
Designing for Student Understanding of
Learning Analytics Algorithms

Catherine Yeh1, Noah Cowit1, and Iris Howley1

Williams College, Williamstown, MA USA {cy3,nqc1,ikh1}@williams.edu

Abstract. Students use learning analytics systems to make day-to-day
learning decisions, but may not understand their potential flaws. This
work delves into student understanding of an example learning analytics
algorithm, Bayesian Knowledge Tracing (BKT), using Cognitive Task
Analysis (CTA) to identify knowledge components (KCs) comprising ex-
pert student understanding. We built an interactive explanation to target
these KCs and performed a controlled experiment examining how vary-
ing the transparency of limitations of BKT impacts understanding and
trust. Our results show that, counterintuitively, providing some informa-
tion on the algorithm’s limitations is not always better than providing no
information. The success of the methods from our BKT study suggests
avenues for the use of CTA in systematically building evidence-based
explanations to increase end user understanding of other complex AI
algorithms in learning analytics as well as other domains.

Keywords: Explainable artificial intelligence (XAI) · Learning analyt-
ics · Bayesian Knowledge Tracing.

1 Introduction

Artificial Intelligence (AI) enhanced learning systems are increasingly relied upon
in the classroom. Due to the opacity of most AI algorithms, whether from pro-
tecting commercial interests or from complexity inaccessible to the public, there
is a growing number of decisions made by students and teachers with such sys-
tems who are not aware of the algorithms’ potential biases and flaws. Existing
learning science research suggests that a lack of understanding of learning ana-
lytics algorithms may lead to lowered trust, and perhaps, lower use of complex
learning analytics algorithms [26]. However, in different educational contexts,
research has evidenced that increased transparency in grading can lead to stu-
dent dissatisfaction and distrust [15], so more information is not guaranteed to
be better. Furthermore, opening and explaining algorithms introduces different
issues, as cognitive overwhelm can lead to over-relying on the algorithm while
failing to think critically about the flawed input data [24]. As a first step toward
realizing this relationship between algorithm, user understanding, and outcomes,
this work answers the following questions about BKT:
– What are the knowledge components of algorithmic understanding for BKT?
– What factors impact successful learning with our interactive explanation?
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– How does our explanation impact user attitudes toward BKT and AI?
To answer these questions, we first systematically identify the knowledge

components (KCs) of BKT, then design assessments for those KCs. Next, we
implement a post-hoc, interactive explanation of BKT using these KCs, evalu-
ating our explanation in light of the assessments and user perspectives of the
system. Finally, we run an additional experiment varying the amount of infor-
mation participants are shown about BKT and measuring how this reduction in
transparency impacts understanding and perceptions.

2 Prior Work

A student may use a learning analytics system displaying which skills they have
mastered, and which they have not. This information can assist the student in
determining what content to review, learning activities to pursue, and questions
to ask. This information can also inform the learning analytics system of which
practice problems to select, creating a personalized, intelligent tutoring system.
Underneath the system display, there may be a Bayesian Knowledge Tracing
algorithm predicting mastery based on student responses in addition to various
parameters such as the likelihood of learning or guessing [2]. As an AI algorithm,
BKT is inherently prone to biases and flaws [9]. Without a proper mental model
for BKT, students may make decisions based on their own observations of system
outputs, which may not be accurate. A sufficient understanding of the underlying
algorithm may influence trust in the system as well as decision-making [14].

Researchers studying fairness, accountability, and transparency of machine
learning (ML) view this topic from two angles: 1) where the ML algorithm
can automatically produce explanations of its internal working, and 2) post-hoc
explanations constructed after the ML model is built [19]. To achieve this sec-
ond goal, researchers create post-hoc explanations to teach the concepts of
particular algorithms [19]. Often, these explanations require the reader to have
extensive prior knowledge of machine learning, despite a large proportion of al-
gorithmic decision systems being used by non-AI/ML experts, such as healthcare
workers and criminal justice officials. Additional ML work suggests using the ba-
sic units of cognitive chunks to measure algorithmic understanding [11]. A means
to identify what knowledge experts rely on to understand complex algorithms is
necessary to bridge this gap between post-hoc explanations for ML researchers
and typical users, such as students with learning analytics systems.

Previous work has involved measuring and evaluating what it means to know
a concept from within the learning sciences, but this question manifests itself
somewhat differently in explainable AI (XAI) research. One approach is to adopt
definitions from the philosophy of science and psychology to develop a generaliz-
able framework for assessing the “goodness” of ML explanations. For example, in
decision-making research, the impact of different factors on people’s understand-
ing, usage intent, and trust of AI systems is assessed via hypothetical scenario
decisions [21]. Using pre-/post-tests to measure learning about AI algorithms is
one possibility for bridging the ML and learning science approaches [27].
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While increasing research explores different ways of evaluating post-hoc ex-
planations in the ML community, it is not clear how XAI designers identify the
concepts to explain.Cognitive Task Analysis (CTA) provides a rigorous con-
ceptual map of what should be taught to users of ML systems by identifying the
important components of algorithms according to existing expert knowledge [7].

Intelligent tutoring system design uses CTA to decompose content into the
knowledge and sub-skills that must be learned as part of a curriculum [20].
Lovett breaks CTA down into 2x2 dimensions, the theoretical/empirical and
the prescriptive/descriptive. Our study focuses on the empirical/prescriptive di-
mension of CTA, where a think aloud protocol is used as experts solve problems
pertaining to the domain of interest (e.g., a particular algorithm). We chose to
leverage a form of expert CTA, as studying expertise elucidates what the results
of “successful learning” look like and what kinds of thinking patterns are most
effective and meaningful for problem-solving [20]. Ultimately, these results from
CTA can be used to design more effective forms of instruction for novices, such
as explanations of learning analytics algorithms.

The knowledge and skills revealed by CTA are called knowledge compo-
nents or KCs. KCs are defined as “an acquired unit of cognitive function or
structure that can be inferred from performance on a set of related tasks” [16]. In
this paper, we use CTA to systematically identify the different knowledge com-
ponents that comprise the AI algorithm, Bayesian Knowledge Tracing, which
are ultimately evaluated through observable assessment events.

Bayesian Knowledge Tracing (BKT) models students’ knowledge as a
latent variable and appears in Technology Enhanced Learning systems such as
the Open Analytics Research Service [5]. BKT predicts whether a student has
mastered a skill or not (either due to lack of data or low performance) using four
parameters: P(init), P(transit), P(guess), and P(slip). In practice, these
parameters are fit through a variety of methods [2] and may be shared across an
entire class of students [9]. Additionally, P(transit), P(guess), and P(slip)

are often not updated, remaining at their preset initial values [2]. BKT updates
its estimates of mastery, P(init), as a student proceeds through a lesson [2].

As a probabilistic algorithm, BKT falls subject to certain biases and limita-
tions. For example, model degeneracy occurs when BKT does not work as ex-
pected due to its initial parameter values being outside an acceptable range [9].
BKT’s parameters also do not account for certain events, such as forgetting [8]
or the time it takes a student to answer a question, which are relevant and
important to consider when assessing learning and mastery.

BKT is a sufficiently complex algorithm as to not be easily understood,
but also sufficiently explainable as the parameters and how they interact are
all known. While we use BKT as our algorithm of interest for this study, it is
possible to apply these same methods of examination to other learning analytics
algorithms that students and teachers may find difficult to understand.
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3 Knowledge Components of BKT

We conducted a CTA to gain knowledge about expert understanding with re-
spect to our selected AI algorithm, BKT. We examine BKT from the student
perspective, as they represent one of BKT’s target user groups. Our CTA proto-
col involves interviewing student experts of BKT and having them think aloud
and step-through various scenarios that may be encountered when using a BKT
system. This is analogous to the approach described in [20], which uses CTA for
the design of intelligent tutoring systems for mathematics.

The participants in this study were seven undergraduate students at a rural
private college who previously studied BKT as part of past research experiences
and in some cases had implemented small-scale BKT systems. Interviews were
semi-structured with a focus on responding to ten problems and lasted 30-60
minutes in duration. By recording comprehensive, qualitative information about
user performance during these interviews [7], we were able to identify the knowl-
edge components of student BKT expertise.

We developed our own BKT scenarios, as identifying problems for experts
to solve is less straightforward than identifying problems for statistics experts
to solve as in [20]. We adapted our approach from Vignette Survey design [1] to
generate BKT problems within the context that experts ordinarily encounter. Vi-
gnette Surveys use short scenario descriptions to obtain individual feedback [1].
Additionally, the numerous social indicators of BKT parameters and weighing
of subjective factors necessary for model evaluation make vignettes an optimal
tool for this study. For instance, a lack of studying, sleep, or prior knowledge
can all lead to a low starting value of P(init).

For each scenario, we constructed a vignette describing background informa-
tion about a hypothetical student followed by one or more questions regarding
BKT (e.g., “Amari loves debating. They are very well spoken in high school de-
bate club. Although Amari’s vocabulary is impressive, they often have difficulty
translating their knowledge into their grades. For example, Amari gets flustered
in their high school vocab tests and often mixes up words they would get correct
in debate. These tests are structured in a word bank model, with definitions of
words given the user must match to a 10-question word bank. (1) What do you
think are reasonable parameters for BKT at the beginning of one of these vocab
tests? Please talk me through your reasoning...”). We were not only interested
in comprehension of BKT’s parameters and equations, but also the context in
which BKT systems are used. Thus, our CTA protocol includes additional de-
tails such as test anxiety and other potential student differences that may create
edge cases for interpretations of BKT output.

Our data was compiled after interviews were completed. First, the initial and
final states (i.e., the given information and goal) for each scenario were identified.
Questions with similar goals were grouped together, forming broader knowledge
areas (e.g., “Identifying Priors”). Next, each participant’s responses were coded
to identify the steps taken to achieve the goal from the initial state. Then, we
identified common steps used in each scenario. Final knowledge components were
created by matching similar or identical processes from questions in the same
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knowledge area. If a certain step was taken by the majority of participants but
not all, we denote it as an “optional” KC by using italics.

We ultimately divided our analysis of BKT into four discrete but related
knowledge areas: (1) Identifying Priors, (2) Identifying Changed Param-
eters, (3) Evaluating P(init), and (4) Limitations of BKT. Each knowledge
area consisted of 4-5 knowledge components, resulting in a total of 19 KCs:

Identifying Priors concerns the processing of subjective vignettes into rea-
sonable numerical values for the four initial parameters of BKT.
1. Recall range of “normal values” and/or definitions for the parameter in ques-

tion. This may involve recognizing (implicitly or explicitly) what P(init /

transit / guess / slip) is and how it is calculated.
2. Synthesize (summarize or process) information from vignette, identifying

specific evidence that is connected to the parameter in question.
3. Consider BKT’s limitations & how this could impact this parameter’s value.
4. Make an assessment about the parameter in question based on this qualita-

tive evidence (or lack thereof).
5. Choose a parameter value by converting to a probability between 0 and 1.

Identifying Changed Parameters focuses on the direction of change in pa-
rameter values (if any).
1. Consider the prior parameter level of P(init / transit / guess / slip).
2. Synthesize new information given, identifying specific evidence that suggests

a change in parameter value (or a lack thereof).
3. Make an assessment about the parameter in question based on this qualita-

tive evidence (or lack thereof).
4. Decide direction of change (increase, decrease, or stays the same).
5. If prompted, choose a new parameter value by converting assessment to a

probability between 0 and 1.

Evaluating P(init) addresses how the parameter P(init) is essential for eval-
uating practical applications of BKT. Sometimes experts arrived at different
answers for these more open-ended problems, but our participants typically fol-
lowed similar paths to arrive at their respective conclusions.
1. Synthesize information from vignette, considering parameter level of P(init).
2. Make a judgment as to the magnitude of P(init) (e.g., low, moderate, high,

moderately high, etc.).
3. Consider magnitude with respect to the situation and BKT’s definition of

mastery. Some situations call for a very high level of knowledge—and thus a
very high P(init) (e.g., space travel), while in other situations, a moderate
level of knowledge is acceptable (e.g., a high school course).

4. Take a stance on the question. Often: “With this value of P(init), has X
achieved mastery?” or “...is 0.4 a reasonable value for P(init)?”

5. Explain why BKT’s predictions might not be accurate in this case due to its
limitations, probabilistic nature, etc.
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Limitations of BKT covers three limitations of BKT within this protocol:
model degeneracy [9], additional non-BKT parameters such as time taken and
forgetfulness between tests, and the probabilistic nature of BKT. In many cases,
these problems also related to the “Evaluating P(Init)” knowledge area.

1. Synthesize information from vignette, identifying any “irregular” pieces of
information (e.g., anything that’s relevant to learning/mastery but not en-
compassed by the standard 4 BKT parameters, like whether a student is
being tested before or after their summer vacation).

2. If relevant, consider previous parameter values.
3. Experiment with irregular information and consider limitations of BKT. This

often involved asking open ended questions about learning/mastery.
4. Make a statement about BKT’s analysis (correct or not correct, sensible/intuitive

or not, etc.), or answer the posed question(s) accordingly, after determining
that BKT does not account for this irregular information.

4 The BKT Interactive Explanation

With KCs established, we designed our BKT explanation using principles from
user-centered design 1. Following this iterative design process, we went through
several cycles of brainstorming, prototyping, testing, and revising. Our final ex-
planation is an interactive web application that uses American Sign Language
to motivate and illustrate the behavior of BKT systems.

Fig. 1. P(transit) Module from BKT Explanation, artwork by Darlene Albert (https:
//darlenealbert.myportfolio.com/)

1 https://dschool.stanford.edu/resources/design-thinking-bootleg

https://darlenealbert.myportfolio.com/
https://darlenealbert.myportfolio.com/
https://dschool.stanford.edu/resources/design-thinking-bootleg
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Along with the pedagogical principles of Backward Design [25], we made
additional design decisions following best practices in learning and instruction,
active learning, and self-explanation in particular. “Learning by doing” is more
effective than passively reading or watching videos [17], and so our explanation
is interactive with immediate feedback which research shows leads to increased
learning. To ensure that we targeted the BKT KCs identified previously, we
mapped each activity in our explanation to its corresponding KCs.

After learning about all four parameters, we bring the concepts together
for a culminating mini game in which participants practice their ASL skills by
identifying different finger-spelled words until they achieve mastery. Following
the BKT mini game are four modules to teach BKT’s flaws and limitations: (1)
“When do you lose mastery?”, (2) “What Causes Unexpected Model Behavior?”,
(3) “How do Incorrect Answers Impact Mastery?”, and (4) “What is the Role of
Speed in BKT?”. This is essential to our goal of encouraging deeper exploration
of the algorithm and helping users develop realistic trust in BKT systems. For
example, in our “When Do You Lose Mastery?” module, participants are asked
to assess the magnitude of P(init) at different points in time. This module
demonstrates how BKT does not account for forgetting, which may bias its
estimates of mastery.

To implement our interactive explanation, we created a web application coded
in JavaScript, HTML, and CSS. We iteratively tested and revised our imple-
mentation with participants, until we reached a point of diminishing returns in
which no new major functionality issues arose. The final design is a dynamic,
interactive, publicly accessible explanation: https://catherinesyeh.github.
io/bkt-asl/.

After the implementation phase, we assessed the effectiveness of our BKT
explanation with a formal user study. We designed pre- and post-tests to accom-
pany our BKT explanation in a remote format. Our pre-test consisted mainly
of questions capturing participant demographics and math/computer science
(CS) background. Prior work suggests that education level impacts how users
learn from post-hoc explanations [27], so we included items to assess participant
educational background and confidence. Math/CS experience questions were
adapted from [13] using Bandura’s guide for constructing self-efficacy scales [3].
We also collected self-reported familiarity with Bayesian statistics/BKT systems
and general attitudes toward AI; these questions were based on prior work [10].

Our post-test questions were inspired by [22], which outlines evaluation meth-
ods for XAI systems. To evaluate user mental models of BKT, our post-test
includes questions specifically targeting our BKT KCs, such as Likert questions
like: “BKT provides accurate estimates of skill mastery.” Many of our other ques-
tions were similar to the vignette-style problems included in our CTA protocol,
mirroring the scenarios we present to participants throughout the explanation.
To measure usability and user satisfaction, we adapted questions from the Sys-
tem Usability Scale [4] and similar scales [3,12,23]. We also measured user trust
with a modified version of the 6-construct scale from [6]. Finally, we compared

https://catherinesyeh.github.io/bkt-asl/
https://catherinesyeh.github.io/bkt-asl/
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user attitudes toward AI algorithms more generally before and after completing
our explanation using the same set of questions from our pretest [10].

User study participants were nine undergraduate students from the same
rural private college as above. Each participant completed a pre-test, stepped-
through the explanation, and ended with a post-test. We do not go in-depth into
this user study here, as our follow-up experiment uses the same measures with
a larger sample size. Preliminary results suggest that any participant can learn
from our BKT explanation regardless of their math/CS background, and that
users received our BKT explanation positively. Satisfied with this initial evalu-
ation, we moved to the next stage of this work: examining how the information
in the interactive explanation impacts user understanding and other outcomes.

5 Impact of Algorithmic Transparency on User
Understanding and Perceptions

With an effective post-hoc explanation of BKT, we can answer the following
research questions: RQ1: How does decreasing the transparency of BKT’s limi-
tations affect algorithmic understanding? RQ2: How does decreasing the trans-
parency of BKT’s limitations affect perceptions of algorithmic fairness and trust?
As these questions focus on trust and other user outcomes in decision-making
situations, the most impactful factor of this is likely related to the user’s under-
standing of the algorithm’s limitations or flaws. And so, we designed a controlled
experiment examining how three levels of information about BKT’s limitations
impact user perceptions of BKT vs. Humans as the decider of a hypothetical
student’s mastery in high-stakes and low-stakes evaluation circumstances.

To vary the amount of information provided about BKT’s limitations, we
included three explanation conditions. The Long Limitations condition included
the original four limitations modules at the end of the BKT explanation. The
Short Limitations condition reduced the multiple pages and interactive activities
with a text summary and images or animations illustrating the same concepts.
The No Limitations condition had none of the limitations modules. Participants
were randomly assigned to an explanation condition.

Similar to prior work on user perceptions of fairness of algorithmic deci-
sions [18], we developed scenarios to examine algorithmic understanding’s impact
on user outcomes. In our case, we were interested in low-stakes and high-stakes
situations involving BKT as the decision-maker, as compared to humans. Each
scenario had a general context (i.e., “At a medical school, first-year applicants
must complete an entrance exam. To be recommended for admission, applicants
must score highly on this exam. An AI algorithm assesses their performance on
the entrance exam.”) and a specific instance (i.e., “Clay applies to the medical
school. The AI algorithm evaluates their performance on the entrance exam.”).
These decision scenarios were added to our post-test previously described, along
with measures from prior work asking about the fairness of each decision [18].

We recruited 197 undergraduate students from across the United States, 74
of which completed the pre- and post-tests satisfactorily. Of these, 50% identified
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as female, 43% male, 5% other, and 2% did not respond. 82% reported being
from the USA, with the remainder representing most other inhabited continents.
47% reported a major in math or engineering, and the rest were a mix of social
& natural science, humanities, business, and communication. We later dropped
10 of these respondents due to outlying survey completion times or re-taking
the survey after failing an attention check. 24 participants were assigned to the
Long Limitations condition, 21 to Short, and 19 to No Limitations.

How does decreasing the transparency of BKT’s limitations affect al-
gorithmic understanding? There was no statistically significant relationship
of time participants spent on the study and their post-test scores, nor was there a
statistically significant difference of explanation conditions on time spent. Partic-
ipants in the Long Limitations condition (µ=0.94, σ=0.09) had a higher average
score on the Limitations of BKT knowledge area than the Short Limitations
group (µ=0.92, σ=0.08), which in turn had a higher score than the No Limita-
tions group (µ=0.88, σ=0.1). As understanding of BKT’s limitations will depend
on a more general understanding of BKT, we conducted a one-way ANCOVA
to identify a statistically significant difference between explanation condition on
learning in the Limitations of BKT knowledge area, controlling for performance
in the three other knowledge areas, F(3, 64) = 3.85, p <0.05. A Student’s t-
test shows that the No Limitations condition performed significantly worse on
the Limitations of BKT knowledge area as compared to the other two expla-
nation conditions. This suggests that our manipulation was mostly effective at
impacting participant understanding of BKT’s limitations.

Fig. 2. Changes in Average Participant Attitudes Toward AI

How does decreasing the transparency of BKT’s limitations affect
perceptions of algorithmic fairness and trust? There was a significant
interaction between experimental condition and initial attitudes about AI on
final attitudes about AI, F(2, 64) = 3.21, p <0.05, as shown in Figure 2.

All of our additional self-reported perceptions of the explanation design (F(2,
64) = 10.77, p <0.0001), explanation effectiveness (F(2, 64) = 4.89, p <0.05),
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Fig. 3. Perceptions of Explanation Design, Explanation Effectiveness, and BKT Trust

and trust in the BKT algorithm (F(2, 64) = 3.96, p <0.05) show a statistically
significant effect of explanation condition. In all three of these cases, a Student’s
t-test shows that the Short Explanation condition has a significantly lower mean
than the other two conditions, as shown in Figure 3.

We did not find significant results for the low/high-stakes X human/AI as
the decision-maker questions. We likely need more than one question per cate-
gory, or possibly longer exposure to BKT to measurably impact decision-making.
However, in all cases, the Short Limitations condition had lower means than the
other two conditions. This aligns with our prior results.

These results show that less information about an algorithm is not always
worse. Participants in the Short Limitations group did not experience a posi-
tive increase in general attitudes about AI, unlike the Long and No Limitations
groups, and the Short Limitations condition also perceived the BKT algorithm
significantly less positively than the other two conditions. Despite the fact that
the Short Limitations participants learned significantly more about BKT’s lim-
itations than the No Limitations condition, students in our middle-level infor-
mation condition appear to have a significantly less positive perception of both
our specific AI and AI more generally. For designers of interactive AI explana-
tions, understanding how the design of an explanation impacts user perceptions
is critical, and our work on student understanding of the learning algorithms
they use provides a method for investigating that relationship.

6 Conclusion

This work shows that CTA can identify the necessary components of under-
standing a learning analytics algorithm and therefore, the necessary learning
activities of an interactive explanation of the algorithm. Understanding the al-
gorithm underlying learning analytics systems supports users in making informed
decisions in light of the algorithm’s limitations. Our CTA results identify four
main knowledge areas to consider when explaining BKT: (1) Identifying Pri-
ors, (2) Identifying Changed Parameters, (3) Evaluating P(init), and (4)
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Limitations of BKT. We then varied the length of the limitations module in
the implementation of an interactive BKT explanation. Results revealed that
using a limitations module with reduced information can have surprising effects,
mostly, a less than statistically expected impact on general perceptions of AI, as
well as on perceptions of the learning algorithm itself.

Limitations of this work arise from limitations of the methods. The think
aloud protocol for CTA shares limitations with all think aloud protocols: as a
method for indirectly observing cognitive processes which are not directly observ-
able, it is possible that some processes were missed by the think aloud protocol.
Additionally, while these KCs apply to BKT, they may not generalize directly
to another algorithm, although the CTA method itself certainly does extend to
other contexts. The Short Limitations condition did not learn significantly less
on the BKT limitations post-test as compared to the Long Limitations section,
and so our results looking at explanation condition are likely capturing an effect
based on more than just algorithmic understanding. Our posttest measures of
high/low stakes human/AI decision makers only tested one decision scenario of
each type, and needs to be expanded to be more generalizable. Furthermore,
students are not the only users of learning analytics. Teachers are also impor-
tant stakeholders, so next steps include repeating the process for instructor users
of BKT. This information can be used to decide whether different explanations
should be constructed for different stakeholders, or if a more general AI expla-
nation could suffice, given that user goals are sufficiently aligned.

Our findings also inform future work involving other complex algorithms,
with the larger goal of measuring how user understanding affects system trust
and AI-aided decision-making processes. This process of applying CTA methods
to identify important expert concepts that novices should learn about an algo-
rithm, designing explanatory activities to target each KC, and then evaluating
knowledge acquisition and shifts in decision-making patterns connected to each
KC provides a generalizable framework for building evidence-based post-hoc AI
explanations that are accessible even to non-AI/ML experts.
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