
Hi everyone, my name is Iris Howley and I’m an assistant professor of computer 
science at Williams College (we’re hiring!). I’m going to talk today about work I did 
with my undergraduate Ras, Noah and Catherine, who couldn’t be here today as 
students apparently cannot miss a week of class, but professors can (the irony!). Our 
work happens at the overlap between HCI and the learning sciences, which means 
we spend our time thinking deeply about how to improve student and teacher 
learning with technology. Today I’m going to talk specifically, about how can we know 
what people know?

1



Everyone already has some familiarity with this. <CLICK> such as, if you get a 95% on 
the exam, you’ve mastered the skill. Technology has introduced a few additional 
models such as <CLICK> get 4 in a row correct and you have mastery and <CLICK> the 
K-12 ALEKS system that has knowledge space theory. <CLICK> but today I’ll be talking 
about Bayesian Knowledge Tracing , or BKT.

BKT is not particularly complex (3 formulas, ~4 parameters), [we built an explainable 
of it!], but it’s complex enough that the users of these systems generally can’t explain 
the algorithm, and if the students or instructors were to look up the research papers, 
it wouldn’t necessarily help them develop any intuition for the algorithm.

2



This brings me to the topic I’m most excited about. Thinking about the end users of 
algorithmic systems and how better understanding of their algorithm can improve or 
change their use of the system. How might we do this?

3



We use something from education research called backward design, although there’s 
some similar parallels to the design of classic info viz tasks here. Basically, we start 
with what we want learners to be able to do. Maybe that’s basic comprehension like 
defining the parameters…but then we build up to more complex concepts like 
verifying the output of the system…or even more complex concepts like identifying 
the edge cases for the algorithm, or doubting and interrogating the algorithm at an 
appropriate time (we don’t want complete distrust, because then you might as well 
not have the system at all!).

4



Then you need to determine how to assess if users can do those things. This gets 
stickier. Pre/posttest is pretty classic, interviews, self-report of trust or fairness, and 
then behavioral outcome measures. We’ve been working with hypothetical situations 
or vignette surveys to help evaluate in the lab, but going forward we’re still designing 
ways to look at this in the field.

5



Then we start thinking about how to teach the skills we’re assessing. We’re using CTA 
to help us define the skills and then targeting the development of explainables at 
components of those skills to determine which are essential for our desired 
outcomes. I do want to point out (as was mentioned in a earlier talk in this session) 
that we really need to focus on hypothesis-generating interactions, not passive 
absorption. Scrolling through a website will not create as robust learning as an 
interaction where the user pulls knowledge to make a prediction. So the more of that 
we can do, the better.

6



We also need to add in a little iterative user-centered design. <CLICK> <CLICK> 
<CLICK> <CLICK>. We’re on our 5th or 6th design, but it’s necessary to go through this 
process to determine how to maximize learning while minimizing usability issues. 
There’s a really lovely discussion of “desirable difficulties” in the learning science 
literature that I won’t go into now, but it’s an interesting conversation that can run in 
opposition to some HCI conversations.

7



And that brings us to our current explainable. We teach you a teensy bit of Esperanto, 
I turned it into a bitly link but you can also access it from the workshop website. I’m 
going to do a little introduction of it, but the explainable will do a much better job of 
explaining BKT than I can in the remaining time.

8



We start basic, explaining what the probability of guessing a question correctly is. Not 
all our users are statisticians and many are students, so considering our end users’ 
prior knowledge here is very necessary.

9



10



We also provide some sliders to illustrate that as the number of possibly answers 
goes up, the probability of guessing correctly goes down. We have other interactions 
like this for the remaining 3 parameters, and these all build up to …<CLICK>

11



…the final activity in which you play a game of memory which illustrates the system’s 
prediction of your mastery. This is a little stretch for BKT, but illustrates the concepts. 
And it also lets you modify the parameters on the side to see how that impacts game 
play.

12



What this explainable does particularly well is it illustrates that even when you 
answer incorrectly, the prediction of mastery still goes up a little bit. So being wrong, 
but getting feedback on that produces some small chance that you’ve mastered the 
concept. In the game of memory, it means you’ve learned a location for another word 
and so this makes sense here. But in our user studies, participants are often quite 
surprised by this and this explainable illustrates this idea particularly well.

13



And with that, I’d like to leave you with encouraging everyone to consider who their 
users are and what they’d like them to be able to do, and what changes you expect 
that to have on not only their workflow, but their attitudes and future behavior with 
the system as well. Thank you!

14


