
Computer Science 134C: Introduction to Computer Science — Spring 2019
Iris Howley
iris@cs.williams.edu

Office: TCL 308.
Office Hours: Iris (TCL308): Tues. TBD, Wed. 12:30-2:30p, Thurs. 1-2:30p

Duane (TPL306): Mon. 2:30-4:30p, Tues. 7:30-9p, Thurs. 9:45-11:20a
Co-instructor: Duane A. Bailey (bailey@cs.williams.edu), TPL 306.
Assistants: Noah Andrew, Chris Anton, Will Burford, Jimmy DeLano, Jacob Justh, Julia Kawano,

Aidan Lloyd-Tucker, Grace Mazzarella, Nevyn Neal, Nathan Thimothe, Alex Trevithick, Linda Zeng
TA Hours: Sun. 4-9:30pm, Mon-Thu. 7-10pm, +Wed. 2-4p (in TPL312), +Wed. 4:30-6:30pm, Thu. 6-10p., + Thu. 4-5:30p
Text: Allen Downey’s Think Python, 2ed, at greenteapress.com/thinkpython2/thinkpython2.pdf.
Web resources: cs.williams.edu/~bailey/cs134

Technical Support: Mary Bailey (mary@cs.williams.edu), TCL 312.
Lecture: Chemistry 123, Monday, Wednesday, and Friday at 11:00 a.m.
Lab Times: Mon 1-2:30pm (Iris), 2:30-4pm (Iris), Tue 10-11:30am (D), 1-2:30pm (D), 2:30-4pm (D)
Lab Location: TCL 217a

CS Lab Code: 6-4-6-4-0-4 (remember visually, or think: 82, 82, 22). 6 4 6 4

0

4

We are surrounded by information. This course introduces fundamental computational concepts for representing
and manipulating data. Using the programming language Python, this course explores effective ways to organize
and transform information in order to solve problems. Students will learn to design algorithms to search, sort, and
manipulate data in application areas like text and image processing, scientific computing, and databases. Program-
ming topics covered include procedural, object-oriented, and functional programming, control structures, structural
self-reference, arrays, lists, streams, dictionaries, and data abstraction. This course is appropriate for all students
who want to create software and learn computational techniques for manipulating and analyzing data.

Organization. During lecture hours we will typically learn new concepts through the building of new tools to
solve simple problems. While the learning process is initially supported by an online text, we expect a dynamic
approach to the class that will allow us to steer lectures in directions of mutual interest. During formal lab hours,
we will meet for 90 minutes to begin work on a more extended problem. We expect that this work will be continued
outside of scheduled time. There are also weekly written homework assignments to support lecture and lab learning.

Work. You are responsible for reading supporting material (Think Python (TP)) and participating as the
semester progresses. In addition, some topics may require you to investigate online resources (documentation,
tutorials, and the like). Each week you will be responsible for completing a programming assignment (35%) in
addition to a written homework (15%). There will be a midterm examination on March 5 (25%), and a
scheduled final (T.B.A., 25%). We reserve the right to adjust grades by as much as 5% to reflect course participation.

Week of Monday Lab Wednesday Friday

Feb. 1 — — 1. Hello, world! (TP1)
Feb. 4 2. Expressions (TP2) I. Python and Git 3. Functions (TP3) 4. Conditions (TP5-6)
Feb. 11 5. Abstraction (TP4) II. Procedure 6. Iteration (TP7) Winter Carnival
Feb. 18 7. Strings (TP8-9) III. Toolbox Building 8. Interpretation 9. Lists, Tuples (TP10,12)
Feb. 25 10. Sets, Dicts, (TP11) IV. Faculty Trivia 11. Files (TP14) 12. Generators
Mar. 4 13. Iterators V. Presenting Data 14. Slack 15. Classes (TP15-17)
Mar. 11 Classes & n-grams VI. Generators 16. Properties 17. Data Structures
M. 18&25 Spring Break Spring Break Spring Break Spring Break
Apr. 1 18. Images VII. Images 19. Hashing 20. Linked Lists
Apr. 8 21. Lambda Sorting VII. Viz Analysis 22. Big-O Notation 23. Sorting I
Apr. 15 24. Sorting II. VIII. Jupyter 25. HTML & Hex 26. Binary Trees I.
Apr. 22 27. Binary Trees II. IX. Mountain Day 28. Object Persistence 29. Java I.
Apr. 29 30. Java II. X. Java 31. Java III. 32. Java IV.
May 6 33. Slack X. Java (cont.) 34. Slack 35. Evaluations

1

Comments from previous renditions
“1. Go to office hours, 2. Go to TA sessions, 3. Don’t stress about homeworks.”

“Go to office hours! GO TO OFFICE HOURS! Go to office hours!” ? “Read the textbook.”
“Look at the code Duane posts after class; don’t try to copy it down in class.” ? “Think about how your code

should works logically before typing anything.” ? “Stop complaining and start coding!!! Feel swervy!”
“Don’t be intimidated...a programming language is just a language...practice the idioms.”

“Practice writing code outside of class.” ? “Write code on paper beforehand; it helps to pinpoint errors.”
“TAs are soooo helpful and just great to talk to.” ? “You are learning a lot...Enjoy!” ? “Stay swervy.”

Intellectual Property. No part of this course may be reproduced and distributed in any manner without prior
permission from the instructors.
Community. We embrace diversity. We welcome all students and expect everyone to contribute and support a
respectful and welcoming environment. If you have concerns, please share them with us or the college administration.
Students Who Need Accommodations. If formal accommodations need to be made to meet your specific
learning or physical abilities, please contact one of us as soon as possible to discuss appropriate accommodations.
Please also contact the Director of Accessible Education, Dr. G. L. Wallace (4135974672) or the Dean’s office
(4135974171). We will work together to ensure this class is as accessible and inclusive as possible.
Mental Health. Students experiencing mental or physical health challenges that are significantly affecting their
academic work are encouraged to contact one of us or to speak with a dean. The deans can be reached at 4135974171.
Honor Code. The Honor Code as it applies to non-programming assignments is outlined in the Student Handbook.

For programming assignments in computer science courses, the honor code is interpreted in very specific ways.
When a program is assigned, it will be described as a “test” or “laboratory” program. The Honor Code applies to
each as follows (unless otherwise specified):

Test Programs. Any assignment designated as a test program is to be treated exactly as a take-home, open-book
test. You are allowed to read your textbook, class notes, and any other source approved by your instructor. You
may not consult anyone other than your instructor. The instructor encourages the asking of questions, but reserves
the right not to answer, just as you would expect during an exam.
Guideline: Any work that is not your own is considered a violation of the Honor Code.

Laboratory Programs. Laboratory programs are expected to be the work of the individual student, designed
and coded by him or her alone. Help locating errors and interpreting error messages are allowed, but a student may
only receive help in correcting errors of syntax; help in correcting errors of logic is strictly forbidden. In general,
if you are taking photos of someone else’s screen, looking at someone else’s screen, or telling someone else what to
type, it is likely your work is no longer the work of an individual student.
Guideline: Assistance in the design or coding of program logic will be considered a violation of the Honor Code.

If you do not understand how the Honor Code applies to a particular assignment, consult your instructor. Students
should be aware of the Computer Ethics outlined in the Student Handbook. Violations (including uninvited access
to private information and malicious tampering with or theft of computer equipment or software) are subject to
disciplinary action.
Guideline: To protect your work dispose of printouts and copies of your work carefully, and avoid leaving your
programs on hard disks in labs and other public storage areas.

The Department of Computer Science takes the Honor Code seriously.
Violations are easy to identify and will be dealt with promptly.

The College and Department also have computer usage policies that apply to courses that make use of computers.
You can read more about these policies at

csci.williams.edu/the-cs-honor-code-and-computer-usage-policy

Anonymous ID. We grade anonymously. When asked, your Anonymous ID (AID) is:

2

8/5/19

1

On	your	way	in…

Pick-up:
1.	Homework	7

Drop-off:	
1. Homework	6	on	the	side	table	(two	piles)

Welcome	to	CS	134!
Introduction	to	Computer	Science

Iris	Howley

-Hashing	&	Linked	Lists-

Spring	2019

HASHING

Finding dictionary values quickly

Dictionary	Keys

• d[[‘bill l’,’bill j’]] = ‘williams college’
§ERROR

• d[(‘bill l’,’bill j’)] = ‘williams college’
§d

o{('bill l', 'bill j'): 'williams college’}

What’s	the	difference?
Dictionary	keys	must	be	immutable	types

int,	float,	string,	bool,	tuple,	frozenset

Dictionary	Keys

Why?

Dictionary	keys	must	be	immutable	types
int,	float,	string,	bool,	tuple,	frozenset

Mutable	Types	as	Dictionary	Keys

• Lists	are	mutable
• When	you	append()	to	a	list,	it	changes	that	list	object
• If	you	used	a	list	object	as	a	key	in	a	dictionary,	you	wouldn’t	be	able	
to	find	it	again,	after	it’s	been	changed

mylist = [‘a’, ’b’]
mydict = dict()
mydict[mylist] = ‘throws an error’
mylist.append(‘c’)
print(mydict[mylist])
Now mylist is no longer findable in the dict!

We’re	going	to	see	why!

3

8/5/19

2

Dictionary	Keys

• Dictionaries	index	their	items	by	a	hash
• A	hash	is	an	fixed	sized	integer	that	identifies	a	particular	value.	
• Each	value	needs	to	have	its	own	hash

§ For	the	same	value	you	will	get	the	same	hash	even	if	it's	not	the	same	object.

Why	not	just	index	items	based	on	their	value?

Hashing

Hashing FIND: Hashing

Hashing FIND: Hashing FIND:

4

8/5/19

3

Hashing

• We	could	organize	all	words	in	memory	by	the	letter	they	start	with…

• But	words	that	start	with	‘A’	could	be	numerous
• Compared	to	words	that	start	with	‘Z’

§ …Sort	of	like	arranging	clothes	by	color

• Hashing	is	a	different	way	of	mapping	items	to	make	them	easier	to	
find

Why	not	just	index	items	based	on	their	value?
Hashing

• Other	concerns
§ Bad	hashing	function	for	your	data,	resulting	in	clustering
§ Running	out	of	space	in	the	pile	you’ve	assigned
§ Placing	shirts	in	the	wrong	pile

• Stored	in	the	order	that	makes	it	easiest	to	look	them	up

hash(o)	à o.__hash__()

• s = “hello world”
• t = s + “!”
• hash(s) à 4960501519247167238
• hash(s) à 4960501519247167238
• hash(t) à -8774050965770600213
• hash(t[:-1]) à 4960501519247167238

If	the	2	strings	are	the	same,	they’ll	get	the	same	hash
If	the	2	strings	are	different,	they	*might*	get	a	different	hash.

hash(o)	à o.__hash__()

• hash(1) à 1
• hash(2) à 2
• hash(1000000000000000000) à 1000000000000000000
• hash(10000000000000000000) à 776627963145224196

Some	hash	codes	are	expensive	(million-long	tuple)

At	some	length,	it	starts	treating	the	numbers	like	a	string
If	the	hash	codes	are	the	same,	the	values	might	be	the	same

Hash	Tables

Keys

‘pixel’

‘tally’

‘wally’

‘linus’

Hashes	

0

1

2

3

4

Buckets

tally

linus

bananas

everything

pixel cheese
wally carrotsx

How	to	access	mydict[‘wally’]?

Overflow

collision!

What	to	do	
with	Wally?	

Could	re-hash	into	
new	table	and	
increase	#	
buckets…
…or…

Immutable	Objects

• Have	no	way	to	set/change	the	attributes,	without	creating	a	new	
object
§ Like	int, string,	etc.
§ Like	the	Color class	from	this	week’s	lab!
§ __slots__ = []

• Can	be	used	in	sets
§ i.e.,	you	cannot	have	a	set of	lists

• Can	be	used	as	keys	for	dictionaries
§ If	the	class	has	a	__hash__() function	defined!

8/5/19

4

questions?

?
?

?

??

Leftover	Slides

Hashing

• Don’t	know	how	it’s	computed	à Abstraction

• There’s	many	ways	to	implement	a	hash	function,	here’s	a	description	
of	some	of	them:	
§ https://www.cs.hmc.edu/~geoff/classes/hmc.cs070.200101/homework10/ha
shfuncs.html

Tuples,	Strings,	other	built-in	
types	aren’t	particularly	special!

You	can	build	your	own!

Thought	question:
How	would	you	build	a	doubly-linked	list?

MAKING OUR OWN DATA

STRUCTURES

Classes, Part IV

6

8/5/19

5

What	is	a	list? What	is	a	list?

What	is	a	list?

What	is	the	last	elephant	holding	onto? None

What	is	a	list?

_next _next _next

class Element:

_value _value _value

Linked	Lists

• See	example	code	in	shared/examples/03.15	!

• Lecture	notes	from	that	day	are	also	useful!

_next _next _next

class Element:

_value _value _value

_headclass LinkedList:

	08_cs134p_syllabus
	10_cs134p_Lecture19-Hashcodes

