Programming Usable Interfaces Assignment 2a:

Use all the widgets, and elevator simulation

Assigned: 9/9/13
Due: Sunday, midnight, 9/22/13
Objective

This goal of this assignment is to make sure you can use all the common widgets, get you to do some simple design of an interface, and give you experience with a non-passive (real-time) interface.
To Hand In:

You must write two programs, which you will hand in like last time (submit .zip files via e-mail). Please include comments in all of your code, otherwise we won't be able to understand it, and you will lose points.

Note: Be sure to export your project files as .fxp files, and also include an executable (.swf) file of your programs. Flex Builder will do this automatically, and put it in the debug-bin folder. This is great because it allows you to run your code without opening up Flex Builder.

When you submit your hw be sure to name the .zip files like this: [firstname]-[lastname]-hw2a-projectname.zip Anind Dey, would submit these files:

anind-dey-hw2a-useall.zip

anind-dey -hw2a-elevator.zip

Useall.zip -- Use (Almost) All the Widgets:

For useall, the widgets should be in a clear order, so that I know which one to interact with first, then second, etc. As I interact with the first, it clearly changes something about the second, then interacting with the second clearly changes something about the third, and so on. If you have multiple widgets that all want to be acted upon, but not act on anybody else, make them all be at the end of the chain, affected by the last one that handles input. You can do this in a mundane way, or you can try to be clever. I would not invest much time in it; this part of the assignment is basically pass/fail. Widgets you must include are:

· Label

· TextInput

· Button

· CheckBox

· RadioButton

· ComboBox

· List

· HSlider

· VSlider

· Image

elevator -- An Elevator Simulation

This program requires you to write an interface that isn't "passive," to use arrays, to use event handlers for multiple controls, to write a fun simulation, to handle boundary conditions (no elevators going through the roof, please!), and to use subroutines. Your program should show the user the current state of, and allow the user to interact with, a running elevator simulation. The user is given a "God's eye view," meaning that they are able to generate events that all the people in the building would generate. Specifically, the rules of the simulation are:

· There are ten floors.

· There are three elevators, BUT you should use a variable, ‘numElevators = 3’ to specify how many elevators you have, and then implement the elevators within an Array. In this way, if I change ‘numElevators’ to ‘8’, your code should still work.
· Each elevator is always on a specific floor, and always "headed up" or "headed down"

· All elevators start on floor four, headed down.

· On each floor, there is a single "call button,” and a light that shows if it's currently been pressed, but not serviced. When the user presses that button, the light goes on. When the floor is "serviced" the light goes off. If the user presses a light that's on, nothing happens (just like in real life :-) The user can press buttons at any time.

· Once per second, a single elevator should run the following algorithm. The leftmost elevator should go first, then a second later the middle one, then the rightmost one, then the leftmost one goes again, and so on.

IF the elevator is headed up AND there are pending calls above the elevator THEN

move up one floor

turn off the light on the new floor, if it’s on (since it has now been serviced)

ELSEIF the elevator is headed down AND there are pending calls below the elevator

move down one floor

turn off the light on the new floor, if it’s on (since it has now been serviced)

ELSE

keep elevator on the current floor

switch the direction it's going

turn off the light on the current floor, if it's on (since it has now been serviced)

ENDIF

Until you press any buttons, your elevators should happily sit on the floor they start on; each second, one of the elevators will switch its direction (which should be visible as your simulation runs). You will be graded primarily on the correct functioning of your code, but also on the appearance and usability of your interface. Note that design does not make up for functionality on this assignment. If your elevators do not function exactly as specified in this handout, you will receive a poor grade. The algorithm must be implemented exactly as described above. See me if you are not sure about how to do that. Once you have the basics up and running, feel free to embellish the simulation in reasonable ways. The entire state of the simulation should be visible at all times.

Note: although functionality is strictly graded, you shouldn’t necessarily code first and design later. If you design for usability first and plan your implementation around your design, you’re much more likely to have a functional and usable interface.

As Always….

Make sure your code is written in a general way, allowing easy modification at a later time. Starting early is highly recommended; if you have questions, email the instructor and TA’s.
