
Voting Experts: An Unsupervised Algorithm for Segmenting

Sequences

Paul Cohen1, Niall Adams2, Brent Heeringa3

1USC Information Sciences Institute
2Department of Mathematics, Imperial College London, UK

3Department of Computer Science, University of Massachusetts

July 15, 2006

Abstract

We describe a statistical signature of chunks and an algorithm for finding chunks.
While there is no formal definition of chunks, they may be reliably identified as config-
urations with low internal entropy or unpredictability and high entropy at their bound-
aries. We show that the log frequency of a chunk is a measure of its internal entropy.
The Voting-Experts exploits the signature of chunks to find word boundaries in text
from four languages and episode boundaries in the activities of a mobile robot.

1 Introduction

“I have fallen into the custom of distinguishing between bits of information and
chunks of information. ... The span of immediate memory seems to be almost indepen-
dent of the number of bits per chunk, at least over the range that has been examined
to date.

The contrast of the terms bit and chunk also serves to highlight the fact that we
are not very definite about what constitutes a chunk of information. For example, the
memory span of five words ... might just as appropriately have been called a memory
span of 15 phonemes, since each word had about three phonemes in it. Intuitively, it is
clear that the subjects were recalling five words, not 15 phonemes, but the logical dis-
tinction is not immediately apparent. We are dealing here with a process of organizing
or grouping the input into familiar units or chunks, and a great deal of learning has gone
into the formation of these familiar units. ” —George Miller, “The Magical Number
Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information”
[25]

So began the story of chunking, one of the most useful and least understood phenomena
in human cognition. Although chunks are “what short term memory can hold five of,” they
appear to be incommensurate in most other respects. Miller himself was perplexed because
the information content of chunks is so different. A telephone number, which may be two
or three chunks long, is very different from a chessboard, which may also contain just a few
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chunks but is vastly more complex. Chunks contain other chunks, further obscuring their
information content. The psychological literature describes chunking in many experimental
situations (mostly having to do with long-term memory) but it says nothing about the
intrinsic, mathematical properties of chunks. The cognitive science literature discusses
algorithms for forming chunks, but, again, there is little said about what chunks have in
common.

Miller was close to the mark when he compared bits with chunks. Chunks may be iden-
tified by an information theoretic signature. Although chunks may contain vastly different
amounts of Shannon information, they have one thing in common: Entropy within a chunk
is relatively low, entropy at chunk boundaries is relatively high.

One sees many hints of this signature in the literature on segmentation. Many algo-
rithms for segmenting speech and text rely on some kind of information-theoretic indicator
of segment boundaries (e.g., [2, 21, 23, 33, 34, 5]). Edge-detectors in computer vision may
be described in similar terms (e.g., [29]). Intriguingly, while common compression algo-
rithms rely on a version of the “low entropy within a chunk” rule, the prediction by partial
match (PPM) method, which is apparently superior to other compression algorithms, also
attends to the entropy between chunks. One wonders whether the human perceptual and
cognitive systems have evolved to detect this “low entropy within, high entropy between”
signature. Saffran, Aslin and Newport [28] found something like it in their experiments
with speech segmentation by very young infants, and Hauser and his colleages suggest the
same mechanism is at work in cotton-top tamarin monkeys [17, 11].

More comically, have you ever wondered why young children freeze in doorways and at
the bottom of escalators, or why some people in crowded airline terminals walk out of the
jetway and stop, causing a traffic jam behind them? These are examples of transitions from
familiar to unfamiliar surroundings, of low to high local entropy. Some people can’t handle
it.

This paper introduces an unsupervised algorithm called Voting Experts for finding
chunks in sequences. As such, it has applications to segmentation, a task it performs very
well. Most of the empirical evaluations of Voting Experts are on segmentation tasks,
because these tasks provide opportunities to compare our algorithm with others. However,
segmentation is not our primary interest. If it were, we would focus on supervised segmenta-
tion (in which algorithms are trained with many examples of correct segmentation) because
it performs better than unsupervised method. Even among unsupervised segmenters, some
may perform better than Voting Experts, and we may be sure that somewhere in the
sophisticated arsenal of probabilistic algorithms trained on corpora of millions of words are
some that will beat our simple method. So segmentation is not our focus. Rather, our point
is that remarkably accurate segmentation may be accomplished by a simple algorithm with
very modest data requirements because we have identified a signature of chunks — low
entropy within, high entropy between — and designed the algorithm to look for it.

This paper is organized as follows: Section 2 introduces the statistical signature of
chunks. Section 3 describes how Voting Experts works, and Sections 4, 4.3, and 4.4
demonstrates how well it works, including comparisons with the Sequitur segmentation
algorithm, tests on corpora from several languages, and tests with time series data from a
mobile robot. Section 5 describes some related work in the cognitive sciences and computer
science.
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2 What makes a chunk?

If one strips the spaces from between words and the text to replace a with b, and b with c,
and so on, the result is quite unrecognizable:

tpcfhbouiftupszpgdivoljohpofpguifnptuvtfgvmboemfbtuvoefstuppeq

ifopnfobjoivnbodphojujpobmuipvhidivoltbsfxibutipsuufsnnfnpszdboip

megjwfpguifzbqqfbsupcfjodpnnfotvsbufjonptupuifssftqfdutnjmmfs

ijntfmgxbtqfsqmfyfecfdbvtfuifjogpsnbujpodpoufoupgdivoltjttpejggf

sfoubufmfqipofovncfsxijdinbzcfuxppsuisffdivoltm

This text is, in fact, sixty-two words from the opening paragraph of this paper, but because
you cannot recognize the words, it is difficult to know which subsequences are words. This is
how the problem appears to Voting Experts or, indeed, any unsupervised segmentation
problem. The letters have no meaning to Voting Experts, it does not have a dictionary
of words stored somewhere, and it does not know what the text is about. It has nothing to
help it find chunks besides the statistical properties of the text, itself. Remarkably, these
properties take it a long way.

If you stare at the text long enough, you will see some regularities. The pattern uif
appears five times, div four. Moreover, whenever you see div the next two letters are ol.
In fact, divol appears four times in the text and it is the most common substring of three
or more letters except uif and, of course, its substrings div, ivo, and vol. So which is the
chunk, divol, or div, ivo, vol, divo, or ivol? Or perhaps it is a smaller substring, such
as d or iv, or a larger one, such as divolt, which appears three times in the text. When
the Voting Experts algorithm is given the text, above, and nothing else, it decides to
place a boundary after divol once and divolt three times. By now you have guessed that
uif corresponds with the word “the” and divol with “chunk.” When the text is translated
back to English, this is how the algorithm performed:

sobe ? gan ? the ? sto ? ry ? of ? chunk ? ing ? one ? ofthe ? most ?

use ? fulan ? dle ? astund ? er ? sto ? odphen ? omen ? ain ? huma ?

nco ? gnition ? altho ? ugh ? chunks ? are ? wh ? atshort ? ter ? mme ?

mo ? rycan ? ho ? ldfive ? ofthe ? yappea ? rtobe ? in ? co ? mmen ?

surate ? in ? mosto ? ther ? re ? spe ? ctsm ? iller ? him ? se ?

lfwasper ? ple ? xedbe ? cause ? the ? in ? for ? ma ? tion ?

co ? nt ? ent ? of ? chunks ? is ? s ? odiff ? er ? ent ? ate ? leph ? on

? en ? um ? ber ? whi ? ch ? maybe ? twoor ? th ? ree ? chunks ? l

Hardly perfect segmentation, but consider what the algorithm did right: It found 57% of
the word boundaries in the text, and 78% of the boundaries it found were true boundaries.
It found several true words, including “the” and “chunks.” In fact, it found 19% of the
words in the text and it found one or the other boundary of an additional 50% of the
words. Some things it found are true words, although it did not get credit for them; for
example, “him” is a true word, and was discovered by the algorithm, although the correct
word to identify in the text is “himself”. Although we will show much better performance
from Voting Experts later on, it is worth showing what the algorithm can do with just
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310 characters of text: no spaces, no training instances of good and bad segmentation, no
models, no dictionary, nothing but the text.

How does it work? Let us examine some words it found reliably, the, chunk and chunks.
Of the 738 subsequences in the text whose length is between one and five characters, these
three words are distinctive: They are frequent (relative to their lengths) and the character
that follows them in the text is relatively uncertain. the is the most frequent three-letter
sequence, and chunk and hunks are the most frequent five-letter sequences. If one ranks
sequences by the uncertainty of the character that follows them, then the ranks highest,
followed by unks, chunks, and hunks. The rank of chunk is 24; somewhat lower, but in the
top 5% of the 738 subsequences. Voting Experts attends to the frequency of a sequence
and the uncertainty of the character that follows a sequence. It slides a window across
the text and votes to place boundaries in such a way as to maximize the frequency of the
subsequences between the boundaries, and to maximize the uncertainty of the characters
immediately after boundaries. Then it cuts the text at locations that have locally maximum
numbers of votes. Apart from adjustments to standardize frequencies across sequences of
different lengths, this is a pretty complete description of Voting Experts.

The important question about Voting Experts is not how it works but why it works.
Voting Experts is designed to detect two characteristics of chunks: The entropy or
unpredictability of elements within a chunk is relatively low, whereas the entropy or un-
predictability of elements between chunks is relatively high. By maximizing the frequencies
of the chunks it finds, the algorithm minimizes the unpredictability within chunks, and by
maximizing the unpredictability of the letters that follow chunks, the algorithm seeks to
maximize the unpredictability between chunks.

The equation of within-chunk predictability with chunk frequency is perhaps not obvi-
ous. Let x1, . . . , xn be a sequence of length n. The frequency of this sequence in a corpus is
just the corpus size times the probability of the sequence, Pr(x1, . . . , xn). By the chain rule
for probability we can expand Pr(x1, . . . , xn) into a product of conditional probabilities:

Pr(x1, . . . , xn) = Pr(x1)Pr(x2|x1) . . . P r(xn|x1, . . . , xn−1) (1)

One notices immediately that the frequency of a chunk will not be very high if any of these
conditional probabilities is very low. Apparently the frequency of a sequence x1, . . . , xn has
something to do with the predictability of each xi≤n in the sequence given the preceding
subsequences x1, ..., xi−1.

A similar argument follows from the definition of the entropy of a random variable
X: H(X) = −

∑
x∈X Pr(x) log Pr(x). The entropy is the average surprisal, log Pr(x),

associated with variable X taking on value x. The lower the probability that X = x, the
higher the surprisal. When observing items in a sequence one can condition entropy on
items one has already seen:

H(xn|x1, . . . , xn−1) = −
∑

xn∈X

Pr(xn|x1, . . . , xn−1) log Pr(xn|x1, . . . , xn−1) (2)

This conditional entropy is the average surprisal associated with seeing X = x after
having seen x1, . . . , xn−1. Taking logs of Equation 1 expresses the probability of a sequence
in terms of surprisals:
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log Pr(x1, . . . , xn) = log Pr(x1) + log Pr(x2|x1) + . . . + log Pr(xn|x1, . . . , xn−1) (3)

Each term on the right hand side of this equation is a surprisal. The first term, log Pr(x1)
is the unconditional surprisal associated with seeing the first item in the sequence; the
second term is the surprisal associated with seeing the second item given the first; and
so on. Evidently, the log probability of a sequence, log Pr(x1, . . . , xn) is the sum of the
surprisals associated with each successive item in the sequence. In other words, the log
probability of a sequence is just the total surprisal associated with seeing the items in the
sequence one at a time. Low surprisals add up to high log probability.

Thus, the log frequency of a chunk in a corpus is just the sum of the surprisals associated
with seeing its constituents one at a time. The more frequent a chunk is, the lower the sum
of surprisals it has. Voting Experts uses frequency as its indicator of within-chunk
predictability.

The second indicator of chunks is high between-chunk entropy. We call it boundary
entropy, to remind us that it is the entropy of the item that follows a chunk, but this is merely
another name for conditional entropy, as shown in Equation 2. When H(xn|x1, . . . , xn−1)
is high, it indicates that xn−1 is the end of a chunk and xn is the beginning of a new one.

3 The Voting Experts Algorithm

The Voting Experts algorithm takes as input an unsegmented sequence, such as text from
which spaces between words have been removed. It calculates statistics of subsequences,
or ngrams, with which it decides where to segment the sequence. The algorithm has three
phases:

1. Build an ngram trie and calculate standardized frequencies and boundary entropies
for each ngram;

2. Calculate a segmentation score for each location in the sequence;

3. Select the locations at which to segment the sequence.

We discuss these in turn.

3.1 The ngram trie and standardized scores

An ngram trie of depth n + 1 represents all the subsequences of length n of a sequence.
For example, a b c a b d produces the depth 3 trie in Figure 1. Every ngram of length 2
or less in the sequence a b c a b d is represented by a node in this tree. The numbers in
the lower half of the nodes represent the frequencies of the subsequences. For example, the
subsequence ab occurs twice, and every occurrence of a is followed by b. The subsequences
b c and b d each occur once, so the frequency of the subsequence b is 2. The children of a
node are the extensions of the ngram represented by the node.

The boundary entropy of an ngram is the entropy of the distribution of tokens that can
extend the ngram. A node ni has frequency fi. The children of ni, denoted ni,1, ..., ni,m,
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Figure 1: A trie of ngrams of length 2 for the sequence a b c a b d

have frequencies fi,1, ..., fi,m. The conditional probability of a node is its frequency divided
by the frequency of its parent: Pr(nij) = fij/fi. The boundary entropy of a node ni is

Hb(ni) = −
m∑

j=1

Pr(nij) log Pr(nij)

For example, the node a in Figure 1 has entropy equal to zero because it has only one
child, a b, whereas the entropy of node b is 1.0 because it has two equiprobable children, b
c and b d. Clearly, only the first n levels of the ngram tree of depth n + 1 can have node
entropy scores.

In most domains, there is a systematic relationship between the length and frequency of
patterns: Short patterns are more common than long ones. For instance, in the first 10,000
characters of George Orwell’s classic 1984, 64 of the 100 most frequent patterns are of
length 2; 23 are of length 3, and so on. Voting Experts will compare the frequencies and
boundary entropies of ngrams of different lengths, but in all cases it will be comparing how
unusual these frequencies and entropies are, relative to other ngrams of the same length.
To illustrate, consider frequencies of the words “a” and “an” in the first 10,000 characters
of 1984: “a” occurs 743 times, “an” 124 times, but “a” occurs only a little more frequently
than other one-letter ngrams, whereas “an” occurs much more often than other two-letter
ngrams. In this sense, “a” is ordinary, “an” is unusual. Although “a” is much more common
than “an” it is much less unusual relative to other ngrams of the same length.

To capture this notion of unusualness, we standardize the frequencies and boundary
entropies of the ngrams. To standardize a sample one subtracts the sample mean and
divides by the sample standard deviation: zi = (xi − x̄)/s. This has the effect of expressing
each value as the number of standard deviations it is away from the mean. Standardized,
the frequency of “a” is 1.3, whereas the frequency of “an” is 3.7. In other words, the
frequency of “an” is 3.7 standard deviations above the mean frequency for sequences of the
same length. We standardize boundary entropies in the same way, and for the same reason.
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0 0 3 0 21

Figure 2: Sample execution of Voting Experts.

3.2 Segmentation scores

In a sequence of length k there are k− 1 places to draw boundaries between segments, and,
thus, there are 2k−1 ways to divide the sequence into subsequences. Voting Experts is
greedy in the sense that it considers just k − 1, not 2k−1, ways to divide the sequence. It
considers each possible boundary in order, starting at the beginning of the sequence. The
algorithm passes a window of length n over the sequence, halting at each possible boundary.
All of the locations within the window are considered, and each gets at most one vote from
each expert. Because we have two experts, for boundary entropy and frequency respectively,
each location may accrue a maximum of 2n votes.

The process is illustrated in Figure 2. A window of length 3 is passed along the sequence
itwasacold. Initially, the window covers itw. The entropy and frequency experts each
decide where they could best split the sequence within the window (more on this, below).
The entropy expert favors a boundary between t and w, while the frequency expert prefers
to cut the sequence between w and whatever comes next. Then the window moves one
location to the right and the process repeats. This time, both experts decide to place a
boundary between t and w. The window moves again and both experts decide to place the
boundary after s, the last token in the window.

Note that each potential boundary location (e.g., between t and w) is seen n times for
a window of size n, but it is considered in a slightly different context each time the window
moves. The first time the experts consider the boundary between w and a, they are looking
at the window itw, and the last time, they are looking at was. In this way, each boundary
gets up to 2n votes, or n = 3 votes from each of two experts. The wa boundary gets one
vote, the tw boundary, three votes, and the sa boundary, two votes.

The experts use different methods to evaluate boundaries and assign votes. Consider
the window itw from the viewpoint of the boundary entropy expert. Each location in the
window bounds an ngram to the left of the location; the ngrams are i, it, and itw, respec-
tively. Each ngram has a standardized boundary entropy. The boundary entropy expert
votes for the location that produces the ngram with the highest standardized boundary
entropy. As it happens, for the ngram tree produced from Orwell’s text, the standardized
boundary entropies for i, it, and itw are 0.2, 1.39 and 0.02, so the boundary entropy
expert opts to put a boundary after the ngram it.
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The frequency expert places a boundary so as to maximize the sum of the standardized
frequencies of the ngrams to the left and the right of the boundary. Consider the window
itw again. If the boundary is placed after i, then (for Orwell’s text) the standardized
frequencies of i and tw sum to 1.73; if the boundary is placed after it, then the standardized
frequencies of it and w sum to 2.9; finally, if it is placed after itw, the algorithm has only
the standardized frequency of itw to work with; it is 4.0. Thus, the frequency expert opts
to put a boundary after itw.

3.3 Segment the sequence

Each potential boundary in a sequence accrues votes, as described above, and now Voting
Experts must evaluate the boundaries and decide where to segment the sequence. The
method is a familiar “zero crossing” rule: If a potential boundary has a locally maximum
number of votes, split the sequence at that boundary. In the example above, this rule causes
the sequence itwasacold to be split after it and was. One problem with the zero crossing
rule is that a single vote might be the locally maximum number of votes (if neighboring
locations garnered zero votes), causing Voting Experts to split too frequently. We have
found empirically that the more votes a location gets, the more likely it is to be a true
boundary. Yet the zero crossing rule splits on one vote with the same confidence as it splits
on ten votes if both numbers are local maxima. To counteract the tendency to split on
small numbers of votes, we do not allow Voting Experts to split unless the number of
votes exceeds a minimum number.

4 Evaluation

This section describes performance metrics and experiments with Voting Experts.

4.1 Metrics

The basic experimental question about Voting Experts is whether it cuts sequences where
it should. We will call the elements of a sequence letters, and subsequences, words. The
words found by Voting Experts are called induced words, to distinguish them from the
true words it is supposed to find.

The boundaries of induced words stand in six relations to those of true words. These
relationships are illustrated graphically in Figure 3, following the convention that horizontal
lines denote true words, and vertical lines denote induced words.

1. The induced word boundaries correspond with true word boundaries;

2. Exactly one induced word boundary corresponds with a true word boundary.

3. Both induced word boundaries fall between the true word boundaries.

4. Two or more consecutive induced words “tile” a true word, so that the leftmost boundary of
the first induced word is the beginning of the true word, and the rightmost boundary of the
last induced word is the end of the true word.

5. Like case 4, except that induced word boundaries correspond to the beginning or the end of
the true word but not to both.
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Figure 3: A graphical depiction of the relationships between induced boundaries and true
chunk boundaries.

6. No induced word boundary corresponds with either the beginning or the end of the true word.

The cases can be divided into three groups. In cases 1 and 4, induced word boundaries
correspond to both ends of true words; in cases 2 and 5, they correspond to one end of the
true word; and in cases 3 and 6, they correspond to neither end. We call these cases exact,
dangling, and lost to evoke the idea of true words located exactly, dangling from a single
induced boundary, or lost in the region between induced boundaries.

Hits and false positives are defined in the usual way: If Voting Experts cuts the word
washington into the words ∗wash ∗ ing ∗ ton∗, it gets two hits, for the beginning and end
of washington, and two false positives, for splitting where it should not. Hit rate and false
positive rate are often combined in a single statistic called F [35]:

F =
2× False positive rate×Hit rate

False positive rate + Hit rate

Generally, higher F measures indicate better overall performance.

4.2 Comparison conditions

Several of the following experiments compare the results of Voting Experts with those
given by the Sequitur algorithm. Sequitur is an unsupervised, compression-based al-
gorithm that builds a context-free grammar from a sequence of discrete tokens [26]. (For
a general introduction to stochastic context-free grammars see [20].) It has successfully
identified structure in both text and music. This structure is described by the rules of the
induced grammar. Each non-terminal in the grammar covers a subsequence of tokens and
so specifies two boundaries. Because non-terminals can expand into sequences containing
other non-terminals, we fix the level of non-terminal expansion and stipulate that all non-
terminals must be expanded to that level. In our experiments, expanding only the rule
associated with the start symbol – what we refer to as level 1 expansion – frequently gives
the highest F-measure.

It also is instructive to compare Voting Experts’s performance with random segmen-
tations. One approach is to split the sequence randomly subject to the constraint that
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Algorithm F-measure Recall Precision Exact % Dangling % Lost %
Voting Experts .76 .75 .76 .56 .39 .05

Sequitur .58 .58 .57 .30 .56 .14
All-Locations .36 1.0 .22 1.0 0.0 0.0

Random-Sample .21 .22 .21 .05 .34 .61

Table 1: Results of running four different algorithms on George Orwell’s 1984.

there are as many induced words as true words. We call this procedure Random-Sample.
Another approach is to place a boundary at every location. We call this procedure All-
Locations.

4.3 Voting Experts Applied to Word Boundaries

We removed spaces and punctuation from texts and assessed how well Voting Experts
induced word boundaries. To give a sense of its level of performance, here is Voting
Experts’s segmentation of the first 500 characters of George Orwell’s 1984. The ? symbols
are induced boundaries.

Itwas ? a ? bright ? cold ? day ? in ? april ? andthe ? clockswere ? st ? ri ? king ? thi ? rteen
? winston ? smith ? his ? chin ? nuzzl ? edinto ? his ? brea ? st ? in ? aneffort ? to ? escape ?
the ? vilewind ? slipped ? quickly ? through ? the ? glass ? door ? sof ? victory ? mansions ?
though ? not ? quickly ? en ? ought ? oprevent ? aswirl ? ofgrit ? tydust ? from ? ent ? er ?
inga ? long ? with ? himthe ? hall ? ways ? meltof ? boiled ? cabbage ? and ? old ? ragmatsa ?
tone ? endof ? it ? acoloured ? poster ? too ? large ? for ? indoor ? dis ? play ? hadbeen ? tack
? ed ? tothe ? wall ? it ? depicted ? simplya ? n ? enormous ? face ? more ? than ? ametre ?
widethe ? faceof ? aman ? of ? about ? fortyfive ? witha ? heavy ? black ? moustache ? and ?
rugged ? ly ? handsome ? featur

The segmentation is imperfect: Words are run together (Itwas, aneffort) and broken
apart (st ? ri ? king). Occasionally, words are split between segments (to in en ? ought
? oprevent). Still, the algorithm finds 75% of the true word boundaries (recall) and 76%
of the boundaries it finds are correct (precision) for an F measure of 0.76. Even errorful
segmentation sometimes produces real words or morphemes (though not the ones that
appear in the text above). Note that this particular run of Voting Experts involved
building an ngram tree of depth 7 and a window of length 6, which means the algorithm
correctly finds long words it has never seen, either as ngrams or within its window; words
like cabbage, handsome, and moustache.

4.3.1 English

We ran Voting Experts, Sequitur, and both control conditions on the first 50,000
characters of Orwell’s 1984. The detailed results are given in Table 1. These results were
obtained with a window length of 7 and a threshold for splitting of three votes. The
algorithm induced 11040 boundaries, for a mean induced word length of 4.53. The mean
true word length is 4.49. As noted above, the recall and precision are 0.75 and 0.76,
respectively. Exact cases, described above, constitute 56% of all cases; that is, 56% of true
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Figure 4: A comparison of cumulative exact match-rate over word length for Sequitur and
Voting Experts. The background histogram depicts the distribution of word lengths in
the Orwell corpus.

words were bounded at both ends by induced boundaries. Dangling and lost cases constitute
39% and 5% of all cases, respectively. Said differently, only 5% of all true words got lost
between induced word boundaries. These tend to be short words, in fact, 59% of the lost
words have length 3 or less and 85% have length 5 or less. 89% of the words for which the
algorithm found exact boundaries have length 3 or longer. Clearly, Voting Experts does
best with medium-length and long words.

Sequitur performs best by expanding its rules only to level 1, that is, by not further
expanding any non-terminals off the sentential rule. Further expansions increase the false
positive rate. For example, when expanding to level 5, Sequitur identifies 78% of the word
boundaries correctly, but it induces so many boundaries that its false positive rate is 68%,
approaching the 78% false positive rate incurred by splitting at every location.

Sequitur finds frequent patterns, but these do not always correspond to words. More-
over, running with the frequency expert alone, Voting Experts gets recall, precision and
F measures of 0.55, 0.75 and 0.64, respectively.

In Figure 4 the cumulative percentage of exact word matches is plotted as a function of
word lengths. The distribution of word lengths is shown in the background of the figure.
The slope of the cumulative percentage curve is steeper for Voting Experts than it is
for Sequitur in the interval corresponding to short and medium-length words, and these
words make up most of the corpus. Where accuracy matters most, on the most common
words, Voting Experts is most distinct from Sequitur.

Two additional control conditions were run and yielded the expected results. First,
Voting Experts performs marginally less well when it is required to segment text it has
not seen. For example, if the first 10,000 characters of Orwell’s text are used to build the
ngram trie, and then the algorithm is required to segment the next 10,000 characters, there
is a very slight decrease in performance. Second, if the “true words” in a text are actually
random subsequences of letters, then Voting Experts performs very poorly.

The effects of the corpus size and the window length are shown in Figure 5. The
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Figure 5: The proportion of “lost” words as a function of corpus length.

proportion of “lost” words (cases 3 and 6, above) is plotted on the vertical axis, and the
corpus length is plotted on the horizontal axis. Each curve in the graph corresponds to a
window length, k. The proportion of lost words becomes roughly constant for corpora of
length 10,000 and higher. The positive effect of increasing window length is probably due
to the larger number of “looks” each location gets with larger windows. Given a window
of length n, each expert makes n estimates of whether a location is a word boundary.
These estimates are not independent, yet each is based on slightly different information,
because the ngrams surrounding the location change as the window moves over the location.
Apparently, Voting Experts performs better as it makes more estimates of whether a
location is a boundary, although the benefit of increasing window length diminishes.

4.3.2 Chinese, German and Roma-ji

As a test of the generality of Voting Experts, we ran it on corpora of Roma-ji, Chinese
and German texts. Roma-ji is a transliteration of Japanese into roman characters. The
Roma-ji corpus was a set of Anime lyrics comprising 19163 characters. The Chinese text
comes from Guo Jim’s Mandarin Chinese PH corpus. The PH corpus is taken from stories
in newspaper texts and is encoded in in the standard GB-scheme. Franz Kafka’s The Castle
in the original German comprised the final text. For comparison purposes we selected the
first 19163 characters of Kafka’s text and the same number of characters from 1984 and the
PH corpus. As always, we stripped away spaces and punctuation. The window length was
6. The results are given in Table 2.

Clearly the algorithm is not biased to do well on English. In particular, it performs
very well on Kafka’s text, losing only 4% of the words and identifying 61% exactly. The
algorithm performs less well with the Roma-ji text; it identifies fewer boundaries accurately
(it places 34% of its boundaries within words) and identifies fewer words exactly. Voting
Experts performed worst on the Chinese corpus. Only 42% of the boundaries were iden-
tified, although the false positive rate is an extremely low 7%. The explanation for these
results has to do with the lengths of words in the corpora. We know that the algorithm
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Voting Experts F-measure Hit Rate F.P. Rate Exact % Dangling % Lost %
German .75 .79 .31 .61 .25 .04
English .71 .76 .33 .58 .38 .04
Roma-ji .65 .64 .34 .37 .53 .10
Chinese .57 .42 .07 .13 .57 .30

Table 2: Results of running Voting Experts on Franz Kafka’s The Castle, Orwell’s 1984,
a subset of the Chinese PH corpus of newspaper stories, and a set of Roma-ji Anime lyrics.

loses disproportionately many short words. Words of length 1 or 2 make up 93% of the
Chinese corpus. Words of length 2 make up 39% of the Chinese corpus, 32% of the Roma-ji
corpus, 17% of the Orwell corpus, and 10% of the Kafka corpus, so it is not surprising that
the algorithm performs worst on the Chinese corpus and best on the Kafka corpus.

If we compensate for the fact that Chinese words are short by decreasing the splitting
threshold, we can increase the F-measure of Voting Experts to 77% on the PH corpus.
In general, knowing the true mean word length can help. In fact, one can do away with the
threshold number of votes and replace it with a much better mechanism: Given the average
word length and the corpus size, we know nw, the number of words in the corpus. Now rank
every location by the number of votes it receives select the top-ranked nw locations, and
insert boundaries at these locations. This method increases the accuracy of the algorithm
and also increases the fraction of words it finds that are true words.

4.4 Robot Episodes

Whether one works with letters, words, or phrases, text is a sequence of individual symbols.
In many applications — robotics, credit card transaction behavior, notational analysis in
sports — the data are sequences of vectors of symbols, xt. For instance, xt might be a
vector of attributes of a credit card transaction, such as whether the cardholder was present
and the vendor code. One can run Voting Experts on such data in two distinct ways:
First, one can hash the vector to a single symbol and run the algorithm as usual on the
sequence of these symbols; or, one can run the algorithm on the sequence of each element of
the data vector and somehow combine the votes for splitting at location t in each sequence.

We tested both methods with data generated by a mobile robot, a Pioneer 2 equipped
with sonar and a pan-tilt-zoom camera running a subsumption architecture. In each time
series the robot wandered around a large playpen for 20-30 minutes looking for interesting
objects, which it would orbit for a few minutes before moving on. At one level of abstraction,
the robot engaged in four types of behaviors: wandering, avoiding, orbiting and approaching.
Each behavior was implemented by sequences of actions initiated by controllers such as
move-forward and center-camera-on-object. The challenge for Voting Experts was to find
the boundaries of the four behaviors given only information about which controllers were on
or off. This problem is like finding words given letters, except there are just eight controllers.
One way to represent the states of eight controllers is with a binary vector of length eight,
the other is to transform the bits in the vector to a single number between 1 and 256. In
fact, only 65 of the possible 256 combinations of controllers manifested themselves during
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F Recall Precision Exact % Dangling % Lost %
Summer univariate 0 .778 0.774 0.781 0.323 0.479 0 .196

Summer multivariate 0.683 0.558 0.880 0.040 0.378 0.574
Autumn univariate 0.183 0.651 0.115 0.030 0.580 0.370

Autumn multivariate 0.197 0.500 0.123 0.039 0.438 0.514

Table 3: Results of running Voting-Experts on the Summer and Autumn data sets,
hashing multivariate states to univariate symbols as well as running Voting-Experts on
the individual streams.

the experiment. Thus we may run Voting Experts on either a sequence of individual
symbols — the labels 1, 2, . . . , 65 — or separately on eight binary sequences. In either
case, the task is to find the places in the robot’s history where it shifts between its four
behaviors.

The Summer dataset is 17798 time steps long and has 2237 changes in behavior. The
mean duration of a behavior is 7.95 time steps. We also ran the robot under different
controllers to get a second dataset with very different statistics, specifically, much longer-
lasting behaviors. The Autumn dataset had 8923 ticks and 105 changes of behavior, with
mean episode length 84.97.

The definition of hit rate and false positive rate were changed slightly for these exper-
iments. Because the controller data can be noisy at the episode boundaries, we classify as
hits induced boundaries within one time step in either direction of when a behavior actually
changed. A false-positive is recorded only when a boundary is induced and no real boundary
exists within a window of one time step on either side of the induced boundary.

Results are shown in Table 3. Clearly, performance on the Summer data is comparable
to that for words in text, but performance on the Autumn data is very much worse. This
is because very long episodes are unique, so most locations in very long episodes have zero
boundary entropy and frequency equal to one. Also, if the window size is very much smaller
than the episode size then there will be a strong bias to cut the sequence inappropriately.
It makes little difference whether we run the algorithm on a single sequence of symbols in
the range 1..65 or on eight individual binary sequences (one for each controller) and cut the
sequences at the locations that have the most votes summed across the sequences.

5 Related work

The psychological literature on chunks is largely descriptive and does not characterize in-
trinsic properties of chunks such as within- and between-chunk entropy (though see [31]).
One can get lost quickly in the literature on chunking and memory; good places to begin
are de Groot’s classic experiments [9] on chess masters’ memory for chess positions (see also
Chase and Simon [4] and Gobet [13]). Chunking is the principal learning mechanism in the
SOAR architecture [22].

Segmentation is related to chunking and has received much attention over the years,
particularly in linguistics. Even before Miller’s classic article, Zelig Harris noted that the
unpredictability of phonemes was higher at word boundaries than elsewhere [16], and, be-
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fore that, Shannon recognized the same phenomenon in his experiments on the entropy of
English [30]. Hafer and Weiss [15] developed an algorithm similar to Voting Experts.
They used a trie to represent ngrams (as we do) and they split sequences based on bound-
ary entropy, but their method did not work very well, in part because they did not take
frequencies into account and they did not standardize frequencies, an important step ex-
plained in Section 3.1. Some researcher try similar approaches to finding morphemes rather
than words (e.g., [8]). In fact, many of Voting Experts’s errors involve cutting words at
morphological boundaries. Plurals are especially difficult, so are prefixes and suffixes such
as “re” and “ing”. A large part of the problem of morphological analysis is figuring out
that “re” is a prefix in “rerun” but not “read” (e.g., [14]). Another problem is the lack of
agreement on correct morphological decomposition. Some corpora we have seen are at best
debatable.

The influential work of Saffran, Aslin and Newport [28] showed that eight-month-old
infants could segment synthetic speech lacking prosodic cues and generated from an artificial
grammar with a novel vocabulary. Remarkably, they could do this after only two minutes
exposure to the speech. Saffran and her colleagues constructed their grammar so that the
conditional probabilities of adjacent symbols were low when the symbols were on either
side of a word boundary and higher within words. Thus, the words in their grammar had
low within-word entropy and high between-words entropy, and infants picked up on this
signature almost immediately. (It should be noted that the segmentation task was not very
challenging: Voting Experts performed it perfectly.) Hauser, Newport and Aslin [17]
report much the same results with cotton-top tamarins.

One notable conclusion from the cognitive literature is that if chunking works in infants
and monkeys, it cannot require a great deal of knowledge and it probably gets to work very
early in life.

There are numerous applications of chunking and segmentation, many in computational
linguistics and genomics. Some of these are presented in detail, later. The problem of
finding chunks in sequences of medical insurance claims data is addressed in [37]; robot
gripping episodes are learned by [38]; and sequences of agent interactions are learned by
[18]. We demonstrated Voting Experts’s performance on a robotic episode problem in
Section 4.4.

Computer scientists have developed dozens or hundreds of algorithms for segmentation
and related tasks, such as compression. Some are similar to Voting Experts, or different
in instructive ways. The best segmentation algorithms are trained with positive instances of
segmented text (e.g., [24, 12, 36]) or use a supervised form of compression (e.g., [33, 34]). In
contrast Voting Experts is unsupervised, meaning it gets text from which all indicators
of boundaries have been removed. Ando and Lee describe an unsupervised algorithm for
segmenting Kanji Japanese script. Their algorithm tries to maximize the entropy between
words and minimize the entropy within (although Ando and Lee do not present it this
way) by requiring that two adjacent ngrams have higher frequency than one ngram “in the
middle.” For example, in a sequence abcd, if the frequencies of ab and cd are high relative
to the frequency of bc, this suggests breaking the sequence between b and c. We applied
this algorithm to the same texts as Voting Experts and it performed less well than the
frequency and boundary entropy methods. We added Ando and Lee’s heuristic to Voting
Experts as a third method and did not find it contributed to consistent or non-negligible

15



improvements in performance. Ando and Lee’s heuristic appears to be getting at the same
signature of chunks as frequency and boundary entropy are, though less effectively.

Parsing or segmentation based on mutual information (e.g., [23, 21]) is similar to seg-
menting with boundary entropy. The idea is simply to measure the mutual information
between the left and right halves of successive bigrams and cut the sequence where the
mutual information peaks. This method attends to the between-chunk entropy aspect of
chunks, not the within-chunk entropy. It is like running Voting Experts with only the
boundary entropy method. Performance is good, but not as good as with both.

Compression seems a natural way to find chunks (e.g., [19, 33, 34, 26]. We compared
Voting Experts with the Sequitur compression-based segmentation algorithm in Sec-
tion 4.3. Both are unsupervised algorithms and, not surprisingly, neither performs as well
as the supervised compression-based method of Teahan [33, 34]). Voting Experts did
better than Sequitur in our tests, probably because, like other compression algorithms,
Sequitur attends exclusively to frequency. As noted earlier, frequency is equivalent to
within-chunk entropy. It is worthwhile to attend also to between-chunk entropy.

Several authors try to segment text by a kind of maximum-likelihood parsing. They
first learn an ngram language model, then segment text so as to maximize the probability
of the observed text given the model. Examples of this approach include [2, 10, 39]. These
methods all search over all possible segmentations of subsequences of the text, looking
for the segmentation that maximizes probability according to a language model that gets
built as the algorithm runs. Because Brent’s MBDP-1 is a very clear representative of this
approach, we will consider it in some detail here.

Brent’s MBDP-1 algorithm [2] simultaneously learns words and segments text, using
the segmentation to identify new words and the probabilities of previously learned words to
aid segmentation. It is exposed to sentences one at a time, segments each, adds new words
to its lexicon, and iterates. This bootstrapping aspect distinguishes MBDP-1 from Voting
Experts, which works with a batch corpus, only. Brent argues that for a segmentation
algorithm to be a plausible model of word-learning, it must work incrementally. We agree, so
we ran a very crude approximation to Brent’s incremental approach with Voting Experts.
Following Brent, we used the English version of the Canadian Hansard corpus as a source.
Brent presents learning curves for recall and precision as functions of the amount of text
presented to MBDP-1 [3]. He reports performance at 22, 24, 26, . . . , 222 words. We ran
Voting Experts with corpora of 6×2i letters, for i = 2, 4, 6, . . . , 22, as the Hansards have
5.85 letters per word, on average. Figure 6 shows that Voting Experts has a flatter curve
than MBDP-1 and actually performs better with small corpora, but for corpora of 214 words
(nearly 100,000 characters) and higher, MBDP-1 marches on to roughly perfect recall and
precision while Voting Experts remains at roughly 90% recall and 65% precision.

Why the dfference? One possibility is that MBDP-1 makes “very good use of sentence
boundaries and punctuation” [2], neither of which is available to Voting Experts. With
every sentence, MBDP-1 gets one guaranteed instance of the beginning of a word and one
guaranteed instance of the end of a word (the first and last words in the sentence). For
corpora of 218 words, assuming eight words per sentence, this amounts to 32, 000 known
beginnings and ends of words. However, Brent suggests that the value of this information
is most evident early in the learning process, and we agree that that is where it is likely
to have the best effect on word probabilities, so it probably is not the explanation of the
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difference between the algorithms at large corpus sizes.
Note that MBDP-1 truly is a bootstrapping algorithm, in that previous segmentations

refine word probabilities, which help later segmentations; whereas Voting Experts merely
segments the entire corpus and does not form any word models. The question is, is boot-
strapping a superior approach? It is intuitively appealing to use the words one has learned
by segmentation to help learn new words, but does account for near-perfect performance
at large corpus sizes, where Voting Experts stalls? Recently, we have tried saving the
words discovered by Voting Experts and using them to improve later segmentation, but
we have not been able to significantly improve the performance of our algorithm. For us, it
remains an open question whether bootstrapping is superior to Voting Experts simple
method of looking for the signature of low within-chunk entropy and high between-chunk
entropy.

6 Discussion

The Voting Experts algorithm depends on two indicators of chunk boundaries: the
entropy of the element that follows a potential boundary, and the sum of the standardized
frequencies of ngrams to the left and right of a potential boundary. These experts do not
always agree. In fact, as Voting Experts passes its window over the Orwell text, the
experts vote for the same location in the window only about 45% of the time. Moreover,
Voting Experts performs quite well with either expert alone, generally coming within
a few percentage points of the F measures achieved with both experts. We have added
numerous other experts to the mix; none changes our results by more than a few percentage
points. We have tried different ways to adjust or smooth the votes cast by the experts and
different methods for deciding where to split the sequence given the pattern of votes; Cheng
and Mitzenmacher propose a different scheme for combining votes [5]. Again, none of these
variants have large effects on performance.

These explorations give rise to two conjectures: First, all the experts we implemented
are variants of one signature: entropy within chunks is low, entropy between chunks is
high. Second, the performance of Voting Experts and all its variants is limited by the
structure of the sequences it segments, and fiddling with the algorithm will not improve
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its performance by much. In particular, orthographies of natural languages are not prefix
codes, and that many chunking errors are due to one word being embedded in another
(e.g., the sequence ...nothere... might be part of ...no there... or ...not here... or ...not
her elephant... or no the red one... and so on). Said differently, Voting Experts might
be performing as well as possible, given the structure of natural language text. A simple
experiment tends to bear this out: Many subsequences are repeated in text (e.g., “there”
appears often) and, without contextual information, Voting Experts necessarily cuts
each replication of such a subsequence at the same place. Usually, the algorithm’s choice
is correct, but it is rarely correct for all the instances of a given subsequence. This means
Voting Experts simply cannot do better without increasing the length of subsequences
to incorporate more context.

7 Conclusion

Voting Experts attends to a statistical signature of chunks — low entropy within, high
entropy between — to achieve relatively high recall and precision on segmentation tasks.
The algorithm approaches these tasks in a way unlike anything that humans or other animal
would naturally do. It works with a large batch of meaningless symbols. It has no purpose
other than to compute between– and within–chunk entropy. It does not hypothesize chunks
and test them in a performance task, it is entirely unsupervised and data-driven. That
it performs so well speaks to the power of the signature of chunks. Human chunking,
however, is an incremental process in which previously-learned chunks help the learner
recognize and learn new chunks (i.e., it is a bootstrapping process, as Brent [2] asserts).
Most importantly, chunks are formed for a reason. Why does the mind form chunks? How
are chunks different from the elements from which they are formed? How are words different
from morphemes, and how are phrases different from words? One argument for chunking is
cognitive economy — compression, essentially — the idea that by putting elements together
one could think in terms of relatively few chunks instead of relatively many elements. (Miller
called this recoding: “[P]robably the simplest [way] is to group the input events, apply a
new name to the group, and then remember the new name rather than the original input
events.” [25]) While cognitive economy might be the reason for chunks, it cannot be the
reason for particular systems of chunks. Said differently, a corpus of elements can be chunked
in a variety of ways, all of which afford cognitive economy, but only some of which are
preferred.

Our current research on chunking involves asking why some chunks are preferred. Our
idea is that chunks are preferred because they provide qualitatively different functionality
than one gets from elements of chunks. The mental operations performed on words are
qualitatively different from those performed on phrases. One can compare the meanings of
words (e.g., “happy” and “sad”), whereas one can reason about the truth and entailments
of phrases (e.g., ”George is happy”). The different levels of language, particularly the
word and phrase levels, differ in the sorts of mental operations or functions they enable.
The developmental chunking principle is that chunks are formed at one level to improve
performance on a task at a higher level. This principal is the focus of our ongoing research.
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