Handout 1
CSCI 134: Fall, 2017

Syllabus

Infro to CS: Objects, Events, and Graphics

Instructors
Prof. Andrea Danyluk Prof. Iris Howley
TCL 305 TCL 308
597-2178 597-4633
andrea@cs.williams.edu iris@cs.williams.edu
Office Hours TBA TBA

TA Hours will be posted on the course webpage
Lectures MWF 9-9:50 or 10-10:50 in SSL 030A
Labs M lpm—4pm, M 7pm-10pm, T 8:30am-11:20am in TCL 217a
Web Page http://www.cs.williams.edu/-~csl134/

Texts

We will use the following text book, which is available at the bookstore:

Bruce, Danyluk and Murtagh, Java: An Eventful Approach, Prentice-Hall, 2006.

Course Objectives

Computing is central to many aspects of our lives and the world. This course introduces funda-
mental ideas in computer science and builds the skills necessary to create computer programs in the
Java programming language, with an emphasis on graphics and user interfaces. Students learn to
design programs in a wide range of application areas, from games to spam filters and image editing to
scientific simulations. Programming topics include object-oriented programming, control structures,
arrays, recursion, and event-driven programming, as well as how to construct correct, understandable,
and efficient programs. This course is appropriate for all students who want to create software and
have little or no prior computing experience.

Course Work

There will be weekly lab programming assignments. All programs will be graded on design, doc-
umentation and style, correctness, and efficiency. Programs should be turned in electronically by the
due date. We will go over how to submit work in lab.

Attendance in lab is mandatory. Unapproved absence will result in zero credit for that week’s lab.

To accommodate your busy schedules and unanticipated obstacles, you may use a maximum of
three free late days during the course of the semester. A late day permits you to hand in a regular lab
assignment up to 24 hours late, without penalty. Once those late days are exhausted, late labs will
be penalized one letter grade per day. Programs will not be accepted more than four days late. When
using a late day, please email Prof. Danyluk to tell us that you are doing so.

There will also be a midterm exam and a final exam, as well as two larger Programming Projects.
The first Project will occur around Reading Period, and the second during the last couple weeks of
the semester. Homework exercises (non-programming assignments) may be assigned and collected

in class periodically and there may be in-class quizzes. Note that late days may not be used for any
assignments other than regular weekly labs.
Grades will be determined roughly as follows:

Labs: 30%

Projects: 10%—-15% each
Midterm: 15%

Final exam: 20%

Homework & other: 5-10%

In addition to the 6 hours we spend together during our class and lab time, you should expect to
spend at least 10 hours per week on the academic and creative work related to class. Keep in mind
that this is an average weekly work load and that the number of hours you spend will naturally vary
from week to week. If you find that you are consistently spending considerably more (or less) time to
engage with this course academically, please contact me so that we can determine the best course of
action as you approach the materials.

Honor Code

Homework and lab assignments are to be the sole work of each student unless the assignment
explicitly states otherwise. Students may discuss issues related to an assignment, provided that such
discussions are cited in the material turned in. However, students may not collaborate on designing or
writing code. Uncredited collaborations or use of resources outside of those provided on the course web
site will be considered a violation of the honor code and will be handled appropriately. Restrictions
on collaboration and use of external sources will be greater for programming projects and exams. For
a full description of the Computer Science Honor Code, please see https://csci.williams.edu/
the-cs-honor-code-and-computer-usage-policy/. If in doubt of what is appropriate, do not
hesitate to ask us.

This will undoubtedly change as we begin to explore these topics.

Tentative Schedule

Wed

Date Mon Fri
Sen 8 Introduction
P — Preface
Graphics, Events ariables, Numbers Conditionals
Sep 11-Sep 15 Chapter 1,% g?apter 3 Chapter 4
Primitive Types asses Declarations, Scope
Sep 18-Sep 22 Chapter 5 [Chapter 6 Chapter 8
More Classes, Loops | Loops, Active Objects | Active Objects
o s Chapter 7 Chapter 9
Oct 2-Oct 6 Images Interfaces GUlIs
_ Chapter 10
Oct 9—Oct 13 Reading Period GUlIs GUIs
GUIs Recursion Recursion
Oct 16-0Oct 20 Chapter 12
Recursion For Loops 2D Arrays
Oct 23-0ct 27 Chapter 13 Chapter 14,15
= Arrays Collections Inheritance
Oct 30-Nov 3 Chapter 17
Strings Strings 00 Design
Nov 6-Nov 10 %hapter 16 e Chapter 21
£ xceptions iles, Streams Networks
NEY iy Chapter 18 Chapter 19
Nov 20—Nov 24 Networks Thanksgiving Recess | Thanksgiving Recess
Searching Sorting Sorting
Nov 27-Dec 1 Chapter 20
Dec 4-Dec 8 | Advanced Topics Advanced Topics Wrap Up

The midterm is scheduled for the evening of Tuesday, October 24, with a review session at 7:00pm
on October 19.

CSCl 134

Intro to Computer Science
Objects, Events, Graphics

Iris Howley
iris@cs.williams.edu
Assistant Professor of Computer Science

Williams

Discuss with a partner!
How might we draw a Scribble?
(A collection of lines drawn
when the user
onMouseDrags)

Know when to stop.
Decide how to take one step.

Break the journey down into
that step plus a smaller
journey.

RECURSION

Welcome to CSCI 134!

How might we draw a Scribble?

(A collection of lines drawn
when the user
onMouseDrags)

Take a moment to write down your response,
individually.

Is there a more concise way to
program this [repetitive!] algorithm?

DEMO

ColorScribbleController

8/5/19

DEMO

SpiralsScribblesRecursive

Administrative Details

Lab: Monday and Tuesday this week, as usual
Midterm: 6-7:45p OR 8-9:45pm, 10/24 TPL 203
Sample midterm up on course Lectures page
How to study?

— Sample midterm

— Class demos

— Understand comments on your labs

— Practice hand-writing codes:

* Textbook problem sets (answers on course
website/Resources)

We will give you Java Swing & ObjectDraw
reference sheets

Dragon, | need to know if
any of the numbers in this
list are odd:

(3142, 5798, 6550, 8914)

CONGRATS!

\

este™™

e 5°

Sorry, | can only tell you if
the first number of the list is
odd.

8/5/19

8/5/19

But | need to know if any I’ll only look at the first
number in the list is odd, number, but I'll look at as
not just the first! many lists as you like.

What should Sam do?

(3142,-5798, 6550, 8914)

The first number is not odd.

\
A

(3&42—5?98—655&89 14)

i! ; Theflrst number is not odd.

None of the numbers the
Sorcerer gave me were odd,
thank you!

The lists | gave you were:
(3142, 5798, 6550, 8914)
(5798, 6550, 8914)

Tricky. Looks like |(6550, 8914)

(8914)

you've discovered 0
recursion.

That’s an empty list! It can’t
be odd.

How can you know that? |
only told you about the first
number!

The lists | gave you were:
(3142, 5798, 6550, 8914)

(5798, 6550, 8914)

(6550, 8914)

(8914)

()

Why did this work?

8/5/19

The lists | gave you were:
(3142, 5798, 6550, 8914)

(5798, 6550, 8914)

(6550, 8914)

(8914)

()

Recursive
Function

Base Case

Function Call,
List Mover

Steps for Recursion

1.Know when to stop.
2.Decide how to take one step.

3.Break the journey down into
that step plus a smaller
journey.

Steps for Recursion

* When to stop?
— When list is empty
* What is the one step?
— Check the first list item
* How to break the journey down?
— Progress through each of first list items

27

Pseudocode

array = {3142, 5798, 6550, 8914}
printFirstOdd (array)

n
N

is al[] not empty? {
is a[0] odd? = Print a[0]
}

function printFirstOdd(al]) { E
printFirstOdd(al[l,a.length]) 22

Pseudocode

Sam: The list 1is (3142, 5798, 6550, 8914}

on: Is list empty?
ragon: No? Is first number odd?

Dragon: Yes? Print.

Sam: Drop first num from list!
on: Is list empty?

Dragon: No? Is first number odd?

Dragon: Yes? Print.

Let’s implement this

recursive algorithm in
Java

8/5/19

8/5/19

Discuss with a partner

How might we draw a Scribble

recursively?

(A collection of lines drawn when When should we choose

the user onMouseDrags) |oops (iteration) over

7
-

S o >
27 recursion?
/

el
F
7 /
— 7
/

/
//
(

/

)

/

Learning Goals

By the end of this class, students
should be able to:

1. Describe the 3-step process for
recursion

2. Explain why recursion is a useful
approach for some problems

We'll be discussing recursion again!

	syllabus-scan.pdf
	scan0046.pdf
	scan0047.pdf
	scan0048.pdf

	06_cs134j_lec17-recursion.pdf

