
Computer Science 134C: Introduction to Computer Science — Spring 2020
Instructors: Shikha Singh (shikha@cs.williams.edu) and Iris Howley (iris@cs.williams.edu)

Student Help Hours: Shikha (TBL309b): Mon. 2:30-4:00p, Wed. 12:30-2:00p (CS Common Room), Thu. 1-2p
Iris (TCL308): Wed. 12:00-1:00p, Thurs. 10:00a-12:00p
Lida (TCL205) Wed. 1:30-3pm in the CS Common Room, 3rd floor of TCL (starting March 1)

Assistants: Harun Curak, Diego Esparza, Nathan Thimothe, Emily Zheng,
Maria Chapman, Amelia Chen, Caleb Dittmar, Hugo Hua, Brian Kamau, Sarah Lyell, Yash Mangal,
Rachel Nguyen, Minh Phan, Mira Sneirson, Jules Walzer-Goldfeld, Emma Wuerth

TA Hours: Sun-Thu 7-9:30p
Course Text: Allen Downey’s Think Python, 2ed, at greenteapress.com/thinkpython2/thinkpython2.pdf.
Web resources: http://www.cs.williams.edu/~cs134/

Technical Support: Lida Doret (lida@cs.williams.edu), TCL 205 & Mary Bailey (mary@cs.williams.edu), TCL 312.
Lecture: SSL30A, Monday, Wednesday, and Friday at 8:00 a.m (Shikha) & 11:00 a.m (Iris).
Lab Times: Mon 1-2:30pm (Iris), 2:30-4pm (Iris), Tue 1-2:30pm (Shikha), 2:30-4pm (Shikha)
Lab Location: TCL 217a

CS Lab Code: 1-2-4-8-16 (remember visually, or think: 20, 21, 22, 23, 24). 1 2 4

8

1 6

We are surrounded by information. This course introduces fundamental computational concepts for representing
and manipulating data. Using the programming language Python, this course explores effective ways to organize
and transform information in order to solve problems. Students will learn to design algorithms to search, sort, and
manipulate data in application areas like text and image processing, scientific computing, and databases. Program-
ming topics covered include procedural, object-oriented, and functional programming, control structures, structural
self-reference, arrays, lists, streams, dictionaries, and data abstraction. This course is appropriate for all students
who want to create software and learn computational techniques for manipulating and analyzing data.

Organization. During lecture hours we will typically learn new concepts and problem solving strategies to solve
simple problems. While the learning process is initially supported by an online text, we expect a dynamic approach
to the class that will allow us to steer lectures in directions of mutual interest. During formal lab hours, we will meet
for 90 minutes to begin work on a more extended problem. We expect that this work will be continued outside of
scheduled time. There are also weekly written homework assignments to support lecture and lab learning.

Work. You are responsible for reading supporting material (Think Python (TP)) and participating as the semester
progresses. In addition, some topics may require you to investigate online resources (documentation, tutorials, and
the like). Each week you will be responsible for completing a programming assignment (40%) in addition to a written
homework (15%). There will be a midterm examination on March 12 (20%), and a scheduled final (T.B.A.,
25%). We reserve the right to adjust grades by as much as 5% to reflect course participation.

Late Policy. You are expected to turn in all homework assignments by the due date to receive credit. For labs, each
student is allowed a total of three late days during the semester, with at most two late day towards any particular
lab. A late day gives you a no-questions-asked 24-hour extension. Note that late days are not fractional: there is no
such thing as half a late day. You must request a late day in advance on the form located here: To Be Determined.

Attendance Policy. Attendance is not required in the lectures or labs but regular absences may significantly affect
your class participation grade. If you have to miss class due to a conflict, you should inform your instructor. It is
your responsibility to make up for missed work.

Intellectual Property. No part of this course may be reproduced and distributed in any manner without prior
permission from the instructors.

Community. We embrace diversity. We welcome all students and expect everyone to contribute and support a
respectful and welcoming environment. If you have concerns, please share them with us or the college administration.

Students Who Need Accommodations. If formal accommodations need to be made to meet your specific
learning or physical abilities, please contact one of us as soon as possible to discuss appropriate accommodations.
Please also contact the Director of Accessible Education, Dr. G. L. Wallace (4135974672) or the Dean’s office
(4135974171). We will work together to ensure this class is as accessible and inclusive as possible.

Mental Health. Students experiencing mental or physical health challenges that are significantly affecting their
academic work are encouraged to contact one of us or to speak with a dean. The deans can be reached at 4135974171.

Please note: This syllabus was used for the first 5 weeks of this course, prior to the College closing campus one week
before spring break and converting the rest of the semester to emergency remote teaching due to COVID-19.

Honor Code. The Honor Code as it applies to non-programming assignments is outlined in the Student Handbook.

For programming assignments in computer science courses, the honor code is interpreted in very specific ways.
When a program is assigned, it will be described as a “test” or “laboratory” program. The Honor Code applies to
each as follows (unless otherwise specified):

Test Programs. Any assignment designated as a test program is to be treated exactly as a take-home, open-book
test. You are allowed to read your textbook, class notes, and any other source approved by your instructor. You
may not consult anyone other than your instructor. The instructor encourages the asking of questions, but reserves
the right not to answer, just as you would expect during an exam.
Guideline: Any work that is not your own is considered a violation of the Honor Code.

Laboratory Programs. Laboratory programs are expected to be the work of the individual student, designed
and coded by him or her alone. Help locating errors and interpreting error messages are allowed, but a student may
only receive help in correcting errors of syntax; help in correcting errors of logic is strictly forbidden. In general,
if you are taking photos of someone else’s screen, looking at someone else’s screen, or telling someone else what to
type, it is likely your work is no longer the work of an individual student.
Guideline: Assistance in the design or coding of program logic will be considered a violation of the Honor Code.

If you do not understand how the Honor Code applies to a particular assignment, consult your instructor. Students
should be aware of the Computer Ethics outlined in the Student Handbook. Violations (including uninvited access
to private information and malicious tampering with or theft of computer equipment or software) are subject to
disciplinary action.
Guideline: To protect your work dispose of printouts and copies of your work carefully, and avoid leaving your
programs on hard disks in labs and other public storage areas.

The Department of Computer Science takes the Honor Code seriously.
Violations are easy to identify and will be dealt with promptly.

The College and Department also have computer usage policies that apply to courses that make use of computers.
You can read more about these policies at

csci.williams.edu/the-cs-honor-code-and-computer-usage-policy

Lab Grading. Programming labs will be graded on the following scale:

A+ An absolutely fantastic submission of the sort that will only come along a few times during the semester.
A A submission that exceeds our standard expectations for the assignment. The program must reflect additional

work beyond the requirements or get the job done in a particularly elegant way.
A- A submission that satisfies all the requirements for the assignment – a job well done.
B+ Submission meets the requirements for the assignment, possibly with a few small problems.
B A submission that has problems serious enough to fall short of the requirements for the assignment.
C A submission that has extremely serious problems, but nonetheless shows some effort & understanding.
D A submission that shows little effort and does not represent passing work.

There is some subjectivity to what makes good style, but the basic goal is to make your ideas as clear and easy
to follow as possible. Stylistically, we expect to see programs that exhibit the following:

• Meaningful names used in declarations

• Informative comments

• Good and consistent formatting

• Good choice of Python commands.

Late days. You are allowed a total of 3 late days over the semester, with at most 2 late days towards any one
lab. You must request a late day in advance on the form, here: http://bit.ly/s20late.

Comments from previous renditions
“1. Go to office hours, 2. Go to TA sessions, 3. Don’t stress about homeworks.”

“Go to office hours! GO TO OFFICE HOURS! Go to office hours!” ? “Read the textbook.”
“Look at the code posted after class; don’t try to copy it down in class.” ? “Think about how your code should

works logically before typing anything.” ? “Stop complaining and start coding!!!”
“Don’t be intimidated...a programming language is just a language...practice the idioms.”

“Practice writing code outside of class.” ? “Write code on paper beforehand; it helps to pinpoint errors.”
“TAs are soooo helpful and just great to talk to.” ? “You are learning a lot...Enjoy!” ?

Tentative Schedule of Topics
Week of Monday Lab Wednesday Friday

Feb. 3 — — 1. Hello, world! (TP1)
Feb. 10 2. Expressions (TP2) I. Python and Gitlab 3. Functions (TP3) Winter Carnival
Feb. 17 4. Conditions (TP5-6) II. Procedure 5. Iteration (TP7) 6. Lists (TP10)
Feb. 24 7. Strings (TP8-9) III. Toolbox Building 8. Mutability, Tuples (TP12) 9. Files (TP14)
Mar. 2 10. Sets, Dicts, (TP11) IV. Faculty Trivia 11. Plotting Data 12. Generators
Mar. 9 13. Iterators V. Presenting Data 14. Classes (TP15-17) 15. n-grams
Mar. 16 16. Special Methods VI. Generators 17. Operators 18. Slack
M. 22&29 Spring Break Spring Break Spring Break Spring Break
Apr. 6 19. Images VII. Images 20. Slack 21. Multiple Classes
Apr. 13 22. Recursion VII. Multiple Classes 23. Graphical Recursion 24. Linked List I
Apr. 20 25. Linked List II. VIII. Recursion 26. Binary Trees 27. Tree Maps
Apr. 27 * Slack IX. Recursive Trees 28. Object Persistence 29. Scope
May 4 30. Iterative Sorting X. Project 31. Recursive Sorting 32. Search
May 11 33. Special Topics X. Project (cont.) 34. Special Topics 35. Evaluations

Computer Science 134: Introduction to Computer Science — Spring 2020 — Remote Syllabus
Instructors: Shikha Singh (shikha@cs.williams.edu) and Iris Howley (iris@cs.williams.edu)

Virtual Instructor Hours: See course calendar
Assistants: Harun Curak, Diego Esparza, Nathan Thimothe,

Amelia Chen, Hugo Hua, Mira Sneirson, Jules Walzer-Goldfeld,
Minh Phan, Maria Chapman, Caleb Dittmar, Sarah Lyell,
Brian Kamau, Yash Mangal, Rachel Nguyen

TA Hours: See course calendar
Course Text: Allen Downey’s Think Python, 2ed, at greenteapress.com/thinkpython2/thinkpython2.pdf.
Web resources: http://www.cs.williams.edu/~cs134/

Technical Support: Lida Doret (lida@cs.williams.edu) & Mary Bailey (mary@cs.williams.edu).
Lecture: Posted Sunday, Tuesday, and Thursdays on the Glow course site.

We are surrounded by information. This course introduces fundamental computational concepts for representing
and manipulating data. Using the programming language Python, this course explores effective ways to organize
and transform information in order to solve problems. Students will learn to design algorithms to search, sort, and
manipulate data in application areas like text and image processing, scientific computing, and databases. Program-
ming topics covered include procedural, object-oriented, and functional programming, control structures, structural
self-reference, arrays, lists, streams, dictionaries, and data abstraction. This course is appropriate for all students
who want to create software and learn computational techniques for manipulating and analyzing data.

Organization. During lecture hours we will typically learn new concepts and problem solving strategies to solve
simple problems. While the learning process is initially supported by an online text, we expect a dynamic approach
to the class that will allow us to steer lectures in directions of mutual interest. There are be weekly programming
lab assignment and homework assignments to supplement the lecture learning.

Work. You are responsible for reading supporting material (Think Python (TP)), watching pre-recorded lectures,
and pursuing interaction in online Student Help hours as the semester progresses. In addition, some topics may
require you to investigate online resources (documentation, tutorials, and the like).

Grading. Your final grade will be determined according to the following:

• Weekly programming (lab) assignment: 50%
• Weekly homework: 20%
• Four quizzes administered through Glow: 30%

The tentative quiz dates are April 17, April 24, May 15, and May 22. We reserve the right to adjust grades by as
much as 5% to reflect course participation.

Late Policy. You are expected to turn in all homework assignments by the due date to receive credit. For labs, each
student is allowed a total of three late days during the semester, with at most two late days towards any particular lab.
A late day gives you a no-questions-asked 24-hour extension. Note that late days are not fractional: there is no such
thing as half a late day. You must request a late day in advance on the form located here: http://bit.ly/s20late.

Intellectual Property. No part of this course may be reproduced and distributed in any manner without prior
permission from the instructors. In particular, no videos recorded as part of this class may be shared with anyone
external to the CS134 course.

Community. We embrace diversity. We welcome all students and expect everyone to contribute and support a
respectful and welcoming environment. If you have concerns, please share them with us or the college administration.

Students Who Need Accommodations. If formal accommodations need to be made to meet your specific
learning or physical abilities, please contact one of us as soon as possible to discuss appropriate accommodations.
Please also contact the Director of Accessible Education, Dr. G. L. Wallace (4135974672) or the Dean’s office
(4135974171). We will work together to ensure this class is as accessible and inclusive as possible.

Mental Health. Students experiencing mental or physical health challenges that are significantly affecting their
academic work are encouraged to contact one of us or to speak with a dean. The deans can be reached at 4135974171.

Please note: This syllabus was used for the remaining 6 weeks of the semester in an emergency remote format
due to COVID-19.

https://calendar.google.com/calendar?cid=d2lsbGlhbXMuZWR1X3B1M3VsYjEwdjVoOW5hMm1uNGc5Z3ZpaHI4QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
https://calendar.google.com/calendar?cid=d2lsbGlhbXMuZWR1X3B1M3VsYjEwdjVoOW5hMm1uNGc5Z3ZpaHI4QGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
http://www.cs.williams.edu/~cs134/
https://glow.williams.edu/courses/2648240
http://bit.ly/s20late

Honor Code. The Honor Code as it applies to non-programming assignments is outlined in the Student Handbook.

For programming assignments in computer science courses, the honor code is interpreted in very specific ways.
When a program is assigned, it will be described as a “test” or “laboratory” program. The Honor Code applies to
each as follows (unless otherwise specified):

Test Programs. Any assignment designated as a test program is to be treated exactly as a take-home, open-book
test. You are allowed to read your textbook, class notes, and any other source approved by your instructor. You
may not consult anyone other than your instructor. The instructor encourages the asking of questions, but reserves
the right not to answer, just as you would expect during an exam.
Guideline: Any work that is not your own is considered a violation of the Honor Code.

Laboratory Programs. Laboratory programs are expected to be the work of the individual student, designed
and coded by him or her alone. Help locating errors and interpreting error messages are allowed, but a student may
only receive help in correcting errors of syntax; help in correcting errors of logic is strictly forbidden. In general,
if you are taking photos of someone else’s screen, looking at someone else’s screen, or telling someone else what to
type, it is likely your work is no longer the work of an individual student.
Guideline: Assistance in the design or coding of program logic will be considered a violation of the Honor Code.

If you do not understand how the Honor Code applies to a particular assignment, consult your instructor. Students
should be aware of the Computer Ethics outlined in the Student Handbook. Violations (including uninvited access
to private information and malicious tampering with or theft of computer equipment or software) are subject to
disciplinary action.
Guideline: To protect your work dispose of printouts and copies of your work carefully, and avoid leaving your
programs on hard disks in labs and other public storage areas.

The Department of Computer Science takes the Honor Code seriously.
Violations are easy to identify and will be dealt with promptly.

The College and Department also have computer usage policies that apply to courses that make use of computers.
You can read more about these policies at

csci.williams.edu/the-cs-honor-code-and-computer-usage-policy

Tentative Schedule of Topics
Week of Monday Lab Wednesday Friday

Feb. 3 — — 1. Hello, world! (TP1)
Feb. 10 2. Expressions (TP2) I. Python and Gitlab 3. Functions (TP3) Winter Carnival
Feb. 17 4. Conditions (TP5-6) II. Procedure 5. Iteration (TP7) 6. Lists (TP10)
Feb. 24 7. Strings (TP8-9) III. Toolbox Building 8. Mutability, Tuples (TP12) 9. Files (TP14)
Mar. 2 10. Sets, Dicts, (TP11) IV. Faculty Trivia 11. Plotting Data 12. Generators
Mar. 9 13. Iterators V. Presenting Data 14. Classes (TP15-17) 15. Remote Set-up
M. 16&22&29 Spring Break Spring Break Spring Break Spring Break
Apr. 6 16. Classes, Attributes VI. Set-up 17. Classes, Methods 18. Special Methods
Apr. 13 19. Classes, OOP VII. Creating a Class 20. Classes, OOP 21. Classes, OOP
Apr. 20 22. Intro Recursion. VIII. OOP 23. Recursion II 24. Recursion III
Apr. 27 25. Linked List I IX. Recursion 26. Linked List II 27. Binary Trees
May 4 28. Iterative Sorting X. XC Lab 29. Recursive Sorting 30. Search
May 11 31. Special Topics No Lab 32. Special Topics 33. Review

Comments from previous renditions
“1. Go to office hours, 2. Go to TA sessions, 3. Don’t stress about homeworks.”

“Go to office hours! GO TO OFFICE HOURS! Go to office hours!” ? “Read the textbook.”
“Look at the code posted after class; don’t try to copy it down in class.” ? “Think about how your code should

works logically before typing anything.” ? “Stop complaining and start coding!!!”
“Don’t be intimidated...a programming language is just a language...practice the idioms.”

“Practice writing code outside of class.” ? “Write code on paper beforehand; it helps to pinpoint errors.”
“TAs are soooo helpful and just great to talk to.” ? “You are learning a lot...Enjoy!” ?

Howley, Iris. (2020). “Adapting Guided Inquiry Learning Worksheets for Emergency Remote Learning.”
Supplementary materials for the Journal of Information and Learning Sciences.

Name: _______________________________________ Partner: ________________________________
Python Activity 20a: Dictionaries, Part 1

Critical Thinking Questions:

1. Examine the sample code defining a list of lists, below:
Sample Code

a. What’s stored at dog2owner[0][0]? __________________________________

b. What might be stored at dog2owner[0][1]? ____________________________

c. Write a line of code to print the name of Rex’s owner using dog2owner:

d. Write a line of code to access and print the name of Doug’s dog via dog2owner:

e. As dog2owner gets bigger and bigger (the CS department is growing!), will a list of a

lists be an accessible way to continue storing this information?

2. The following code occurs in interactive Python and introduces a new data structure:

a. What does dt['rex'] do?

__

Learning Objectives
Students will be able to:

Content:
• Define a dictionary.
• Identify the key and value pair of a dictionary.
• Explain why a dictionary is a good data structure for organizing data.
Process:
• Write code that accesses the keys, values, and length of a dictionary.
• Write code to create and modify dictionaries.
• Write code that iterates over a dictionary’s keys.
Prior Knowledge
• Python concepts from Activities 1-19.

0 >>> dt = {'pickle':'iris','rex':'saul','tex':'doug'}
1 >>> dt['rex']
2 'saul'

dog2owner = [['pickle','iris'],['rex','saul'],['tex','doug']]
print(dog2owner[0][0]) # prints: 'pickle'

Note: More info on POGIL in this course during COVID-19 can be found here: www.irishowley.com/pogil

b. How might python know that Rex (the dog) is mapped to Saul (the owner)?
Where is that relationship defined?

 __
c. In the line, dt['rex'], what does the value in the square brackets represent?

 __

d. Write a line of code to print the name of your CS134 instructor's name, accessed

via the dictionary, dt:

__
e. Why might a dictionary be a better data structure for this data than a list of lists?

__

f. How would you describe the keys and values for this dictionary, dt?

keys:___________________________ values:___________________________

g. What type of data is stored in the keys and the values for dt?

keys:__________________________ values:___________________________

3. Examine the following code from interactive Python:

a. What does the line dt['lilac'] = 'jenn' do?

b. What might this imply about the mutability of dictionaries?

c. What does the object in square brackets on the left hand side of the assignment

operator in line 1 represent? (Circle one) key or value

d. What does the object on the right hand side of the assignment operator in line 1

represent? (Circle one) key or value
e. Write a line of code to add Bob and his dog, Alpha, to our dictionary.

FYI: A dictionary is a data structure that is similar to a list, but instead of storing values at numerical
indices, values are mapped to keys. Keys must be an immutable data type.

0 >>> dt = {'pickle':'iris','rex':'saul','tex':'doug'}
1 >>> dt['lilac'] = 'jenn'
2 >>> dt
3 {'pickle':'iris','rex':'saul','tex':'doug','lilac':'jenn'}

4. Examine the following code from interactive Python:

a. What type of data is stored in the keys and the values for csPets?

keys:_____________________________ values:_____________________________

b. How many keys does csPets have? _______________________

c. What is the length csPets? _______________________

d. How does python determine the length of a dictionary object?

e. If we added a line 3 of code, csPets['others'] = ['hamster',

'ferret'], what might len(csPets) return? _______________________

5. Examine the following example code from interactive python:

Interactive Python

a. If we wrote line 3 of code, len(d), what might be the output? __________
b. Write some code to create an empty dictionary, then ask the user for input(..) for

today's month, then day, then year. Place the data into month, day, year keys,
mapped to the user's input values, into the empty dictionary:

0 >>> d = dict() # can also do: d = {}
1 >>> d
2 {}

0 >>> csPets = {'dogs':6, 'cats':3, 'bees':20000}
1 >>> len(csPets)
2 3

6. Examine the following example code:

a. If we wrote a fourth line of code, print(coll), what might be the output?

 __

b. At the end of this code execution, coll only has: {'colleges': 'amherst'}

Why might this be?

 __

7. Examine the following example code from interactive python:

a. What data does the dictionary, date, appear to hold?

b. If you had to guess, what might the programmer want to be output by line 2?

c. For the first defined item of date what might mykey and date[mykey] refer
to on lines 1 & 2?
mykey:________________ date[mykey]:________________

d. The first time through the loop defined on line 1, line 2 might print 'The month
is dec.' What might be printed the second time through the loop?

 __
e. What does line 1, for mykey in date:, do?

 __
f. Write some code that will iterate over the items in date and print only the values:

 __

 __

 __

__

FYI: Dictionaries can only have one key of its value, any replicated key:value mappings added will
simply overwrite the previous one!

>>> coll = {} # can also do: coll = dict()
>>> coll['colleges'] = 'williams'
>>> coll['colleges'] = 'amherst'

0 >>> date = {'month':'dec', 'day':9, 'year':1906}
1 >>> for mykey in date:
2 ... print("The {} is {}.".format(mykey, date[mykey]))

Application Questions: Use the Python Interpreter to check your work

1. Write a function that checks if a given dictionary, d, has a given key. If it doesn’t, create a new
list at key with the given value as its only element. If it does already have the key, append
value to the existing list mapped to key.

 def appendDictList(d, key, value):

2. Write a function, dataEntry that collects data from the user to put into a dictionary. The user
should be prompted for a key, and then value data to be added to a dictionary, and this process
should be repeated until they enter the text 'done'. For extra bonus points, use your previous
function, appendDictList, to ensure that no data is overwritten, even if a key is duplicated!
The dataEntry function should return the dictionary when the process is done.

 def dataEntry():

	firsthalf-syllabus.pdf
	syllabus.pdf
	pogil_20a-dictionary.pdf
	Sample Code
	Interactive Python

