
1

Talk-O-Matic
Tangibly Displaying Conversation

Iris Howley

2

Table of Contents

Motivation _______________________________ 3

Challenges _______________________________4

Materials ________________________________ 5

Physical Construction ______________________6

Electronic Details _________________________ 8

Programming Code _______________________10

Future Work _____________________________20

3

Motivation

For the classroom teacher who wants to encourage discussion amongst
students, the Talk-O-Matic provides a novel and interesting tangible display of

conversation that cannot be found anywhere else.

For anyone who has ever been in a meeting where one person dominates the
discussion, the Talk-O-Matic offers a visualization to subtly indicate the over-

contribution to the dominating-talker.

The Talk-O-Matic takes input from two separate microphones, compares the
audio input with an Arduino, and moves the pinwheel gear motor associated
with the more active microphone. If input is approximately equal, both
pinwheels will move. The Talk-O-Matic also has an on/off button that resets the
system.

4

Challenges

While not having any background in electronics prototyping guaranteed I
would have some issues, the greatest challenge I encountered while
constructing the Talk-O-Matic was actually related to programming logic.

Determining exactly how to know when a microphone is experiencing
conversation in a way that can be compared to another microphone proved
especially difficult. The Electret Microphone Breakout Boards are rather poor
quality and read in a number (typically around 500, but with a maximum of
1023) according to the volume of sound the sensor is experiencing, but with a
considerable amount of noise.

To deal with the noise in sensor readings, I created a low pass filter, which
adjusts each value read, taking into account past values. This has the effect of
smoothing the readings, so that if most of the readings are around ‘500’, a
reading of ‘153’ might be readjusted to ‘350’.

Now, to determine when a microphone is experiencing conversation, first we
have to determine what the average values are for “silence.” There is a
calibration feature built into the code, so that we can determine the average
values that are read in by both microphones when the area is at its default
quietness. Once we have this average silence value, then we can run the
program with its normal features. Every time we read in a value from the
microphones, we check to see if it is a certain number of times larger than the
average silence value. This way, we can check for abnormally large values being
read in, and we count those as “interaction.”

The program keeps a running count of these interaction moments, and then
spins the motor for which microphone has more of these moments. When the
counts are within 5 of each other, both motors spin.

5

Materials

• Arduino Duemilanove
• Electret Microphone Breakout Board (2)
• Pushbutton
• H-bridge (SN754410NE)
• 1k Resistor(3)
• Gear Motor (2)
• Gear Wheels (2)
• Hookup Wire
• Mini Breadboard

• Power Source (Battery Holder, AC Adapter, etc)
• Scrap of Poster Board
• Small Box
• 6-inch Square of Scrap Book Paper (2)
• Craft Wire
• Glue
• Tape
• Scissors
• Wire strippers
• Needle Nose Pliers

6

Physical Construction

The above illustration shows the exterior of the Talk-O-Matic, and how the
components fit together. The pinwheel mechanisms are made of several parts
as well, as shown below.

7

The interior of the “small box” that contains the bulk of the Talk-O-Matics
electronics includes a mini breadboard, Arduino Duemilanove, and all the
smaller electronics components. The layout of the interior of the box is
displayed below.

8

Electronic Details
When it comes to electronic components, the Talk-O-Matic system is basically
two motors connected to an H-bridge. The H-bridge is connected to the
Arduino, as well as the two microphone breakout boards and the pushbutton
switch. The schematic below shows the particular details of the electronics
involved.

9

Below is a Fritzing Diagram of the Talk-O-Matic electronics components. The
microphone breakout boards and the gear motors are attached to the
breadboard, but are on the exterior of the Talk-O-Matic’s small cardboard box.
The rest of the electronics components attached to the breadboard and Arduino
are stored inside the small box.

10

Programming Code

There is a considerable amount of Processing code involved to make the Talk-O-
Matic function. The figure below describes the basic logic of the code (the bold
line, determining if the values are peaks is where there is additional complexity,
as described in the “Challenges” section).

The remainder of this section is dedicated to the code used by the Talk-O-Matic.

11

1. /**

2. * PROJECT PART 2

3. * - by Iris Howley -

4. *

5. * This program keeps track of sound coming in through two

6. * microphones and displays the input as a function of two

7. * gear motors (and an h-bridge). There is also a

pushbutton/switch

8. * for turning the system on/off and resetting the global

counts.

9. **/

10.

11. //**********************

12. // MOTORS

13. //**********************

14. int hbridgeR1 = 6; //declares the first pin on the

right side of the hbridge for the motor

15. int hbridgeR2 = 7; //declares the second pin on the

right side of the hbridge for the motor

16. int motorRpmw = 9; // this is the pmw that will

set how much power the motor is getting (speed)

17.

18. int hbridgeL1 = 4;

19. int hbridgeL2 = 3;

20. int motorLpmw = 5;

21.

22. int DEFAULT_MOTOR_POWER = 255;

23.

24. //**********************

25. // MICROPHONES

26. //**********************

27. int mic1SensorPin = A0; // the first microphone,

analog in

28. int mic2SensorPin = A5; // the second microphone,

analog in

12

29.

30. int mic1Count = 0; // the first mic's activity count

31. int mic2Count = 0; // the second mic's activivity

count

32.

33. double PEAK = 1.3; // what multiple of the average

will be considered a peak.

34. int PEAK_THRESHOLD = 5; // how many more peaks one

sensor must have than the other to be considered "more"

talkative

35.

36. // Calibration

37. boolean calibrateMic = false; // if we are running

this to calibrate the microphones or not

38. int average1 = 503; // the average of the smoothed

mic1 values at "silence"

39. int average2 = 646; // the average of the smoothed

mic2 values at "silence"

40. int count = 0; // how many sensor readings we've done

so far

41.

42. //**********************

43. // LOW PASS FILTER

44. //**********************

45. float filterVal = 0.5; // this determines

smoothness: 0 is off (no smoothing) and .999 is max

46. float smoothedVal1 = 0; // this holds the last

loop value for mic1

47. float smoothedVal2 = 0; // this holds the last loop

value for mic2

48.

49. //**********************

50. // ON/OFF BUTTON

51. //**********************

52. int onOffPin = 12; // gray wire --> 12

13

53. boolean onOffStatus = 0; //default status, system is

off

54.

55. //**********************

56. // MAIN FUNCTIONS

57. //**********************

58.

59. /**

60. * setup() establishes defaults, declares pin modes,

and other

61. * start-up activities necessary before running the

program.

62. **/

63. void setup() {

64. Serial.begin(9600);

65. pinMode(onOffPin, INPUT);

66. //pinMode(mic1SensorPin, INPUT); // analog in

67. //pinMode(mic2SensorPin, INPUT); // analog in

68.

69. // Declaring as outputs

70. pinMode(hbridgeL1, OUTPUT);

71. pinMode(hbridgeL2, OUTPUT);

72. //pinMode(motorLpmw, OUTPUT); // analog out

73.

74. pinMode(hbridgeR1, OUTPUT);

75. pinMode(hbridgeR2, OUTPUT);

76. //pinMode(motorRpmw, OUTPUT); // analog out

77.

78. reset(); // establish original values of variables

79. delay(1000); // wait a second so we ignore the first

couple audio readings

80. }

81.

82. /**

83. * loop() runs infinitely on the Arduino.

84. **/

14

85. void loop() {

86. calibrateMic = false; // we don't want to calibrate

87. run(); // the main function of this program

88. }

89.

90. /**

91. * run() runs the left and right motors in proportion

to

92. * how much interaction the microphones are

experiencing.

93. * Motors start 'off', but when the pushbutton turns

on

94. * the software runs and the motors turn on.

95. **/

96. void run() {

97. boolean switchState = digitalRead(onOffPin);

98.

99. if (switchState && !onOffStatus) { // the button is

pressed, the status is off, TURN ON

100. onOffStatus = true;

101. Serial.println("Switch state to 'on'");

102. delay(1000); // wait a second

103. }

104. else if (switchState && onOffStatus) { // the button

is pressed, the status is on, TURN OFF

105. onOffStatus = false;

106. Serial.println("Switch state to 'off'");

107. reset(); // reset original values

108. delay(1000); // wait a second

109. }

110.

111. if (!onOffStatus) { // if we're off, turn motors

off

112. analogWrite(motorLpmw, 0); // turn off left motor

113. analogWrite(motorRpmw, 0); // turn off right motor

15

114.

115. } else if (onOffStatus) { // If we're supposed to be

on...then be on

116. int mic1SensorValue = analogRead(mic1SensorPin);

117. int mic2SensorValue = analogRead(mic2SensorPin);

118.

119. // Ignore if '0' is read (since that's due to

loose connections)

120.

 if (mic1SensorValue > 50 && mic2SensorValue > 50) {

121.

122. // Pass through smoothing (low pass) filter

123. smoothedVal1 = smooth(mic1SensorValue,

filterVal, smoothedVal1);

124. smoothedVal2 = smooth(mic2SensorValue,

filterVal, smoothedVal1);

125.

126. // Print smoothed and original audio values

127. Serial.print(smoothedVal1); Serial.print("

("); Serial.print(mic1SensorValue); Serial.print(")"); Seri

al.print("\t");

128. Serial.print(smoothedVal2); Serial.print("

("); Serial.print(mic2SensorValue); Serial.println(")");

129.

130. if (calibrateMic) { // if we're calibrating

131. average1 += smoothedVal1;

132. average2 += smoothedVal2;

133. count++;

134. }

135.

136. // Determine if these values are peaks

137. if (smoothedVal1 > average1*PEAK) { // it is a

peak for mic1

138. mic1Count++;

139. }

16

140. if (smoothedVal2 > average2*PEAK) { // it is a

peak for mic2

141. mic2Count++;

142. }

143.

144. Serial.print(mic1Count); Serial.print(" vs

"); Serial.println(mic2Count);

145. if ((mic1Count -

 mic2Count) > PEAK_THRESHOLD) { // if mic1 has more than

threshold peaks than mic2

146. leftMotorForward(DEFAULT_MOTOR_POWER);

147. analogWrite(motorRpmw, 0); // turn off right

motor

148. } else if ((mic2Count -

 mic1Count) > PEAK_THRESHOLD) { // if mic2 has more than

threshold peaks than mic1

149. rightMotorForward(DEFAULT_MOTOR_POWER);

150. analogWrite(motorLpmw, 0); // turn off left

motor

151. } else { // equal (within 10 counts)! turn both

motors on

152. rightMotorForward(DEFAULT_MOTOR_POWER);

153. leftMotorForward(DEFAULT_MOTOR_POWER);

154. }

155.

156. } // end if mic1 > 50 && mic2 > 50

157.

158. } // end if onOffStatus

159. }

160.

161. /**

162. * reset() reestablishes the default values of

variables

163. * and resets everything to its original state.

164. **/

165. void reset() {

17

166. mic1Count = 0; // the first mic's activity count

167. mic2Count = 0; // the second mic's activivity

count

168.

169. smoothedVal1 = 0; // first mic's low pass filter

value

170. smoothedVal2 = 0; // second mic's low pass filter

value

171.

172. if (calibrateMic) { // if we're calibrating

173. average1 = average1/count;

174. average2 = average2/count;

175. Serial.print("Average1:

"); Serial.print(average1); Serial.print("\tAverage 2:

"); Serial.println(average2);

176. }

177. }

178.

179. //**********************

180. // LOW PASS FILTER

181. //**********************

182. /**

183. * Smooths a given sensor reading using past smoothed

values

184. * and a given filtering/smoothing level.

185. * This function was adapted from the Arduino

Playground:

186. * http://www.arduino.cc/playground/Main/Smooth

187. * @param data the sensor reading we're smoothing

188. * @param filterVal the level of filtering/smoothing

to apply

189. * @param smoothedVal the running 'smoothed value'

associated with the sensor

190. * @return the smoothed sensor value

191. **/

18

192. int smooth(int data, float filterVal, float smoothedVa

l) {

193. // Check to make sure param's are within range

194. if (filterVal > 1) {

195. filterVal = .99;

196. } else if (filterVal <= 0) {

197. filterVal = 0;

198. }

199.

200. smoothedVal = (data * (1 -

 filterVal)) + (smoothedVal * filterVal);

201. return (int)smoothedVal;

202. }

203.

204. /**

205. * Outputs the read-in sensor value, the value after

smoothing,

206. * and the value at which we're smoothing/filtering.

207. * @param sensPin the analog pin we're smoothing.

208. **/

209. void testFilter(int sensPin) {

210. int sensVal = analogRead(sensPin);

211. smoothedVal1 = smooth(sensVal, filterVal,

smoothedVal1);

212.

213. Serial.print(sensVal);

214. Serial.print(" ");

215. Serial.print(smoothedVal1);

216. Serial.print(" ");

217. Serial.print("filterValue * 100 = "); // print

doesn't work with floats

218. Serial.println(filterVal * 100);

219. delay(1000);

220. }

221.

222. //**********************

19

223. // MOTOR FUNCTIONS

224. //**********************

225. /**

226. * Move the left motor forward.

227. * @param power the power at which to move the motors

228. **/

229. void leftMotorForward(int power) {

230. // Keeps the left motor on

231. analogWrite(motorLpmw, power);

232. digitalWrite(hbridgeL1, LOW); //turns the motors

on

233. digitalWrite(hbridgeL2, HIGH);

234. }

235.

236. /**

237. * Move the rightft motor forward.

238. * @param power the power at which to move the motors

239. **/

240. void rightMotorForward(int power) {

241. // Keeps the right motor on

242. analogWrite(motorRpmw, power);

243. digitalWrite(hbridgeR1, LOW); //turns the motors

on

244. digitalWrite(hbridgeR2, HIGH);

245. }

20

Future Work

The Talk-O-Matic performs the desired functions, as detailed in the beginning of
this document, however, there is still more work that can be performed to
improve its effectiveness:

• Improve the form-factor of Talk-O-Matic, perhaps by making the
pinwheels wireless. Portable pinwheels could be attached to nametags, or
moved around on a conference table to make the display more
integrated. Making the microphones wireless as well would improve the
flexibility of the Talk-O-Matic.

• There are also other displays, besides pinwheels, that could be used to
display discussion. Pinwheels are a “comparative” display, but a tug-of-
war could be considered a “competitive” display, and a “cooperative”
display could be two avatars raising a tent together.

• The Talk-O-Matic should be studied more in depth, to see if it brings out
the desired behaviors described earlier. User studies could tell us if the
Talk-O-Matic actually increases or decreases participation in a discussion.

• Instead of showing only face-to-face conversation, the Talk-O-Matic could
display online chat conversation. This is particularly relevant to the
Computer-Supported Collaborative Learning research community.

• With a finer grained understanding of what is actually being said (rather
than simply if something is being said or not), we could use the display to
encourage or discourage specific chat behaviors (ones that lead to
learning, disruptive contributions, bullying, etc).

