenges
users face with real-world AutoML tools: customizability, trans-
parency, and privacy [22]. Similarly, Lindauer et al. further empha-
size that improving the interpretability of AutoML, designing better
user interfaces, and extending the human-centered automation par-
adigm to other aspects of the data science workflow are critical
next steps [15]. Through interviews with 16 ML practitioners, Xin
et al. found that full automation is neither a requirement nor a


https://doi.org/10.1145/3742413.3789153

U1 °26, Paphos, Cyprus,

CoAutoML: User Interface Framework for Machine Learning Novices using LLM-based AutoML and Test-Driven Machine Teaching

N
@ I want to predict house prices in NY based on size,
location, and the number of bedrooms.

with Data Test Cases

Qe ph || V@

|
l][l[]ﬂ ¢ Issues with Data

s N\ N \ \
Stage 1: Stage 2: Stage 3: Coding the Model Stage 4: Interpreting Results
Data pre-processing Test-Case Selection
i Q Q Guide feature set/ Q (v] Communicate Model
Provide Dat (9) : > ' |
@ rovide Data % Jhsk for (50) algorithn design ooy A & Performance via
r\f\ ; % ‘Ol % Test Cases
| | \ Q
Re-Examine Check 7‘ \ 4 Re-examine (00)
Data Data Quality Engage Critically Provide Learn Best Make Informed Model Performance —

Practices Decisions

Revise Features

__G ~~ "and Algorithm
N

Figure 2: Test-Driven Machine Teaching Interaction Flow adapted from [35]

desired outcome; instead, the focus should be on creating “human-
compatible” tools that enhance transparency and trust while giving
users a sense of agency. Their findings advocate for an interactive,
human-in-the-loop approach to strike the delicate balance between
human control and automation. Additionally, they emphasize that
AutoML tools need to be adaptable to users’ expertise levels, both
in terms of the Ul and the jargon used. They advocate for a back-
and-forth, interactive dialog between a human and the machine to
address each others’ blind spots.

Through conducting interviews and surveys with around 100
non-experts (those who lack formal ML training, but actively build
ML models), Yang et al. identified several key insights [35]:

(1) Non-experts rarely start with a predefined problem but in-
stead have data ready at hand and explore how ML can help
them learn from the data.

(2) They often have a deep understanding of the problem as it
relates to their work and hobbies.

(3) Their mental model of ML is largely based on input-output
mapping: data goes in, predictions come out.

(4) Non-experts tend to over-rely on accuracy as the sole mea-
surement of success, overlooking other important factors
such as robustness, overfitting, etc.

Additionally, they identified several challenges faced by non-
experts when using AutoML systems:

(1) Non-experts often struggle to formulate a clear and feasible
ML goal.

(2) Their main strategy to improve the model’s performance
was to add more data; none of the interviewed non-experts
attempted to perform feature engineering.

(3) Although non-experts didn’t fully understand the concept of
“features,” they recognized their value through their impact
on the model’s performance.

These findings underscore the need to design accessible AutoML
tools for novice users that closely match their mental models of ML
and accommodate non-experts’ knowledge gaps.

2.3 Test-Driven Machine Teaching (TDMT)

To address these challenges and cater to non-experts’ mental model
of ML, Yang et al. introduce the novel interaction flow, Test-Driven

Machine Teaching (TDMT), to help guide HCI researchers in build-
ing tools suited for non-experts’ needs [35]. TDMT (adapted in
Figure 2) encourages users to define test cases before building an
ML model. This approach encourages non-experts to think critically
about their problem, fostering incremental learning both of their
intentions and the mental model of the ML system. Through a hand-
picked process of providing the test cases, non-experts can begin
to formalize their own ML goal. After test cases are provided, the
tool suggests feature engineering and machine learning algorithms
based on the data and alerts users of data quality issues. Upon train-
ing the model, the tool shows predictions based on the provided
test cases. This differs from other AutoML tools that usually show
visualizations and statistics, which require ML expertise to inter-
pret. Instead, the test cases users provide are personal to them, and
therefore easy for them to understand and evaluate. Most impor-
tantly, this test-driven approach prevents users from over-relying
on the accuracy metric to evaluate the performance of a model,
a common pitfall. To our knowledge, there does not yet exist an
implemented application of the TDMT approach in an interactive
AutoML tool for non-experts.

The work on “Machine Teaching” does look at supporting users
with minimal to no ML expertise to build supervised models, with
some success [29]. However, the authors’ MATE system uses a
“Wizard of Oz” approach in which all the ML guidance is provided
by a human expert observing a live feed of participants’ behavior.
This suggests that systems can support novices in building machine
learning models, but with LLMs it might be possible to build real
versions of working machine teaching.

These papers strengthen the need for developing accessible Au-
toML solutions for complete novices as a necessary and timely
pursuit. By building on the extensive research conducted in these
connecting areas, there is a promising opportunity to carve out a
nascent branch of AutoML research specifically focused on sup-
porting true novices so that all may access the power of ML tools.

2.4 LLMs as Interfaces for AutoML

LLMs offer fertile ground for AutoML with natural language inter-
faces with emerging studies exploring the synergy between LLMs
and AutoML [24]. The authors identify several promising avenues,
including using LLMs as a bridge between users and complex algo-
rithmic interfaces. LLMs provide the necessary knowledge of the
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def forward(self, input_ids, attention_mask):
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outputs = self.bert(input_ids=input_ids,
attention_mask=attention_mask)[0]

Learning rate, batch size, weight decay, momentum, ...

I1stm_output, _ = self.lstm(sequence_output)

Figure 3: Text-to-AutoML tool example usage. Screenshot is from [34].

best machine learning practices embedded in the extensive data
they were trained on, and AutoML helps to optimize the code by
algorithmically searching for the most optimal solution.

With the increasing popularity of LLMs, there has been a no-
table surge in research aimed at developing LLM-based AutoML
tools. For example, Xu et al. developed a promising AutoML tool
using LLMs [34]. This tool performs a number ML tasks, generating
optimal ML models based on textual JSON input shown in 4. Users
are prompted to enter all the necessary information in text format.
This response is still inaccessible to novice users, as they might not
fully comprehend these important aspects of AutoML settings.

"Argumentative essays written by 8th-12th grade English Language Learners",
"Scores according to six analytic measures: cohesion, syntax, vocabulary",

"output data":

"task objective": "For each essay, predict the score of each of the six measures",
"evaluation metrics": "MCRMSE",

"files": {"test_workspace/train.csv": "A table of 8 columns, The first column named 'text_i
h
"key": M.
"GPT version": "3.5",
"workspace": "test_workspace"

Figure 4: Example JSON code the user must specify for the
AutoML system in [34].

Other LLM-AutoML projects face similar shortcomings. For ex-
ample, the work by Zhang et al. [36] is able to solve complex ML
tasks by dynamically training models with optimized hyperparame-
ters using LLMs. To achieve this, the user-provided input paragraph

is fed into an LLM to generate a prompt that establishes the Au-
toML pipeline. LLMs handle all steps of data preprocessing, model
architecture design, hyperparameter tuning, and the prediction log.
However, the input paragraph consists of a detailed “Data Card,”
which includes data description such as data name, input data type,
label space, and evaluation metric; a “Model Card,” which contains a
description of the model name, model structure, model description,
architecture hyperparameters, and evaluation metric. Additional
requests may also be included, such as constraints like “the infer-
ence time smaller than 10 FPS” Like Xu et al., this project and many
others such as AutoM3L [17] and AutoGluon [31] lack an intuitive
user interface and is designed for ML experts, requiring technical
knowledge to provide extensive models and data descriptions [34].

To begin training the model, users must have clear goals from the
beginning, although non-expert users rarely start with a predefined
goal in mind and even have a hard time understanding the meaning
of features or tend to over-rely on the accuracy metric [35]. There-
fore, such extensive and accurate descriptions would alienate novice
users when training the model. Instead, we need something that
integrates a human-in-the-loop approach to encourage incremental
learning and gently steer the user towards understanding their goal
and ML task. There is a growing body of research on AutoML with
LLMs that often shares the same shortcomings [8, 17, 21, 26, 27].
Therefore, the key question to consider is: how can we address this
issue to bridge the gap between current LLM-based AutoML tools
and a human-centered AutoML paradigm?
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3 Design Motivation
3.1 Baseline Study

To motivate the development of our own system, we conducted a
baseline assessment to see how effectively non-experts could inde-
pendently define their ML objective and specify input/output data
in the format required by LLM-based AutoML tools. As our system
is intended for users who have domain knowledge, but lack aware-
ness of machine learning, our target users for this baseline study
generally do not have a deep understanding of data requirements
for building ML models nor ML evaluation metrics. As part of the
user study described in Section 6, we recruited 16 participants who
self-identified as novice users through a pre-questionnaire (demo-
graphics details in Table 6). Before interacting with our CoAutoML
system, participants completed a short form which prompted them
to delineate the same categories of information required by the
Text-to-AutoML system described in [34]. We adapted the phrasing
for each question from the JSON description prompts used in [34]
as shown in Table 1.

Table 1: Prompts for gathering baseline interactions with
Text-to-AutoML System.

Please describe your input data. The in-
put data contains the features that are the
characteristics or attributes of the dataset.
These features provide information that
the model uses to make predictions.
Describe the expected output data, also
known as ’labels’ or ’targets’, which rep-
resent the desired prediction or outcome
associated with each input example.
Describe the task objective, which de-
scribes the goal of the machine learning
task.

Evaluation metrics | Describe the evaluation metrics, which
are numerical measures of how well the
model’s predictions match the desired out-
come.

Input data

Output data

ML Objective

Files Describe the available files given in your
task.

Our baseline assessment revealed significant barriers preventing
novice users from using existing LLM-based AutoML tools. For
example, no participants correctly identified the evaluation metric,
descriptions of the dataset lacked technical depth necessary to use
the Text-to-AutoML tool, input and output data descriptions were
largely overly vague and unusable with the Text-to-AutoML tool.

Table 2 further illustrates this gap by comparing expected Text-
to-AutoML inputs with most representative novice responses.

3.2 Design Implications

Based on prior research and the challenges faced by novice users
in using Text-to-AutoML, we categorized the following key design
goals (DG) to address in our own system, summarized in Figure 5.

DG1: LLMs as a Mixed Initiative Interface Early work on
mixed-initiative systems by Horvitz [9] laid the groundwork for

balancing human and machine agency principles that find renewed
relevance in the context of LLMs. Our system takes inspiration
from Horvitz’s framework by adapting its core ideas to the needs
of ML non-experts. In the context of AutoML, prior research estab-
lished that non-experts rarely start with a predefined ML task [35]
but rather have data they’re looking to learn from. Therefore, it
is crucial that our platform infers user intent over time through
scaffolding and engaging in iterative dialog to resolve lingering
user uncertainties. This approach radically differs from other LLM-
based AutoML tools that require users to define the modeling task
upfront [8, 17, 21, 26, 27, 34].

Following the best Mixed Initiative principles, users of our sys-
tem should be able to modify any part of the workflow at any time,
whether that means editing domain knowledge items, adjusting
test cases, or tweaking the generated ML task or model use. The
system must update its internal state accordingly and maintain a
shared context throughout these interventions.

In response to the adaptability and transparency challenges high-
lighted in [22, 33], our system makes the inner workings of AutoML
fully transparent. However, to avoid overwhelming non-expert
users, technical complexity is initially kept behind a default inter-
face. Users can decide to reveal deeper layers of detail, including
downloadable source code, enabling inspection for deeper under-
standing, when desired. The Al should also default to communicat-
ing in non-technical language unless the user asks otherwise.

DG2: Domain Knowledge Sharing. Kazemitabaar et al. [11]
showed how editable Al-generated assumptions about data columns
can improve both code generation and serve as a helpful mechanism
for sharing domain knowledge from human to Al In our system,
we adapted this approach for Al-assumptions and incorporated
them into the LLM-based AutoML code generation. Our baseline
showed novices struggled to describe their data in depth and tech-
nical detail. The domain knowledge sharing stage addresses this
by first generating a set of assumptions for each column, highlight-
ing things such as the column’s meaning, importance, and role,
and providing scaffolding for novices unfamiliar with feature en-
gineering concepts. Users can accept, modify, or delete generated
assumptions, maintaining agency while reducing cognitive load.

DG3: Test-Driven-Machine-Teaching (TDMT) Integration.
Yang et al. [35] identified that non-experts’ mental model of ML
largely centers around input-output mapping. They proposed Test-
Driven-Machine-Teaching as a paradigm that matches novices’
expectation of ML but did not implement the actual system. CoAu-
toML is the first to operationalize the TDMT framework outlined by
Yang et al. While the authors did not propose a concrete UI design
for TDMT, we envision TDMT as an interactive flowchart, similar
to Google’s Teachable Machine [2], where input nodes feed into an
output node mirroring the intuitive “data goes in, predictions come
out” mental model of non-experts uncovered in [35].
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Table 2: Comparison of example Text-to-AutoML provided prompts from paper [34] and corresponding novice responses to the

same prompts.

Question Sample Text-to-ML Prompt [34] Sample Novice Response

Input Data Various features about various locations in | “The input data is the information we have about
Boston, such as per capita crime rate and pro- | each house such as its number of bathrooms or
portion of residential land zoned for lots over | the area it’s located in” (P7)
25,000 sq. ft.

Output Data The housing price of each location. “A number? or like a prediction based on how

good the investment would be” (P3)

ML Objective

For each location in Boston, predict the housing
price of the location.

“task is to evaluate the different characteristics
and predict the price/viability of investment
(but I am not sure)” (P2)

Evaluation Metric

RMSE

“The evaluation metrics would be something
like a difference of how close it is to an expected
average” (P4)

Files

workspace/data.csv: A table of various fea-
tures and housing prices across different loca-
tions in Boston. The table has fourteen columns.
The first thirteen columns of the table are
features used for prediction. The last column
named 'MEDV’ is the output/target of the pre-

“a data table with different transactions” (P3)

diction (housing price).

4 CoAutoML

Building on our design principles from Section 3.2, we propose
CoAutoML, a novel framework that integrates mixed-initiative
LLM interfaces, Test-Driven Machine Teaching (TDMT), and LLM-
based AutoML tools. The proof of concept system in this article
demonstrates the feasibility of creating human-facing AutoML so-
lutions for novice users. CoAutoML’s most distinctive feature is its
ability to cater to non-experts’ mental models of Machine Learn-
ing to extract critical information necessary—such as input/output
data, ML objective, evaluation metrics, file descriptions—to feed
into LLM-based AutoML tools like [8, 17, 21, 26, 27, 34].

The user interface is structured around three primary compo-
nents: chat, workflow, and test cases. The chat section serves as
the user’s main entry point and support system. The workflow sec-
tion encapsulates the stages of Machine Learning in a step-by-step
process revealed sequentially: (1) data upload, (2) domain knowl-
edge sharing, (3) test case selection, (4) custom ML task review, (5)
and a final AutoML code generation phase. These two components
combined serve to address DG1 and DG2.

The final phase (5) is also split into two tabs adapted for users’
skill levels: “Overview” abstracts the technical details and shows
informative status updates while the AutoML tool runs in the back-
ground, and the “Advanced” view presents full output from the

Knowledge

ML PIPELINE —— EXPERT PRACTICES —— NOVICE CHALLENGES —— DESIGN GOALS
Experts translate domain Novices often begin with vague [DG1] Use mixed-initiative
Framing the problems into ML task types, intentions (“| want to understand dialogue to iteratively infer
ML task identify target variables, and } my data”) and cannot articulate } user intent, instead of
select evaluation metrics. prediction goals or task types. requiring technical specs
upfront.
. . : Novices have rich domain [DG2] Enable explicit
Articulating E:Efgztﬁggfgﬁﬁﬂgtgﬂ; knowledge but lack technical articulation of domain
Domain } expertise to express it formally, » knowledge through natural-

preparation.

leaving this tacit knowledge from
the modeling.

language, which is then
encoded into ML model.

Building the
ML Model

Experts naturally reason
through and build an effective
ML model based on expertise

4

Novices perceive ML as “data goes
in, predictions come out” and
rarely know how to validate their
results

[DG3] Align novices’ mental
models with model behavior

» through a representative test-
case set.

Figure 5: Summary of design goals based on ML stage, expert practices, and novice challenges.
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Please enter a message.

Figure 6: The CoAutoML full-scale interface showing three integrated panels. See Table 3 for detailed descriptions.

AutoML backend, shows optimization search history, highlights John is an experienced farmer who has grown crops for over 20
the best performing model and data preparation strategies, and pro- years. Recently, he started collecting structured data about his har-
vides access to download all generated files. The most distinctive vest—soil quality, moisture levels, crop yields, and fertilizer usage
feature of CoAutoML is its real-world implementation of TDMT as hoping to better understand how different variables affect his results.
discussed in DG3, which is represented as a section on the right Over time, John has built up spreadsheets full of this data, but he is
tab pictured in Figure 8. never quite sure what to do with it, until he hears about the CoAutoML

desktop application and decides to give it a try.

4.1 Core Features and Usage Scenario

Below, we explore the core features of our tool through a typical
interaction with a user persona who has no coding experience.

Table 3: Description of CoAutoML interface panels (Figure 6).

Panel Description
Chat (Left) Users converse with the AutoML Assistant, which explains model results in accessible language.
Workflow (Center) : Data Upload. For more details refer to Figure 7a.

N e : Domain Knowledge Sharing (Assumptions). For more details refer to Figure 7b.
N BTN : Test-Cases (Observations). For more details refer to Figure 8.

: Editable task specifications () including input/output data, task objective, and evaluation metrics for the
Text-to-AutoML tool.
: AutoML results with Overview and Advanced tabs (), plus a button to run the trained model against test-cases (

). Refer to Figure 9 for more details about the Advanced Tab.

Test-Cases (Right) Implements Yang et al’s TDMT [35] via a node-based interface, where users can:
(1) Input test-cases during (e.g., Fertilizer: Urea, Nitrogen: 85) (Figure 8, )
(2) Specify expected output (Yield: 3.6) (Figure 8, )
(3) Run the trained ML model ()
(4) Compare predicted output (Yield: 3.58) against expectation ()
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AutoML Workflow X

2, File Upload

Folders

[ o Crops }
58 items

Includes metadata for machine learning analysis related to agriculture and crop modeling

Files

&) crop_yield_fertilizer_dataset.csv
CSV + 23.56 KB

[DJLH,(JLumluwu\xu‘\LJHL\mldAlev‘vuosz, districts with crop, soil, and environmental ]

conditions

(a) Stage 1: Data Upload

B

() Share your domain knowledge
crop_yield_fertilizer_dataset.csv

Agricultural dataset with fertilizer usage, weather data, soil chemistry, and

D Fertilizer

Categorical, eg., Urea, DAP, NPK

crop yield measurments.

Categorical feature indicating the type of fertilizer applied.

Different fertilizers affect crop growth differently based on nutrient release patterns. ]

@D Yield O

Numerical, eg., 3.2, 4.0, 2.5

i Target variable; affected by both controllable and uncontrollable factors. l

[ Optimizing inputs improves yield potential. J

R Add New Column

(b) Stage 2: Domain Knowledge

Figure 7: The workflow panel (zoomed in) guiding users
through key stages. (a) : Users can upload their data,

preview the dataset using the “Show” button (), and view
the short file/folder blurb (). (b) : Domain Knowl-

edge displays column cards () showing LLM-generated
assumptions. Users can add new domain knowledge entries
via the “+ New” button (m), remove columns using the delete

button (), or add new columns via the “Add New Column”
button (§3)-

Data Input and Analysis. John downloads the app, launches it,
and is greeted by a simple interface: a chat window on one side, and
an initial panel for uploading his data on the other. John uploads his
comma-separated values files, and the assistant immediately begins
parsing the contents, generating some initial information based

on the uploaded files (Figure 7, , @)). The assistant lets
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him know it recognized crop-related information on the chat panel
and created a few assumptions. The assistant then prompts John to
review and edit the assumptions based on his domain knowledge.

Input Assumptions. John reads over the generated assump-
tions for each column, making sure that they align with what he
had in mind, and fine-tunes them drawing from his deep domain

expertise (Figure 7, ). He can edit or delete generated as-

sumptions by hovering over the field (Figure 7, , , m
). Additionally, he may delete entire columns or add missing ones

using and (. Once he’s satisfied, he lets the assistant know.
The tool then prompts John to input a set of real-world examples
from his farm. Throughout the process, the assistant clearly com-
municates what is happening, what comes next, and why, so John
feels confident and in control.

Test-Cases. The app highlights the button where John can add

his observations (Figure 7, ). Once clicked, a new

section opens on the screen showing a diagram: input nodes (fea-
tures) flow into a single output node (target), mimicking the familiar
mental model of ML systems where “inputs go in, outputs come
out” [35] (Figure 8). On one side, he sees the input columns tied to
the assumptions he made earlier (Figure 8, @)); on the other, there
is an output node inviting him to enter an expected output (Figure

8, ). Visual labels guide John through the diagram, explaining

each step (Figure 8, ).

He pauses to reflect on what he wants to achieve with this data,
then begins entering values for a typical crop that thrives under
the Urea fertilizer and choosing the yield type as the expected
output he wants to predict. Each time he adds a new test case, a
progress bar updates on the workflow panel (Figure 8, ).

When sufficient test-cases are added, John is prompted to submit
his examples to the assistant.

Custom ML Task Generation. The assistant analyzes the ex-
amples and generates a custom machine learning task based on
John’s observations (Figure 6, ). It reiterates the machine
learning objective in a user friendly way in the chat window, asking
John to confirm if he wants to proceed. The assistant’s message
uses orienting phrases like “in the “Workflow section”, or “to the
left of your screen” when referring to UI components on the screen.
If John wants to make adjustments, he can talk to the assistant to
adjust the task. Once confirmed, the app enters the AutoML stage,
where it automatically creates custom machine learning pipelines

and code modules tailored to his goal (Figure 6, ). While

the task is processing on the backend, a loading screen keeps John
informed with friendly updates.

AutoML Process. After a few minutes, training completes, and
John sees a blue button inviting him to test his observations and

view the predicted output (Figure 6, , ). The original
observations on the test-cases panel are updated with a new node in
the middle showing the model (Figure 6, ), and two nodes coming
out of it, representing the predicted and expected outputs (Figure
6, ), allowing for side-by-side comparison. John can quickly
assess how well the model is performing just by looking at the
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for this field
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Add a real-world example X

This will help us formalize your Machine Learning model.

2. Enter what you think
0y the expected output
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P should be.

Figure 8: Test-Cases Panel implementing Yang et al’s TDMT framework. Zoomed In. (1) Instructional labels () guide users in
building input-output mappings, (2) Input nodes contain columns from domain knowledge items entered earlier (e.g., fertilizer

usage, Nitrogen levels, so on) (), and (3) Output node () capturing the target prediction (crop yield). Back in the workflow
panel (), a pop-up window appears and highlights the button to call the user to action (). A progress bar ()

shows completion toward the minimum test-cases required and the added test-cases are presented in a compact card.

comparisons. He starts experimenting with different input values
until he discovers which features most strongly influence yield
prediction. John can easily adjust the inputs and re-run predictions.

He notices the “Advanced” tab and becomes curious (Figure 6,
). He clicks on it and sees a lot of information about different models
and data preparation options the system tried out, highlighting the
best options and their performance (Figure 9). He doesn’t quite
understand what any of it means, but when he asks the assistant
to explain the best-performing model, it responds with a clear
breakdown. John now understands not just what worked, but why,
including how many models were tested and why the current one
was selected. This transparency increases his trust in the results.

5 System Implementation

5.1 Overview.

CoAutoML is a desktop-based application written in React and sup-
ported by Electron. The backend is implemented in FastAPI and
uses the new 2025 OpenAlI Agents SDK, which enables a highly
modular and extensible multi-agent system. The backend sends
updates and receives user messages through strongly typed Web-
Socket messages, with HTTPS API endpoints supporting data up-
load, test-case submission, and prediction execution. We selected
the Text-to-AutoML tool from [34] to serve as the backbone of

our system for its outstanding performance compared to other
LLM-based AutoML tools. CoAutoML currently supports classifica-
tion and regression tasks, enabling models such as Random Forest,
Gradient Boosting, and ensemble methods. The system automat-
ically selects appropriate model families based on the identified
task type. Image recognition and NLP are currently unsupported
in CoAutoML, presenting a further avenue for exploration. Below,
we outline the key features and architecture of our implementation
illustrated in Figure 10. We provide the complete source code of
CoAutoML at https://github.com/UberHowley/coautoml along with
a README.md document for future reproducibility.

We used GPT-03 for the main Orchestration Agent due to its fast
performance, low latency, and strong reasoning capabilities. For
each of the specialized helper agents, as well as the Text-to-AutoML
tool itself, we used GPT-4o for its deeper reasoning capabilities.

5.1.1 Orchestration Agent (OA). This is the primary agent that
coordinates tasks between specialized tools/agents and serves as a
proxy to the user based on the outputs from the specialized agents.
The Orchestrator Agent is prompt-engineered with an understand-
ing of the general Ul structure, workflow, and state updates. This
enables spatial referencing in conversations:

“Look for the blue ’Add New Observation’ button on the
right side of your screen—I’ve highlighted it for you.”
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Best Performing Data Prep
Data Loading: Data Cleaning:
pandas.read_csv pandas.DataFrame.dropna
Encoding: Data Preprocessing:
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Feature Engineering:
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W9 Data Loading: Data Cleaning:

pandas.read_csv pandas.DataFrame.fillna

Encoding: Data Preprocessing:
Not applied sklearn.preprocessing.MinMax..
Feature Engineering:
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(a) Optimization Results and Data Preparation Plans
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reature engineering:
L Not applied J

m Modeling Plans (3)

LinearRegression
The LinearRegression model from scikit-learn is a simple yet effective algorithm
for regression tasks. It is suitable for this dataset as it can capture the linear
relationships between the features and the target variable, house price of unit
area.

RandomForestRegressor
The RandomForestRegressor model from scikit-learn is an ensemble method
that builds multiple decision trees and merges their results. It is well-suited for
handling datasets with complex interactions and non-linear relationships, making
it a good choice for this housing dataset.

Best Performing Model

The GradientBoostingRegressor model from scikit-learn is another powerful
ensemble learning method that uses boosting techniques to improve
predictions. It can handle missing data and works well with potentially noisy
data, which might be present in the housing dataset.

\%8 GradientBoostingRegressor

Generated Files

POST PROCESSING

<> post_processing_0_0.py vO
MODELING

<> modeling_0_0.py vO

<> modeling_0_1.py v1

<> modeling_0_2.py v2

<, Download source code of your project

(b) Modeling Plans and Generated Files

Figure 9: Advanced Tab of the AutoML Stage (, zoomed in). (a) The Optimization Results section () displays the best

configuration (combining data preparation and modeling versions), the best performance score, and a version performance

history table showing all tried combinations. The Data Preparation Plans section () lists different preprocessing strategies
(e.g., data loading, cleaning, encoding, preprocessing, feature engineering) with the best performing plan highlighted. (b) The

Modeling Plans section () presents multiple model options (e.g., LinearRegression, RandomForestRegressor, GradientBoost-

ingRegressor) with descriptions and highlights the best performing model. The Generated Files section () lists all generated
Python scripts for post-processing and modeling, with a button to download the complete source code of the ML project.

Following DG1, the OA is instructed to help users discover their
ML goal through scaffolded interactions. To that end, it was prompt-
engineered to guide users through each step of the ML process,
explaining what is happening, what comes next, and why it matters.
It is designed to translate complex ML concepts into layman’s terms
and to help users stay oriented within the system. Based on user
input and its own reasoning, it can call any of the helper agents
described below. A key design challenge was to make the multi-
agent coordination as smooth and invisible to users as possible. To
that end, we employed several techniques:

For example, when the helper agents return information to the
OA and that information was simultaneously updated in the UI
through WebSocket, the OA is instructed to not repeat information

already visible on screen. Another key challenge was making the OA
synthesize information from multiple agents to keep the appearance
of a “single actor” and weave a cohesive narrative. For example, the
single response below integrates multiple pieces from other agents:
data analysis agent, test-case integration agent, and Ul element
updates; however, the users perceive a single intelligent entity, not
multiple agents processing data:

“Based on the examples you provided, it looks like

we’ll focus on predicting crop yield using factors like

soil conditions and rainfall. Does that match what you

had in mind?”

Another key component was making sure the OA’s responses

weren’t overly wordy as conventional Al agents tend to do. Thus,
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the OA only introduces one concept per message and keeps a natural
human-like flow:

“Great! Your model is trained. Before we test it out, did
you want to know more about how it works, or should
we jump straight to trying it with your examples?”

5.1.2  Analyze Data Agent. Using both rule-based logic and output
from specialized agents, this agent helps analyze the user-uploaded
files and folders. This output is returned to the Orchestration Agent
for reasoning about the uploaded data and for triggering the As-
sumptions Agent. It also sends a WebSocket message to the frontend
with a signal to update the data upload component with a short
blurb for each file (Figure 7, Steps 3.1 and 3.2). The generated data
model is saved to the shared context for the next agent.

Example Output to OA:
"files": [{

"filename": "crop_data.csv",

"snippet":"

| nitrogen_level | rainfall | soil_ph | crop_yield |

| 45.3 | 120.5] 6.8 | 8.2 |
| 32.1 | 95.3 | 7.1 | 6.7 |
"detailed_description"”: "Dataset contains

agricultural measurements across 8 columns and 450
rows. Features include soil composition metrics
(nitrogen_level, phosphorus, potassium),
environmental factors (rainfall, temperature,
humidity), soil acidity (soil_ph), and outcome
variable (crop_yield in tons/hectare). Data appears
clean with numeric values consistently formatted.",

}]7
"folders": [],
"input_data_description": "Single dataset focused on

predicting agricultural yields from environmental
factors"

The Orchestration Agent receives this input and synthesizes it
into natural language for the user:

“Perfect! I've examined your crop_data.csv—it con-
tains measurements from 450 farms showing how soil
conditions and weather affect harvest yields. The data
looks clean and ready to work with. Should we move
forward?”

5.1.3 Generate Assumptions Agent. This agent generates initial
assumptions for each column based on the output from the previ-
ous tool, implementing DG2 (Domain Knowledge Integration). It
generates 2-3 assumptions per column and also takes note of each
column’s data type and a sample value. All of this is saved to the
shared context and sent back to the Orchestration Agent, which
then lets the user know the assumptions are ready and prompts
them to review them before moving forward. A WebSocket message
is also sent to the Ul to trigger the assumptions display (Figure 10,
Steps 5.1 and 5.2).

The OA then invites user refinement: “T’ve made some observa-
tions about your columns. Feel free to edit these or add your own
expertise!”

5.1.4 Test-Cases Agent. Implementing the core of DG3 (TDMT
implementation) is the Test-Cases Agent. The OA prompts the user
to submit test-cases through a pop-up tooltip on the UI (Figure 7,

, (&®)). The user submits test cases via a simple HTTP

request, which are then converted and saved to a JSON file. The
OA calls this specialized agent to read that file and generate a list
of relevant features, target variables, evaluation metrics, and the
overall ML task objective. This information is key to building the
initial JSON input for the Text-to-AutoML tool. The agent has access
to prior conversation history and context for improved accuracy.
Once done, the OA receives the output and translates this to novice-
friendly language: “Based on your examples, it looks like we’ll predict
crop yield using factors like nitrogen level, rainfall, and soil pH. Does
that sound right?” (Figure 10, Steps 9 to 12).
Agent output to OA based on user’s test-cases:

{
"task_type": "regression",
"features": ["nitrogen_level", "rainfall", "
soil_ph"],
"target": "crop_yield",
"objective": "Predict crop yield based on soil
and weather conditions",
"evaluation_metric": "RMSE"
3

5.1.5 Update State Agent. This agent gathers everything from pre-
vious tool outputs using the shared context and constructs the JSON
file required by Text-to-AutoML [34]. This final JSON incorporates
all Domain Knowledge, user-derived ML objective, and generated
file and column descriptions. The final JSON is sent to the frontend

via WebSocket to be shown in [SJEREY, where the user can make

any final edits. This agent is the last missing link between how

novices think about ML (examples and natural language) and how

AutoML systems require structured technical specifications.
Example generated Text-to-AutoML input by CoAutoML

"input data": "A comprehensive agricultural
dataset capturing soil composition,

weather conditions, and fertilizer application
across multiple growing seasons.",

"output data": "The expected output provides
crop yield as a continuous value

(tons per hectare), requiring a supervised
regression approach to predict harvest
outcomes.",

"task objective": "To predict crop yield based
on soil nutrients, fertilizer type

and amount, weather conditions, and farming

practices.",
"evaluation metrics": "RMSE",
"files": {
"chats/chat_f3a821bc4d7e9al15/files/
crop_yield_data.csv": "The dataset
contains

agricultural records from 450 farms across
multiple growing seasons, with
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Table 4: Workflow steps in the CoAutoML system. Steps are grouped by phase, with sub-steps (e.g., 3.1, 3.2) indicating parallel

agent processing and UI updates.

Step [ Label

Description

Phase 1: Data Upload & File Analysis

0 User Uploads Data

User uploads CSV files and/or folders via the UL

1 Trigger Orchestration

OrchestrationAgent receives upload event and initiates workflow.

2 File Analysis Request

OrchestrationAgent invokes read_user_uploaded_files tool.

3.1 | DataAnalysisAgent

Analyzes file structure, generates FileStructure with descriptions for each file/folder.

3.2 | Show Analysis

File analysis results sent to UL user sees data summary.

Phase 2: Domain Knowledge Extraction

4 Assumptions Request

OrchestrationAgent invokes generate_data_domain_knowledge tool.

5.1 | AssumptionsAgent

Extracts domain knowledge for each column (type, meaning, potential issues).

5.2 | Show Assumptions

Domain knowledge sent to UL user can edit/add columns.

6 User Confirms Assumptions | User reviews and confirms (or edits) the extracted domain knowledge.

Phase 3: Test Case Collection

7.1 Return to Orchestration

Confirmed assumptions stored in context; control returns to OrchestrationAgent.

7.2 | Require Test-Cases

UI prompts user to provide input-output test cases.

8 User Provides Test-Cases

User creates test cases specifying input features and expected outputs.

Phase 4: ML Task Formalization

9 Trigger Orchestration

OrchestrationAgent receives test cases and initiates analysis.

10 Test Case Analysis Request

OrchestrationAgent invokes analyze_test_cases tool.

11 TestCasesAgent

Formalizes ML task: identifies prediction variable, features, task type, and evaluation metrics.

12 | ML Task Description

Structured TestCaseOutput generated with task formalization.

13.1 | StateUpdateAgent

Consolidates all prior outputs into unified configs_learning. json.

13.2 | Show Task

ML task description sent to UI for user review.

14 User Confirms ML Task

User reviews input/output data, objective, and metrics; confirms or edits.

Phase 5: AutoML Execution

15 | Trigger Orchestration

OrchestrationAgent receives confirmation and initiates AutoML.

16 | AutoML Request

OrchestrationAgent invokes run_auto_ml tool.

17.1 | AutoMLAgent

Calls Text-to-AutoML core for plan generation, code generation, and optimization.

17.2 | Progress Updates

Ul receives streaming updates: Begin Plan — End Plan — Begin Gen.

18 User Tests Final Model

User runs predictions on test cases using the generated model.

critical columns for understanding factors
affecting crop productivity and

making yield predictions, including soil
metrics, fertilizer data,

environmental conditions, and harvest outcomes

n
’

3,

"key": "...",

"GPT version": "40",

"workspace": "chats/chat_f3a821bc4d7e9al15"

5.1.6  AutoML pipeline Agent. Once the user confirms the proposed
task, the OA calls the final agent, which executes the full Text-to-
AutoML pipeline and sends real-time updates through WebSockets
with status messages like “Beginning ML planning,” “Generating
code,” or “Optimizing modules” Each Text-to-AutoML module sends
its generated files back to the frontend via WebSockets. These status

updates populate the Overview tab in [SZIA6N.
When the Ul receives the final update, it invites the user to test

the trained model. Running predictions is done through a simple
HTTPS request, which uses the best saved model. The results are

displayed in the same node-graph with one additional node for the
predicted output (), Figure 6).

5.2 Mixed-Initiative Interaction Across Ul

The Chat and Workflow panels are coordinated through a central-
ized WebSocket connection and shared state management. When
users interact with the chat panel, their messages trigger backend
processing that broadcasts updates to a given section in the Work-
flow. For example, when the system decides it needs test-cases from
the user, the Workflow panel automatically progresses to the test-
cases step and highlights the button to prompt the user to add a new
observation, while the chat panel displays explanatory message

referencing the update (Figure 8, , ):

“Next, let’s create a few test cases for your data. Test
cases help me understand what you expect the model
to do in real situations. I've highlighted the button
where you can add your own examples. Once you’ve
added at least two, we’ll be ready to move on to the
next step.”

The node-link diagram on the right-most panel updates dy-
namically as users add their test-cases. Input nodes appear on the
leftmost part of the panel and feed into a single model node, which
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Figure 10: The CoAutoML high-level system architecture showing user actions (top), LLM actions (middle), and the UI updates
triggered by the helper agents through WebSocket (WS) messages represented as clouds (bottom). Refer to Table 4 for detailed
workflow steps explanations.
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represents the trained predictor (Figure 6, [€J)). From this node, two
output nodes branch out to show the expected and predicted out-

comes side by side (Figure 6, ). This hierarchical layout reflects
the structure of the classification and regression tasks supported
by the system and reinforces the intuitive notion that data flows
into a model and produces predictions.

5.3 Agent Prompt Engineering

We used an iterative refinement approach to develop prompts for
each agent in the system. For the Orchestrator Agent, which coor-
dinates the multi-agent workflow, we designed a structured step-
by-step instruction format that guides the LLM through each phase
of the pipeline with example desired responses. To ground the sys-
tem’s test-case-driven approach in established HCI principles, we
incorporated key concepts from Yang et al. [35] into the prompts,
emphasizing how test cases serve as an accessible interface between
novice users and machine learning formalization.

Prompts use two complementary mechanisms: (1) agent-level
instructions that define each agent’s role and interaction patterns,
and (2) Pydantic schema docstrings that constrain structured out-
puts through field-level LLM instructions. Complete prompts are
provided in Appendix B.

5.4 LLM Output Structuring and Hallucination
Mitigation

To ensure structural consistency and reduce the likelihood of hal-
lucinated outputs, each agent was configured with strongly typed
output schemas defined using pydantic. This design enforces uni-
formity across agent responses and mitigates the risk of generating
unexpected or invalid content. Additionally, the OpenAl Agents
SDK allowed for extra prompting based on the docstring parsing,
which made the outputs more fine-tuned in conjunction with the
general prompt for each agent.

To safeguard against the fabrication of critical components, such
as column names, filenames, data types, example values, and data
snippets, we statically define these fields in relevant output struc-
tures. This ensures that all essential information is verifiably grounded
in user-provided data. Meanwhile, the system relies on LLM-generated
outputs for more open-ended and interpretive tasks. As an example,
consider the schema used for domain knowledge generation:

class DomainKnowledgeItem(BaseModel):
"""“knowledge™ is determined by the LLM; “column” is
set statically"""
column: str
knowledge: list[str]

Listing 1: Example schema with a mix of statically and
dynamically generated outputs. LLM docstring prompts
removed for conciseness.

To prevent premature or inappropriate function calls, whether
initiated by the orchestration agent or the user, we use both context
validation and LLM-determined flag-based checks. For example,
before a function tool proceeds, it checks whether the necessary
output from the preceding agent exists within the shared context
and an appropriate function invocation flag is set by the OA.

If a context dependency check fails or a flag condition is not met,
the agent returns an internal error message to the OA (Listing 2).
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This helps both the OA and the user to stay within the defined
sequential plan. The OA then communicates the mistake to the user
in a high-level, abstracted form.

@function_tool

async def ask_for_test_cases(
wrapper: RunContextWrapper[AutoMLContext],
user_confirmed_domain_knowledge: bool

if not user_confirmed_domain_knowledge:
return (

"User has not confirmed the generated set of
assumptions/domain knowledge. Please
make sure to get user confirmation
before calling this tool again."

Listing 2: Example internal message returned to the
Orchestration Agent based on context/flag-checks

This layered validation, along with extensive prompting, ensures
safety against both model-level and user-level misunderstandings,
ensuring that multi-agent collaboration remains reliable throughout
the entire workflow.

6 Method

We evaluated our system through a series of user studies to answer
the research questions below:

(1) RQ1: How do different interface components (chatbox, work-
flow, test-cases) support novices in formulating their ML
objectives?

(2) RQ2: Does the practical implementation of Test-Driven Ma-
chine Teaching help novices align their understanding of
ML?

(3) RQ3: What factors influence novices’ sense of control and
agency when interacting with an LLM-based AutoML sys-
tem?

6.1 Participants

We recruited 16 participants for this IRB-approved minimal risk
study, compensating participants at 20 USD per hour. Participants
completed an online selection form where they disclosed their prior
coding/ML experience. We chose participants who were generally
non-experts in AI/ML, with 13 having none to minimal prior coding
experience, and three participants (P3, P14, P16) having some/sub-
stantial experience.

To further quantify our user’s skill levels, we adopted an Al
literacy questionnaire for non-experts from [14], and participants’
self-ratings are presented in Table 6. In addition to rating their
familiarity with Al, participants were asked to list any software
they regularly use and to name a few technical applications they
believe are supported by AL Most common responses included tools
like Notion, Zoom, and Microsoft Word, Excel, and PowerPoint.

6.2 Protocol

Participants were pseudo-randomly assigned to one of four machine
learning scenarios, with some researcher adjustment to achieve
balance. Scenarios were chosen to represent real-world, accessible
tasks that non-expert users may face. Each scenario was paired
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with a brief narrative to set the stage. Participants took on per-
sonas described in their scenarios to better embody the real-world
scenario of non-experts using this tool.

(1) Scenario A used the California Housing dataset from Kaggle,
where participants were asked to predict house prices based
on given factors.

(2) Scenario B featured the classic Iris dataset from Kaggle, in-
volving a classification task to identify flower species.

(3) Scenario C used the Student Performance dataset from Kag-
gle, where participants predicted final grades.

(4) Scenario D involved a cleaner, smaller housing dataset taken
from a college-level Machine Learning course homework
assignment.

Table 5: Scenario Assignments

Scenario Dataset Participants (P)

A California_Housing.csv 1,5, 11

B Iris.csv 2,3,6,13

C Students_Grading_Dataset.csv 4,9, 12, 14, 16
D housing.csv 7,8, 10, 15

To evaluate whether non-experts could construct the information
for the Text-to-AutoML tool from [34] on their own in Figure 4,
participants were asked to record their initial thoughts based on
the assigned task. We analyzed these responses to assess their
baseline understanding. After the baseline questions, participants
watched a five-minute tutorial video on how to use CoAutoML.
They were given time to ask questions before proceeding. Next,
they were asked to think aloud while using the tool to complete
their task. If the participant successfully trained a machine learning
model for their scenario and time allowed, participants received
additional tasks—like identifying the best-performing model using
the tool or experimenting with features to see which ones had
the most influence on predictions. Once participants completed
their tasks, they took part in a brief (5-minute) semi-structured
interview with the facilitator. All sessions were audio-recorded
and later transcribed for analysis; participant consent was obtained
before each session.

7 Quantitative Results

In this section, we report quantitative findings derived from system
logs collected across 16 user study sessions. These metrics include
time to first specification and model, the number of assumptions
and test cases, the number of code-generation retries per module,
and the best-performing model achieved in each session. We addi-
tionally analyze responses to a post-study questionnaire comprising
of 10 items that assess novice users’ perceptions of our system’s
usability, control, and effectiveness.

7.1 System Logs

Figure 11 shows the distribution of time participants spent build-
ing their first model and the total time spent interacting with the
system after data upload. Participants required a median of 9:50

minutes to complete their first model since data upload. Partici-
pants had considerably more time to explore the system afterward,
although this was dependent upon how much time completing the
pre-questionnaire and video tutorial required.

Overall, participants required minimal researcher assistance to
use the system. Two participants (P3 and P14) needed brief help
deleting an empty test case to proceed. One session (P5) was af-
fected by a system error that prevented model completion, and
one participant (P16) misconfigured the Student Grading task by
predicting a numerical exam score rather than a categorical letter
grade, resulting in the use of regression instead of classification
and an MAE of 17.25.

As reflected in Figure 11, time spent towards reaching a com-
pleted specification increased with the complexity of the dataset,
where Iris had Med=6.6, Housing Med=7.1, CA Housing Med=8.2,
and Student Grading Med=10.1 minutes. Similarly, Table 7 shows
that for complex datasets, the mean number of created assump-
tions was higher (CA Housing: 7.3, Student: 8.8 versus Housing:
5.0, and Iris: 5.0), indicating that participants had to invest more
time and effort interacting with the system when the task required
it. Surprisingly, very few participants ventured out to create more
test-cases than the minimum number (2) required, indicating a fur-
ther need to emphasize the importance of creating test-cases in the
future, reflecting the inherent difficulty of generating appropriate
preprocessing steps for real-world data.

Once participants completed the task specification, we measured
the number of code-generation iterations required for each mod-
ule to pass validation (i.e., produce code without syntax errors,
runtime exceptions, or type mismatches). Consistent with earlier
trends, more complex datasets incurred the highest number of re-
tries, particularly in the data preparation stage (CA Housing: 5.0
retries; Student: 7.2 retries). This pattern mirrors prior findings by
Xu et al. [34], where the data preparation module likewise required
the greatest number of regeneration attempts.

Following Xu et al. [34], we do not interpret raw performance
metrics as a benchmark comparison. As Xu et al. note, their work is
not intended to “outperform the collaborative efforts of thousands
of competition participants with automatic solutions. Instead, [the]
focus is on reducing the amount of effort and knowledge required
for writing ML programs in everyday scenarios.” For similar reasons,
we report final task performance (Table 7) to demonstrate that
novice-authored specifications in CoAutoML yield non-trivial, task-
appropriate models when executed through the underlying Text-
to-AutoML backend, making AutoML accessible to novices who
would otherwise be unable to engage with such systems at all, as
supported by our 3.1 Baseline Study.

7.2 Post-questionnaire

We used the NASA Task Load Index (TLX) questionnaire [6] (ques-
tions 1-5) to assess the cognitive workload and user experience
during the task. Additionally, we adapted questions from prior re-
search [11] and composed our own to evaluate the effectiveness
of our system (questions 6-10). Participants (N = 16) responded
using a Likert scale from 0 (lowest) to 7 (highest) as shown in Fig-
ure 12. We present the full wording of all post-questionnaire items
in Appendix A.
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Table 6: Participant Pre-Test Self-Assessment Results (1 = Strongly Disagree, 5 = Strongly Agree)

Statement Med | SD | Min | Max
I would consider myself a tech-savvy person 3 0.97 1 5
I can explain what an algorithm is. 3 1.28 1 5
I can tell if the technologies I use are supported by AL 3 1.05 1 4
I can explain the differences between human and artificial intelligence. 3 0.93 2 5
I can explain how machine learning works at a general level. 2 1.31 1 5
I can explain how rule-based systems differ from machine learning systems. 1 1.15 1 4
I can describe how machine learning models are trained, validated, and tested. | 1.5 | 1.32 1 5
I can explain why data plays an important role in the development and applica- | 3 1.25 2 5
tion of AL
I can explain what the term “black box” means in relation to Al systems. 1 1.55 1 5
Time Spent in System from Data Upload to Model Training 200 Spec Creation Time by Task
251 Task Type Time Segments ’
= CA housing 23.1 BE Time to Spec (data upload - test cases)
housing ## Time to Model (test cases —» model training) 17.5
ir\sd. 20.8
201 — 15.0 °
I I 12.5 —(
E 15 4 14.7 g -
g 133 12.9 g
E " ‘E 10.04 1
: 11.0 ;
L2 B s W]
&3 7.9 8.0 7.9 = e L
6.7
S|
5
2,59
0 T T T T T T T T T T T T T T T 0.0 T T T T
1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 Iris Housing  Ca housing  Grading
Participant ID Task Type

Figure 11: Participant time in the system. Stacked bars indicate time to specification and model training; boxplots show

specification time by task.

On average, participants experienced a moderate mental work-
load (Med = 4), low temporal demand (Med = 3), and low frustration
(Med = 1.5). They generally felt successful in completing the task
(Med = 5), with the exception of P5 reflected in their self-rating of
3 in Q3. Notably, participants reported that the effort required was
appropriate (Med = 3), indicating a balanced task load. In terms of
system effectiveness, users found it easy to formalize goals (Med =

5) and guide the Al toward desired outcomes (Med = 6), suggesting
strong alignment between user intent and system behavior. Partic-
ipants reported moderate awareness of the AI's decision-making
process (Med = 3), with high variability. Overwhelm levels remained
low (Med = 3). Finally, participants expressed a high degree of con-
fidence in performing ML tasks using the tool on their own (Med =

Table 7: Summary statistics by task type. Values are mean + SD. Time is reported in minutes. Retries indicate the number of
code-generation attempts by the system before producing a valid module. Values represent the sum of attempts across all
modules of each type (Data Preparation, Modeling, Post-Processing) per participant session.

Task Assumptions Test-Cases Retries Performance
Created Created DataPrep Modeling Post-Proc Metric

Iris (n=4) 5.0 £0.0 22+04 20+1.0 4.2+1.6 1.2+£0.4 Acc. 1.00 = 0.00

CA Housing (n=3) 73+05 23+05 5.0 +3.7 3.7+05 3.0+14 MAE $1.47M + $0.06M*

Housing (n=4) 50+14 22+04 1.5£0.5 52+28 1.8 +£0.4 MAE 5.96 + 1.14

Student (n=5) 88+ 1.5 2.0+0.0 7.2+22 2.6 £0.5 1.0 £ 0.0 Acc. 039 + 0.03"

*P5 excluded (incomplete). MAE is reported in absolute USD (millions).

P16 excluded (misconfigured task).
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Figure 12: Box-and-whisker plot of participant responses to post-completion questionnaire. Questions shortened for display,

full wording can be found in Appendix A.

6), suggesting that the system empowered non-expert users to feel
capable and in control.

8 Qualitative Results

We followed an affinity diagramming [16] process to identify key
themes from the think-aloud data obtained during the user study.
We present our findings to directly address each research question
in the subsections below.

Table 8 provides an overview of exemplary participant quotes
about the usability of the system. Sub-themes include the intu-
itiveness of the system, how user tasks are supported, as well as
comments pertaining to the mixed initiative interface (DG1). Partic-
ipants generally responded positively to the user interface design,
frequently describing it as “pleasant,” “interactive,” “intuitive,” and
“user-friendly.” Some small interface refinements related to termi-
nology and progression through the tasks were revealed.

8.1 RQ1: How do different interface
components support novices in formulating
their ML objectives?

In Table 9 we see that sub-themes identified falling under support-
ing novices in formulating their ML objectives include: open-ended
support, explicit structuring of steps, and connecting data to the
machine learning task. Open-ended support quotes generally came
from comments on the chat assistant (aligning with DG1), while
explicit structuring of steps originated from workflow and domain
knowledge panels (DG2), and connecting data to the machine learn-
ing task from generating the test cases (DG3). Several participants
often felt the need to stress that even though they have no “Com-
puter Science background,” the assistant made their experience ac-
cessible. Participants also noted the assistant’s responsiveness and

Table 8: Themes identified from user statements about usability of CoAutoML

Theme Example Quotes
.. “It’s helpful, at least for beginners like me, for everything to be in place, have its own column.— I hate when I lose a
Intuitive . . L . s - »
window, like when I minimize a window and I don’t know where it’s gone” (P4)
“clarity never hurts, like spelling everything out.” (P5)
Supporting User “Treally like this visualization because you can see all the features contributing to the model, and then you have your
Tasks final score right there.” (P16)

“If you could just like click and select the data to create a test case from, that would make it faster to work with rather

than retyping things.” (P1)
Mixed-Initiative
Interfaces

“T got confused in the middle after I uploaded the file, I forgot that I had to prompt the assistant to continue.” (P11)
No participants explicitly remarked on the assistant’s use of spatial referential language.
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Table 9: Themes identified from user statements related to Research Question 1.

Theme Example Quotes
Open-ended “[The interface] wasn’t super confusing or overwhelming and it was pretty easy to get started because [the Assistant]
Support helped me whenever I didn’t understand something and gave pretty prompt instructions.” (P10)
“Once I put [data] in, it definitely helped me along the way. It kind of helped me figure out what my goal was.” (P4)
Explicit ‘I liked the way that the work or [the workflow] screen was done: doing file upload and then immediately going into
Structuring of the sharing domain knowledge, and so on.” (P11)
Steps “Those are definitely very helpful for me not to have to define every single thing and get all the terminology right”
(P4)

Connecting Data

to ML Task
P8, P12)

ability to infer context based on data and user interactions. Partic-
ipants liked the sequential flow of information on the workflow
panel, the amount of detail provided on each step (P1, P9, P3), and
the explicit messaging on any action taken on the workflow panel
being reflected on the chat (P10), which allowed for retrospection
on the user’s end (P11).

Participant reactions to the domain knowledge (assumptions)
feature were mixed. Most users engaged carefully with the assump-
tions, reading and correcting them where appropriate. Others, how-
ever, tended to skip over them entirely—even when adding new
columns—resulting in no additional descriptions (P3, P5, P8, P10).
While these omissions did not impact the performance of the Au-
toML backend because the datasets were intuitive enough to reason
without extra column descriptions, the assumptions were intended
to also aid users in interpreting their own datasets and fostering
a deeper engagement with the task. Some participants reported
feeling anxious about the model’s performance because maybe they
felt they didn’t give it good enough explanations (P1, P6, P11). This
contrast suggests varying user mental models of the tool’s purpose:
some treated it as only a setting-up stage where they just add these
for their own good, while others approached it as a system heavily
reliant on their input. Interestingly, the usefulness of assumptions
appeared to be task-dependent. For familiar domains such as hous-
ing prices, participants felt less need to define or adjust assumptions,
noting that common sense or prior knowledge filled in the gaps.
Going forward, it may be worth exploring a mechanism to automat-
ically generate suggested assumptions for any column—existing
or user-added at the click of a button, reducing the cognitive load
while still engaging the users with their dataset. Participants consis-
tently highlighted the utility of the test-case feature in supporting
their understanding of the model. For the test cases panel, many

described the visualization as “very helpful,” “visually interesting,
and “illuminating.”

»

8.2 RQ2: Does the practical implementation of
Test-Driven Machine Teaching help novices
align their understanding of ML?

Sub-themes falling under Test-Driven Machine Teaching include

embodied language, input-output mapping to mental model (DG3),

and data interaction for reflection (DG3), as shown in Table 10. Par-
ticipants often used tactile or embodied language to describe their

“It definitely made things easier and I could visualize what was going on” (P13)
Users reported these diagrams helped them reason about how the model responded to different inputs (P4, P7,

interaction with test-cases. P16 further appreciated how the process
encouraged them to recognize patterns and develop insights into
feature selection: “You start noticing patterns yourself in your data,
and that could be helpful in telling you later what features to keep or
drop.” The visual structure of input-output relationships also played
a critical role in participants’ mental models of the machine learn-
ing process (P6, P8, P9, P12, P15). Some confusion arose about the
purpose of manually entering test cases when the system already
had access to the dataset. A few participants mistakenly believed
that the test-cases were the training data (P8, P9, P11), leading to
concerns about model performance due to insufficient entries: ‘T
don’t think its trustworthy unless I add a lot more observations” (P9).
In the future, it might be worthwhile to add an example test-case
from the data automatically, and clarify the purpose of test-cases
more explicitly. Furthermore, the act of manually entering data
fostered reflective thinking about the dataset (P4, P10, P11, P16).
Despite some minor confusions mentioned in the previous section,
many participants used test-cases exploratively.

8.3 RQ3: What factors influence novices’ sense
of control and agency when interacting with
an LLM-based AutoML system?

For our research question related to novices’ sense of control and
agency, we identified two main sub-themes as shown in Table 11:
step-by-step guidance and progressive disclosure (both relating to
DG1). The assistant’s step-by-step guidance was especially well-
received. Participants appreciated how it (i) recapped their intent,
(ii) confirmed their readiness, and (iii) walked them through each
action. This structure helped build their confidence in progressing
through the workflow. Others appreciated how it reduced cognitive
load by explicitly directing the next action, eliminating the need
for users to figure out steps on their own or remember the whole
tutorial (P6). For some, the assistant’s conversational checkpoints
offered a moment to reflect and ensured they felt prepared before
moving on. For progressive disclosure, most participants did not
spend much time exploring the Advanced tab unless prompted, and
many found it confusing or intimidating (P5, P8, P9, P11). How-
ever, users with some technical background (e.g., P3, P16) found
this section particularly valuable for its transparency and depth.
These participants were also curious about how the system works
internally and especially appreciated the ability to download the
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Table 10: Themes identified from user statements related to Research Question 2.

Theme Example Quotes
Embodied “...being hands-on with the data...like touching the data.” (P7)
Language “Physically putting in the values solidified how this was working.” (P4)
“The numbers [evaluation metrics] didn’t really mean anything. But when it was put in a visual thing where you
I/0 Mapping to could see the expected outcome and the predicted output, it became a lot more clear.” (P15)
Mental Model “T was a little bit confused about why [test-cases] were necessary, they’re already in the chart [dataset]...but I think

[they] were necessary to see if the machine learning actually worked.” (P6)

Data Interaction

for Reflection didn’t do so well” (P16)

“If I had just like a button that does it for me, I don’t think I would ever observe that... this person studied a lot and

“I just had a really high one and a really small one, and I [thought] maybe I want to capture what’s in the middle.”

(P7)

source code. In the future, it might be worth not having an explicit
“Test it out” button but run predictions automatically as soon as the
training is complete and have the test-cases reflect the prediction as
they currently do. Also, the workflow’s abstraction of complexity
received some positive feedback, however, others did share feeling
overwhelmed and lost by the amount of information in the work-
flow. In the future, it might be worth collapsing previous steps as
users progress through the workflow so it is not just one flow of
information, but broken down into distinct views.

9 Discussion
9.1 Non-Expert ML Mental Model Alignment

Our findings show that machine learning can be made accessible
to non-experts by designing systems that align with users’ existing
mental models, promote incremental understanding, and scaffold
the process of articulating their ML goals. Our baseline study il-
lustrates that existing AutoML tools are generally not usable for
ML novices who lack awareness of data and metrics for machine
learning. Rather than relying on deep technical knowledge, our
tool allowed users to intuitively frame input/output relationships
through a set of observations and steer model development by
interacting with the assistant.

Although the system explains technical questions about ML if
asked, it did not proactively teach users how it works. As a result,
some users developed partial or incorrect mental models of ML.
For example, one participant described their interpretation: T think
it’s just like rearranging the formula almost as if there’s a spot for
everything. So I was partially right, partially wrong, but I will say, I'm

Jjust confused as to how the Al knows the formula” (P5). This suggests
a future avenue for exploration in using progressive disclosure to
gradually reveal the inner-workings of ML to a non-technical user
without overwhelming them with complexity.

Importantly, CoAutoML helped reshape some users’ conceptual
understanding of ML. Participants who actively engaged with the
assistant for clarification came out with renewed knowledge of
ML. As one participant reflected: “Now I know what a model is!...T
appreciate statistics a lot more now” (P8). Another elaborated on
their newfound confidence: ‘T think I could use this tool for another
set of data and try to teach it to do something. ...Idon’t think if I had
a different machine learning tool, I could use that and actually under-
stand what to do in the same way that I do here” (P6). Participants
expressed enthusiasm about applying the tool in their own domains,
such as biology lab reports, economics assignments, or music clas-
sification tasks. Others expressed their desire for potential future
use cases once they had access to relevant data.

9.2 Practical and Societal Implications

As a publicly available tool, CoAutoML could improve the lives of
citizen scientists, subject matter experts, and anyone with a dataset
they would like to analyze. This would make the power of machine
learning even more available and accessible to nearly anyone. How-
ever, there is a very real question of how much a novice user needs
to know about machine learning to avoid building unrepresentative
models. This is a pressing question, not just for novice users of
machine learning, but even machine learning experts, as knowing

Table 11: Themes identified from user statements related to Research Question 3.

“Tt was nice to have the assistant repeat and summarize what I was wanting to do, and then me responding back with

“It’s not just like, oh, this model’s prediction was this. It’s like, oh, we tried this and that, and the best option was

Theme Example Quotes
Step-By-Step “holding your hand at each step of the way.” (P16)
Guidance

“yes” or “I'm ready” made sure I really WAS ready before I answered.” (P11)
Pl"ogresswe this... and this is the performance of the one we didn’t choose.” (P16)
Disclosure

...even though it might be complicated “behind the scenes I can read this and I feel like I would probably be able to
describe it after like a minutes of using it.” (P6)

‘T had a little bit of difficulty looking back at specific test cases. If you’re new to it, it can be a little bit difficult because
it pops up all these details as you go.” (P3)
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exactly what an algorithm does or relying entirely on the explana-
tions from an Al system results in user error as well [12, 13, 20].
And so, critical future work of ours will look at how much un-
derstanding of data, data processing, and data’s role in machine
learning models is required for building machine learning models
in an adaptive manner.

Contributions to HCL. CoAutoML implements previously pro-
posed interaction paradigms that other papers have identified, while
combining several of these ideas into a novel system that uniquely
supports novice user development of machine learning models.
Test-driven-machine learning [35] proposes the ability to test af-
ter model development with a speculative user study, without a
proposed interface or existing system. We designed, implemented,
and evaluated a new graph-based test-driven interface to fulfill this
testing after model development as proposed in the original paper.
As another example, the Text-to-AutoML tool [34] lacks a graphical
user interface and in the baseline study described in Section 3.1, all
our users were unable to use that system correctly. So, we designed,
implemented, and evaluated an interface that makes the text-based
tool more accessible to novices. Our contribution to HCI lies in
the combination of these proposed ideas, OpenAI’s multi-agent
framework, and many other design principles previously described.

9.3 Limitations and Future Work

Along with opening up CoAutoML as an API for public use, there
are other avenues of future work to consider.

Text-to-AutoML. In implementing our system, we encountered
some limitations inherent to the underlying AutoML tool, Text-
to-AutoML. Notably, the tool does not currently support saving
trained models or re-running predictions on new data, which re-
quired us to engineer workarounds to persist models and apply the
same preprocessing steps on which the model was trained for the
user submitted test-cases. Additionally, since we cannot edit how
modules are generated, we had to come up with a workaround to
translate classification task numeric labels back to the textual la-
bels. These limitations point to a broader need, not to work around
these barriers of existing tools, but to create a separate CoAutoML-
based developer-facing application programming interface (API),
enabling other researchers to call our endpoints, building on top
of our user interface and integrate with alternative AutoML back-
ends. We envision this tool serving not only non-expert users, but
also experienced ML researchers seeking to make their own LLM-
based pipelines accessible to non-experts. Our CoAutoML API will
provide all the necessary information from the user to begin the
LLM-based AutoML process.

Base model variations. To better disentangle the contribution of
commercial language models’ capabilities from that of our system’s
prompt engineering and interaction design, we plan to conduct a
study across multiple model variants. Such an analysis would allow
us to more rigorously assess the robustness and reliability of our
approach independent of improvements in the base model.

Users. While our initial laboratory study suggests that new-to-
ML users can benefit from CoAutoML, a valuable next step would
be to study domain experts who bring their own (potentially messy)
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data, like John from the earlier vignette. This would provide valu-
able insights into how these domain-experts with no ML knowledge
work to define their ML objectives from scratch. Furthermore, it
remains an open question how CoAutoML bridges the gap between
ML novices and ML experts who use text-to-AutoML tools. Future
work should investigate how CoAutoML can be used to support
novice growth in ML understanding.

Tasks. Finally, the current system is constrained to regression
and classification tasks. Expanding CoAutoML to include additional
tasks such as natural language processing and image recognition
will increase the utility of the system. We hypothesize the core
framework—chat-based assistant, step-by-step workflow, and vi-
sual test-cases flowchart—can generalize across modalities, with
modifications to accommodate longer text and image inputs.

10 Conclusion

In this article, we presented a novel system and framework to
support true novice users in completing machine learning tasks by
consolidating several ideas from prior HCI research, implementing
many previously un-implemented features, and then evaluated the
system as a whole. We drew from concepts such as Test-Driven
Machine Teaching to align with non-experts’ mental models of ML,
Mixed-Initiative Interfaces to reduce cognitive load and promote
agency between the user and the Al assistant, and incorporated
technical components from the emerging body of work on LLM-
based AutoML. Our qualitative and quantitative findings suggest
that the system was effective in helping truly non-expert users
achieve their machine learning goals. This work is a first step toward
showing the actual potential of supporting true novices in using
machine learning. The CoAutoML Framework does this by bridging
the gap between users and LLM-based AutoML tools that are still in
their early stages. We hope that this work inspires future research
on human-centered AutoML systems that empower a wider range of
users to meaningfully engage with machine learning technologies.
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A Post-Questionnaire

Post-questionnaire items are shown in Table 12.

Table 12: Post-Questionnaire Items Used in the User Study

Short Name Full Question Wording

Mental Demand How much mental and perceptual activity was required (e.g., thinking, deciding, calculating,
remembering, looking, searching, etc.) when completing the task?

Time Pressure How much time pressure did you feel due to the rate or pace at which the tasks or task elements
occurred?

Task Success How successful do you think you were in accomplishing the goals of the task set by the
experimenter?

Effort Required How hard did you have to work to accomplish your level of performance?

Frustration How insecure, discouraged, irritated, stressed, and annoyed did you feel during the task?

Easy to Formalize Goals How easy was it to formalize your goals and objectives for the Al to perform your task correctly?

Easy to Steer Al How easy was it to steer the Al towards your desired solution?

Awareness of Al Process To what extent did you feel aware of the AI's analysis process?

Information Overload To what extent did you feel overwhelmed by the amount of information displayed on the
screen?

ML Confidence with Tool How confident do you feel in your ability to perform Machine Learning tasks on your own

using this tool?

B Agent Prompts
B.1 Triage Agent Prompt

*%*Role*x*: You are a *Machine Learning Guidex - an all-in-one assistant that helps complete beginners
create custom machine learning solutions without any technical knowledge. You will guide users through
a simple, natural conversation while silently coordinating specialized tools in the background.

**The User Interfacex* - you only serve as an addition to a larger UI. here's a brief description of
what the frontend looks like:

1. initial upload section where users can upload their data and also view a short 10 row snippet of it
2. domain knowledge section appears on their screen once you call “generate_data_domain_knowledge .
Users can add new columns and edit/add/delete knowledge

items for each column. these columns will be used to select 'features' for test-cases/

3. after confirming the assumptions with the user, you call “ask_for_test_cases ™ which updates the UI
to display a flowchart, where on the left there's input nodes which serve as features and one output
which is thing we're trying to predict. The users can select columns and enter typical values and

their expected output. The graph is very visually appealing!

4. the user can click a big blue "Submit Observations!" to the right side of their screen once they add
AT LEAST 2 observations.

5. when you call “save_state™ the UI is updated once more to display the state, which shows things like
input data, output data, task objective and evaluation metric.

6. when you call “run_auto_ml~ the UI is updated to show a section which has two tabs: "Overview"

and "Advanced". The overview is the default tab and it displays a simple loading indicator while the
model is training and a big blue "Test it Out!" button once the optimization is complete.

The "Advanced" tab is meant for more tech-savvy users, so novices might feel intimidated by it. You
should be able to explain anything they ask on the advanced tab, which displays the json from

ML_PLAN in a pretty format.

*xCore Principles*x*:

1. **Single Entity Illusion**: Never reveal there are multiple agents working behind the scenes. All
information from calling tools is already displayed for the user on the frontend, so do not repeat
information, but rather summarize it.

2. x*xNovice-Friendly Language*x: Avoid all technical jargon (no terms like "feature engineering",
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"hyperparameters", etc.). Maintain a natural, conversational tone. Avoid lists, bullet points, or
robotic language.

3. x*xProgressive Discovery**: Help users uncover their ML goals through conversation, not
interrogation

4. *xClarity through test-cases**: Why are test-cases helpful?

Test cases as the interface between non-experts and machine learning models: TDMT captures

how users expect the algorithms to behave via test cases, helping users better articulate these
expectations. Such articulation enables the iML tool to offer personalized, in-situ safeguard
mechanisms and guidance in the modeling process.

This design is rooted in the observation that non-experts understand model behavior by

mapping inputs and outputs. Test cases as a form of model input-output pairs fit how non-experts
intuitively understand ML.

Moreover, the process of hand-picking test cases invites users to carefully examine their data and
their expectations toward ML. The empirical study showed that non-expert ML is highly

experimental and exploratory. TDMT thus guides users to examine their data and formulate ML

goals that should be part of the ML process. At a higher level, accessible ML tools should support
non-expert ML as a co-evolution of problem and solution, rather than as a gradual procession to

an optimum in the loss function.

**xInteraction Flowx*:

*%x1. File Upload & Analysisx*x
*"Thanks for sharing your files! I'll examine them to understand how we can use this data to help you."*
- Use “read_user_uploaded_files™ to send a description of files back to the user

- Example response:

*"Perfect! It looks like you uploaded [files/folders] [X, Y, Z]. [X] has some useful information

about [A]. Ready to proceed with figuring out our machine learning goal? I will analyze your data

and provide a set of assumptions about each column. Feel free to correct me and add your own

domain knowledge!"*

*%2. Domain Knowledge Symbiosisx*x*

- Call "“generate_data_domain_knowledge™ to generate domain knowledge/set of assumptions about

each column in the user's data
- Example response:
*"I've created a set of assumptions about your data, can you make sure it looks good? Feel free to
edit or add new assumptions! Once you're ready, let me know and we will move on to creating test-
cases."x
- Rule: DO NOT regurgitate the assumptions as a bulleted list back to the user because they already
have it on their screens.
- Rule: DO NOT mislead the user into thinking that this is "data analysis". Data Analysis has a
different connotation, and users might mistake this for the final ML model. They are novices, after
all.

- Make clear why we did this: *"I added assumptions for some columns, but not all. If you'd like to

share your own knowledge, feel free to do so by clicking on the "Add New Column" button."x

- Invite edits/additions: *"What would you add or change about these observations?"x

*x3. Ask User for Test Cases (Observations)xx
- confirm that the user is satisfied with the set of assumptions, if user confirms, call
ask_for_test_cases to trigger a UI update on the frontend side.
*"Now that we have created a set of assumptions, we can proceed to the next step. Could you please
provide a set of 2-3 observations from your data? Use the "Add New Observation" button to add a
new observation. This will help me figure out your true ML goal and intention"x
- Once the user uploads test-cases, use “analyze_test_cases™ to derive:
- Example response: *"Based on your observations, it seems like we'll focus on predicting [A],
using things such as [featurel, feature2, feature3, ....J]. Does that sound right?"x

*x4. Project Confirmation#*x
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*"Here's our plan: We'll create a system that [1-sentence plain English description]. Does this match
what you need?"x

- Wait for the user to confirm the plan, then, call “save_state . **xIMPORTANTx*x: DO NOT SKIP THIS
STEP.

- Use “save_state” only after user confirms

- Handle objections: *"What part would you like to adjust?"x

*x5. Automated ML Process#*x*

- Call tool after updating the state: “run_auto_ml~

- Send a message to user: *"I began work on creating your custom solution. This typically takes [X]
minutes."x*

*%x6. Result Delivery=*x*

Present final output as:

*"Your system is ready! It can now [user's original goall. Try it out with this example:"x

- Show one relatable input --> output demonstration

- Next steps in non-technical terms

- if you receive a message "Test cases uploaded successfully!" after the model is trained, then it
means the user wants to re-train the model on a different set of observations. You must go back to

step 4. Project Confirmation to re-generate the ML task and AutoML pipeline.

- Call “run_auto_ml~ again if the user says there's a prediction error. It is likely that the generated
code was wrong. We need to generate all the modules again.

*xStyle Guidelinesxx:

- xxTonexx: Friendly expert (like a skilled craftsperson). Never use bullet points. Max. sentence
length is 3.

- *xPacingx*x: One concept per message, pause for confirmation

- xxError Handling#**: *"Let me adjust my understanding..."* never *"Error occurred"x

- **Transitions**: Always explain what's coming next and why

- *xYou can't write code on your own, but you use “run_auto_ml~ to help you with that. So if a user
asks something that might require writing the code, re-execute “run_auto_ml ™ .x*x*

*xCritical Reminderx*xx: Users should feel like they're having a natural conversation with a single
helpful assistant who just "gets" their needs, while you silently orchestrate all technical
complexity behind the scenes.

B.2 DataAnalyzerAgent Prompts

The DataAnalyzerAgent analyzes uploaded datasets and generates domain knowledge about each column. It consists of two sub-agents:
file_analyzer for file structure analysis and data_analyzer_agent for domain knowledge extraction.

(1) User uploads files to chats/chat_{uuid}/files/
(2) read_user_uploaded_files is called:
(a) For each CSV: sample 10 rows — file_analyzer agent — FileFolderAnalysisOutput
(b) For each folder: list contents — file_analyzer agent — FileFolderAnalysisOutput
(c) Request overall summary — file_analyzer agent
(d) Aggregate into FileStructure, save to context.file_analysis_output
(3) generate_data_domain_knowledge is called:
(a) For each file in file_analysis_output: send file dict — data_analyzer_agent — DataAnalysisOutput
(b) Aggregate results, save to context.data_analysis_output
(c) Send results to frontend via WebSocket

Tool Prompt: read_user_uploaded_files (Phase 1)

Read user uploaded files located in chat_thread_{uuid}/files/ directory.
Returns a FileStructure object containing all files and folders with descriptions

The output schemas are defined below. A helper sub-agent file_analyzer is invoked within the read_user_uploaded_files tool to
generate detailed descriptions for each file and folder (FileFolderAnalysisOutput). This sub-agent uses dynamic prompting to augment
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Table 13: read_user_uploaded_files output schema field docstrings. Note that docstrings function as LLM prompts.

Schema Field Docstring (LLM Instruction)
files: List[FileItem] “A list of all files uploaded by the user”
FileStructure folders: List[FolderItem] “A list of all folders uploaded by the user”
input_data_description: str | “overall generic 1-2 sentence description of all the up-
loaded files and folders”
filename: str (filename, not LLM defined)
FileItem snippet: str (10-row sample of CSV data, not LLM defined)
description: str “detailed description about this file that will help to
analyze the data better”
short_description: str “short, user-friendly description of this file”
foldername: str (folder name, not LLM defined)
FolderTtem contents_sample: List[str] | “10 items from inside the folder”
description: str “detailed description about this folder that will help to
analyze the data better”
short_description: str “short, user-friendly description of this file”
. . detailed_description: str “a very detailed description about this file/folder based
FileFolderAnalysisOutput on they contents that Wiril help to analyze the data better”
short_description: str “short, user-friendly 1 sentence description of this file/-
folder”

the prompt at runtime with (1) a 10-row snippet of CSV data for files, or a sample of contents for folders, and (2) the current chat history for
additional context about the user’s ML task.
Tool Prompt: generate_data_domain_knowledge (Phase 2)

Sends the domain knowledge about important columns back to the user.
The user can edit/add new columns if they wish.

Returns a DataAnalysisOutput struct with nested schemas defined below. This tool also calls a helper sub-agent data_analyzer_agent
for each file to extract domain knowledge. We augment the prompt at runtime with (1) the file’s structured analysis from Phase 1 (including
filename, snippet, and descriptions), and (2) the accumulated chat history for context about the user’s ML task.

Data Analyzer Sub-Agent System Prompt:

**xRole**: You are a **Data Analysis Assistant** designed to analyze
datasets and provide clear, concise, and actionable insights. Your
task is to directly analyze the dataset, identify its strengths and

issues, and deliver the results in a structured format.
Dynamic User Prompt (per file):

Please analyze this file and determine critical domain knowledge for
ONLY the most important columns based on the “snippet”™ that will help
our machine learning model

Table 14: generate_data_domain_knowledge output schema field docstrings. Note that docstrings function as LLM prompts.

Schema Field Docstring (LLM Instruction)
domainKnowledge: “Domain knowledge inference about a particular col-
DataAnalysisOutput List[DomainKnowledgeItem] umn.

description: str
filename: str

“8 word description of the data”
(overwritten programmatically to prevent hallucina-
tion)

“exact name of ONE column as described in the dataset.
DO NOT put two even similar columns together”
“8-15 word domain knowledge about this column that
will help to analyze the data better”

“Determine the type of this column (numeric or string)
and give an example value from the snippet”

column: str
DomainKnowledgeltem

knowledge: List[str]

type_and_example: str
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File:
{file_analysis_from_phase_1}

B.3 TestCaseHelperAgent Prompts
The TestCaseHelperAgent operates in two following steps:

(1) User confirms domain knowledge from DataAnalyzerAgent
(2) ask_for_test_cases is called — Ul displays test case input form
(3) User submits test cases (saved to chats/chat_{uuid}/test_cases. json)
(4) analyze_test_cases is called:
(a) Read test cases from JSON file
(b) Send to test_case_helper_agent — TestCaseOutput
(c) Save to context.test_cases_output

Tool Description: analyze_test_cases
For each test case file, the system sends this prompt to test_case_helper_agent:

Please analyze these test cases and determine:

1. exact name of the variable that the user is trying to predict

2. list of features critical to the machine learning task. Each list item is the EXACT name of the
column

3. more in-depth analysis of what the user's machine learning goal is

Test Cases:
{test_cases_json}

Test Case Helper Agent System Prompt:

Role: You are a Test Case Analysis Assistant designed to create a clear machine learning goal based on

a set of test-cases provided by the user.

Why are test-cases helpful?
Test cases as the interface between non-experts and machine learning models: test-case captures how
users expect the algorithms to behave via test cases, helping users better articulate these
expectations. Such articulation enables the iML tool to offer personalized, in-situ safeguard
mechanisms and guidance in the modeling process.

This design is rooted in the observation that non-experts understand model behavior by mapping
inputs and outputs. Test cases as a form of model input-output pairs fit how non-experts
intuitively understand ML.

Moreover, the process of hand-picking test cases invites users to carefully examine their data and
their expectations toward ML. The empirical study showed that non-expert ML is highly
experimental and exploratory. TDMT thus guides users to examine their data and formulate ML
goals that should be part of the ML process. At a higher level, accessible ML tools should
support non-expert ML as a co-evolution of problem and solution, rather than as a gradual
procession to an optimum in the loss function.

Call “analyze_test_cases™ to begin.

Output Schema (TestCaseOutput):
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Table 15: TestCaseOutput schema field docstrings

Field Docstring
prediction_variable: str | “exact name of the variable that
the user is trying to predict”
features: list[str] “list of features critical to the
machine learning task. Each list
item is the EXACT name of the

column”

details: str “more in-depth analysis of what
the user’s machine learning
goal is”

task_objective: str “Objective of the machine learn-
ing task”

evaluation_metrics: str | “Suggested evaluation metric.

Provide ONE metric, do not give
your reasoning. just list ONE
most suitable metric.
output_data: str “The description of the output
data for this machine learning
task”

B.4 UpdateStateAgent Prompts

This tool consolidates outputs from all previous workflow phases stored in context: (1) file analysis from read_user_uploaded_files, (2)
domain knowledge from generate_data_domain_knowledge, and (3) test case analysis from analyze_test_cases. It saves the unified ML
project configuration to configs_learning. json for the downstream AutoML core.

Role: You are a State Updating Assistant responsible for updating and saving the user's machine
learning project state with structured details about their dataset, goals, and evaluation metrics.
Your goal is to ensure all relevant information is captured accurately and stored for future use in

the ML workflow.

Use the save_state tool to update the user's ML project state with the structured details.
Confirm with the user that the state has been saved successfully.

Interaction Flow:

Start by confirming the details of the user's dataset, task objective, and evaluation metrics.
If any information is missing, ask the user to provide it.

Once all details are collected, save the state using the save_state tool.

Notify the user that their project state has been updated and is ready for the next steps.

Goal:
Your ultimate goal is to ensure the user's ML project state is accurately captured and saved, enabling
a smooth transition to the next steps in the machine learning workflow.

Tool Description (save_state)

Update the user's ML project state with structured details about their machine learning goal. Example
level of detail required:

"input data": "Argumentative essays written by 8th-12th grade English Language Learners",

"output data": "Scores according to six analytic measures: cohesion, syntax, vocabulary,
phraseology, grammar, and conventions.",

"task objective": "For each essay, predict the score of each of the six measures",

"evaluation metrics": "MCRMSE",
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"files": {"test_workspace/train.csv": "A table of 8 columns. The dataset contains the following
issues: [insert issues from data analysis]. The first column named 'text_id' describes the
unique ID for each essay. The second column named 'full_text' contains the essays. The third to

the eighth columns are named 'cohesion', 'syntax', 'vocabulary', 'phraseology', 'grammar', and
'conventions' respectively, with each column containing scores ranging from 1.0 to 5.0 in

increments of ©.5."}

Args:
ml_description: A structured object containing details about the user's dataset, task objective,
evaluation metrics, and uploaded files.
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