
A Study of Techniques for Introducing Concurrency into List
Processing Library Routines in Modern Concurrent Functional

Programming Languages

Brent Heeringa
Student

Division of Science and Mathematics
Computer Science Discipline

University of Minnesota, Morris
heerinba@cda.mrs.umn.edu

Scott Lewandowski
Professor of Computer Science

Division of Science and Mathematics
Computer Science Discipline

University of Minnesota, Morris
swl@cda.mrs.umn.edu

Abstract

Erlang is a modern functional programming language with additional features that support explicit concurrency through
lightweight processes and message passing.  Erlang’s clean semantics and lack of side effects make it possible to
develop high quali ty software that can easil y take advantage of the availabil ity of multiple processors.  Like most
functional programming languages, Erlang provides a number of library routines (e.g. map) for processing and
manipulating lists.  These routines are an excellent target for the introduction of concurrent processing techniques.  In
this work we explore various methods for introducing concurrency into list processing routines such as map.  We report
on the results of our experiments using the Erlang Development Environment, and discuss which approaches to
concurrency are most beneficial given the number of processing nodes available and the properties of the computation
(e.g. type of function being applied, size of the input list, etc.).

Introduction

Functional languages have long been favored for the ease they provide in processing li sts of information.
Early functional languages, however, were often criticized as being too ineff icient.  Advances in
implementation techniques (such as graph reduction) and hardware platforms have made it possible in
recent years to design and implement eff icient functional programming languages.  Many of these
languages (e.g. Concurrent Clean, Haskell , Erlang) provide all of the features of more traditional functional
languages (e.g. Lisp) as well as extensions for parallel and distributed processing and/or object-oriented
programming [Wilhelm 1995, Plasmeijer 1997].  As eff iciency has improved, more and more people have
come to recognize the power inherent in modern functional programming languages.  Their clean semantics
and lack of side effects make it possible to develop high quality software systems that can easil y take
advantage of distributed processing resources.  Modern functional languages are increasingly finding
acceptance as a viable software tool for building solutions to real world problems.  Erlang, for example,
was designed as a language for programming large industrial telecommunications switching systems.  It is
also suitable for programming embedded real-time control systems [Armstrong et al. 1996].

A key data type in functional languages is the li st.  These languages typicall y provide a number of library
routines for building, processing, and manipulating lists.  Oddly enough, even in modern functional
languages that support concurrency, li ttle progress has been made in including concurrent versions of li st



processing routines (such as map or sort) into language libraries so that the eff iciency benefits of
concurrency can be easil y taken advantage of in building solutions to problems.

Erlang (from Ericsson Telecommunications Systems) is a modern functional programming language that
provides built in language support for concurrency and which includes in its libraries a concurrent version
of the map function which applies a specified function to all elements in a li st.  In the next section we
describe the map function and our variations in more detail.  We then describe our experiments and discuss
our experimental results.  Finall y, we discuss our plans for future work and enumerate the conclusions we
have reached.  A description of the Erlang language focusing specificall y on the features it provides for
supporting concurrent computations as well as specific implementation details of our parallel functions can
be found in the appendices.

The Map Function

Most functional programming languages provide the abil ity to apply a function to every item in a list.  This
function is typicall y called map, and for the purposes of this discussion will be assumed to take two
arguments: a function of one argument, and a list.  The function is applied in turn to each of the elements of
the list and the results of these function applications are collected in a li st.  Put another way:

map(f, [l 1, l 2, …, l n ]) ⇒ [f(l 1), f( l 2), …, f(l n)]

where f  is a function of one argument, and where the elements of the li st are of the appropriate type for f .
For example:

map(sqr, [1, 3, 5, 7 ]) ⇒ [1, 9, 25, 49] .

Map can be implemented as a simple linear recursion over the elements of the li st l .  In Erlang, we would
express this is as follows:

map(F, [H|T]) → [apply(F, [H])|map(F, T)];
map(F, []) → [].

Erlang uses pattern matching, a powerful tool for binding values to terms of the same shape. Pattern
matching allows a function to be expressed as a collection of case definitions. When defining a function,
the order of the case definitions is unimportant due to pattern matching.  For example, the base case of map
(i.e. the declarative containing the empty li st as the second argument) may be positioned last because the
pattern for the empty li st will in fact be matched when appropriate.

In Erlang there are several patterns which are useful when creating functions that process or manipulate
li sts:

• []  denotes the empty li st.
• [H]  denotes a list containing exactly one term, where H is bound to the value of that term
• [H|T]  denotes a list containing at least one term, where H is bound to the value of the first term in the

li st, and T is bound to the rest of the li st (note that T will always be a list and that T may be bound to
the empty li st).

When used in a context similar to the right hand side of the first case definition above, the Erlang operator
|  indicates concatenation (i.e. the left operand to|  is concatenated to, or added to the front of, the list
denoted by the right hand operator to |  ).  Thus [1|[9, 25]] ⇒ [1, 9, 25] .  The apply routine
calls the function denoted by its first argument on the elements of the list it is given as its second argument.
Thus apply(max, [14, 7] )  is equivalent to max(14, 7) .  Note that the length of the li st and the
arity of the function must be the same.



Tracing through the example above results in the following:

map(sqr, [1, 3, 5, 7])
⇒ [apply(sqr, [1])|map(sqr, [3, 5, 7])]
⇒ [apply(sqr, [1])|[apply(sqr, [3])|map(sqr, [5, 7])]]
⇒ [apply(sqr, [1])|[apply(sqr, [3])|[apply(sqr, [5]|map(sqr, [7])]]]
⇒ [apply(sqr, [1])|[apply(sqr, [3])|[apply(sqr, [5]|
   [apply(sqr, [7])|map(sqr, [])]]]]
⇒ [apply(sqr, [1])|[apply(sqr, [3])|[apply(sqr, [5]|

[apply(sqr, [7])| [ ] ]]]]
⇒ [sqr(1)|[sqr(3)|[sqr(5)|[sqr(7)|[]]]]]
⇒ [1|[9|[25|[49|[]]]]]
⇒ [1, 9, 25, 49]

Since modern functional languages are (typicall y) side effect free, each application of the function f  to an
element of l  is independent of all other applications of f .  Therefore, as long as the results are assembled
appropriately, the order of application is irrelevant. This makes map a prime target for the introduction of
concurrency.

The Erlang library provides a straightforward concurrent implementation of the map function, called pmap
(i.e. parallel map), where each application of f to an element of l  is computed within its own process (i.e.
a separate, self-contained unit of computation).  With a suff iciently computationally intensive function and
enough processing nodes this approach yields significant performance gains over the sequential
implementation.  There is however significant overhead associated with this approach – specificall y the
costs of spawning a potentially large number of processes and of sending a potentiall y large number of
messages over the communications network.

In our experiments we investigate the costs and benefits associated with concurrent implementations of the
map function.  We examine the performance of the pmap routine provided in the Erlang library as well as
that of two implementations of our own which we briefly describe below. Both of our implementations
borrow a technique commonly used in implementations of quick and merge sorts.  When implementing
these sorting algorithms, lists aren’ t always broken down to single elements due to the overhead associated
with recursion.  Rather, the li sts are broken down to some pre-determined threshold length, at which point a
simpler (non-recursive) sorting algorithm (e.g. insertion sort) is used.  We observe that in building
concurrent implementations of the list function map it is not necessary to spawn a new process for each list
element.  Overhead costs can be significantly reduced by breaking the li st down to some pre-determined
threshold length, at which point the sequential version of map which is discussed above can be used.

Our first approach, which we’ ll refer to as smap (i.e. map over sub-li sts), is a straightforward modification
of the Erlang library routine pmap.  In this implementation we do not create a new process for each
application of f  to an element of l .  Instead, we divide the li st into segments of length eight or less and
create a process for each segment wherein the sequential version of map is used to apply f  to each of the
eight (or fewer) li st elements.  Since fewer processes are created using this approach there is less of an
overhead penalty compared to the standard Erlang approach.

In this approach, all of the work involved with splitting the li st into segments occurs in one process which
we’ ll refer to as the root process.  A new child process is then spawned for each li st segment of length eight
or less.  This leads to a process organization similar to that shown in Figure 1.  The root process is
responsible for reassembling the results from all of the child processes into the final result.  For a li st of N
elements, this approach requires the creation of N / 8  + 1 processes.



Figure 1:  Process organization in smap

Our second approach, which we’ ll refer to as tmap  (i.e. map using a tree split), also splits the list into
segments of length eight or less.  Like smap it creates a process for each segment wherein the sequential
version of map is used to apply f  to each of the eight (or fewer) li st elements.  The key difference when
compared with the previous approach involves how the list is split up and where the work occurs.

In this approach we use a binary split ting technique that leads to a hierarchical process organization similar
to that shown in Figure 2.  As was the case with smap, the work performed by the leaf processes is that of
applying the sequential version of map to lists of length eight or less.  Internal processes (shown in gray)
are responsible for splitting their input list in half, for spawning two child processes to operate on each half
of the li st, and for reassembling the results from those child processes into a result.  This result is returned
back to the node’s parent process.  For a li st of N elements, this approach requires the creation of no more
than 2log2( N / 8 ) + 1  - 1 processes.

Figure 2: Process organization in tmap

Our Experiments

We implemented both approaches described above as Erlang routines and ran a number of experiments
mapping functions of various orders of magnitude over lists of varying sizes.  Table 1 summarizes the
experiments that we report on in the next section.

O(1) O(N) O(N2) O(N3)
map 16, 128, 1024,

16384, 32768
16, 128, 1024,
16384, 32768

16, 128, 1024,
16384, 32768

16, 128, 1024,
16384

pmap 16, 128, 1024,
16384

16, 128, 1024,
16384

16, 128, 1024,
16384

16, 128, 1024,
16384

smap 16, 128, 1024,
16384, 32768

16, 128, 1024,
16384, 32768

16, 128, 1024,
16384, 32768

16, 128, 1024,
16384

tmap 16, 128, 1024,
16384, 32768

16, 128, 1024,
16384, 32768

16, 128, 1024,
16384, 32768

16, 128, 1024,
16384

Table 1: Experiment Summary



To investigate what effect increasing the number of Erlang nodes has on our distributed routines,
experiments were run on configurations of two to five nodes.  Each node was started on its own
workstation – either on one of two Pentium II 300 MHz systems with 128 Mb of RAM or on one of three
Pentium 200 MHz systems with 64 Mb of RAM.  For each configuration of nodes, mapping routine,
mapped function, and li st size, we performed a series of twelve runs.  In reporting our figures, we
eliminated the fastest and slowest of the twelve runs and averaged the results of the remaining ten.

Note that the upper limit on the size of li sts used in our experiments is limited in the case of pmap.  This is
due to a limit on the number of processes the free version of the Erlang Development Environment wil l
allow at any given moment.

Our Results

The results of our experiments were, by and large, what we expected, with one small caveat.  The graph
shown in Figure 3 below is representative of our overall findings.  Note that nodes one through three are
the Pentium 200 MHz systems with 64 Mb of RAM.

50

70

90

110

130

150

170

190

210

230

250

270

1 2 3 4 5

nodes

ti
m

e 
(s

ec
s)

map pmap smap tmap

Figure 3: Results of mapping an O(N3) function onto a 16384 element list

The single cross in Figure 3 indicates the execution time of the sequential version of map.  As discussed
above, the performance of the version of pmap provided in the Erlang library suffers due to the significant
overhead involved in spawning 16384 processes.  The performance of smap takes a small initial hit due to
overhead when only two nodes are involved, but quickly and dramaticall y improves as more processing
nodes are added.  While we are stil l investigating the reasons for tmap ’ s initial but dramatic performance



gains, we do have an explanation for its lack of improvement as more processing nodes are added.  The
problem lies in how the Erlang library routine parallel_eval  (which lies at the heart of all the
distributed versions of the map function) assigns processes to nodes.  Basicall y, no matter how many
processing nodes are available, tmap as implemented, will only ever use two of them (see the appendices
for more detail s on the inner workings of our code and the Erlang library routines).  The idea that the work
is split evenly between two nodes at least partiall y explains why the performance of tmap in this instance is
roughly half that of the sequential version of map.

Figure 4 shows the results of mapping an O(N2) function onto a 32768 element list.  The performance
trends are consistent with those shown in Figure 3, although tmap  displays an unusual improvement in its
performance with the addition of a fifth node.  This cannot be attributed to a different subset of nodes being
used, as the experimental results indicate the same nodes would have been used in either case.  Since the
time difference is only a matter of seconds, a probable explanation for tmap ’ s improved performance, is a
decrease in network traff ic flow.  Note also the graph in Figure 4 does not display the results for pmap as
they are significantly higher than the times shown, ranging from 68 seconds using five nodes up to 76
seconds using two nodes.

8

10

12

14

16

18

20

22

24

1 2 3 4 5

nodes

ti
m

e 
(s

ec
s)

map smap tmap

Figure 4: Results of mapping an O(N2) function onto a 32768 element list

Figure 5 illustrates the consistent behavior of smap over all of the experiments outlined in the previous
section.  Notice the recurring pattern in each set of four columns; as more processing nodes are added,
smap almost invariably produces results more quickly.  Additional experiments, varying the size of the
sublists (i.e. using values other than eight), could help determine an optimal relationship between sublist
length and performance.



2 
- O

(1
)

3 
- O

(1
)

4 
- O

(1
)

5 
- O

(1
)

2 
- O

(N
)

3 
- O

(N
)

4 
- O

(N
)

5-
 O

(N
)

2 
- O

(N
^2

)

3 
- O

(N
^2

)

4 
- O

(N
^2

)

5 
- O

(N
^2

)

2 
- O

(N
^3

)

3 
- O

(N
^3

)

4 
- O

(N
^3

)

5 
- O

(N
^3

)

16

1024

32768
0.001

0.01

0.1

1

10

100

1000

ti
m

e 
(s

ec
s)

nodes - mapped function magnitude

elements

Figure 5: smap performance summary

Future Work

One unsurprising result of this research found that parallel computations in Erlang, using the generic
parallel_eval  function, were computationally bound by the slowest processor.   This is due to the fact
that processes are distributed evenly in a round robin fashion (i.e. job j is assigned to node n mod j).   Given
the heterogeneous nature of computing equipment commonly available even within a single lab, we would
ideally li ke to create concurrent routines where faster processors receive a larger portion of the
computation.  This would replace the  even distribution of work currently supported, and allow for even
further performance gains.

Erlang provides some simple mechanisms to help with load distribution including the notion of a node pool
that is used in conjunction with a load checking algorithm.  The Erlang libraries provide a function called
statistic_collector  which performs load checks on nodes in the pool by simply checking the
length of the run queue.  The run queue is “simply the number of processes which are ready to run”
[Armstrong et al. 1996].  Collecting statistics at run time creates an adaptive load distribution which could
provide a noticeable speed increase, as well as solve many of the problems associated with the round robin
style of process distribution.  Notably, the failure of tmap to spawn processes beyond the scope of two
nodes is solved by adaptive load distribution.

Another interesting tool might be the development of a concurrent evaluator, that is, an algorithm that may
determine when concurrency brings about benefits, and conversely when evaluating a function locall y is
more beneficial.  Because of the transparent distribution provided by Erlang, an implementation of such an
evaluator function may fit nicely into li st processing library routines.  For example, the algorithm might
check number of nodes available, current run-queue statistics on those nodes, and finall y the length of
arguments given to the possible concurrent routine as input.  The evaluator would be folded into possible
concurrent function definitions, as opposed to a standalone function, since its role would not be to



determine whether the function itself would benefit from concurrency, but rather if the current computing
situation would be beneficial.  That is, the evaluator would not determine whether function foo  would
benefit from concurrency, but rather, if the current environment (i.e., number of nodes, current load, etc. . .)
lends itself well to execution of the function in parallel.

Finally, although this research concentrated on parallelizing one common li st processing routine–map, it
would be trivial to apply  such parallelization across many other library functions.  For example, common
sorting routines such as mergesort and quicksort could reap the benefits of concurrency quite easil y if
implemented in a distributed manner.  Other functions which perform operations over the elements of a
large li sts, such as al l –a function which takes a predicate and a list as arguments and determines whether
each element in the list satisfies the predicate–may be also be viable candidates [Springer 1989].

Conclusions

The research conducted within the scope of this paper suggests that the addition of concurrent li st
processing routines in standard modern functional programming libraries would be beneficial.  The Erlang
shell  provides a concurrent-friendly environment where implementation of such parallel routines may take
place.  Our research demonstrates the ability to easil y improve upon current parallel library functions.  Our
implementation of smap, for instance, outperformed the simple pmap in all computational experiments.
The research  also indicates that although using the round robin method of load distribution produces good
results, the incorporation of adaptive load distribution techniques would provide even further performance
benefits.

Appendix 0:  Details of Distributed Erlang as Related to List Processing

Appendix 0 is provided for the reader interested in details related to distributed Erlang and its role in
constructing parallel versions of li st processing routines.

Erlang provides transparent distribution; that is, the abil ity to spawn remote procedure calls without general
knowledge of  other Erlang nodes.  An Erlang node is a self-contained unit;  an entity that may run
standalone or as part of a network of nodes. Not surprisingly, a single machine may run multiple nodes.
Alternatively, an Erlang node may be thought of as an instance of the Erlang shell with a unique name
identifier. The shell is basically a command line interpreter.  Name identifiers are given by the user upon
initiation of the Erlang shell and are of the form ‘nodename@domain.name’ .  Nodes with identical magic
cookies (a simple, authority driven, security mechanism where a string of alphanumeric characters, called
the cookie, is passed along with every remote procedure call) are allowed communication through TCP/IP.
Distribution is thus achieved through lightweight asynchronous message passing between nodes.

“Many operating systems provide complex mechanisms such as remote procedure calls, global name
servers, etc. as components of their systems.  Erlang, however, provides simpler primitives from which
such mechanisms can be constructed” [Armstrong et al. 1996].  Implementations of global name and
remote procedure servers are included in current releases of the Erlang Development Environment.   In this
work, we use the supplied remote procedure server in order to specify which nodes receive what processes.

Included in the Erlang libraries are two important modules – parallel_eval  and promise .  The first
function provides an abstraction for parallel evaluation and the second, a means by which distribution and
concurrency can occur without idle wait time.

Erlang’s parallel_eva l  function takes as an argument a list of 3-tuples.  Every 3-tuples consists of a
module name, function name, and a list of arguments for the given function.   The Erlang syntax for this li st
of tuples is shown below.

[{mod_name, function, [arg 1, arg 2, arg 3, . . ., arg n]} , . . . ,



 {mod_name, function, [arg 1, arg 2, arg 3, . . ., arg n]}]

The purpose of the argument list is to provide parallel_eval  with a pre-determined collection of tasks
to be evaluated in parallel.  parallel_eva l , on the most basic level, assigns these collections of sub-
tuples to nodes, executing remote procedure calls on those nodes, using the module/function given in each
3-tuple.  parallel_eval  also preserves the order of the collections given as arguments.  Purposefully,
parallel_eval  is implemented in such a manner that the programmer decides, through splitting, how
modules, functions, and data wil l be divided into collections.

The definition of parallel_eval  is as follows:

parallel_eval(ArgL) ->
Nodes = [node() | nodes()],
Keys = map_nodes(ArgL, Nodes, Nodes),
lists:map({promise,yield}, [], Keys).

map_nodes([], _, _) ->
[];

map_nodes(ArgL, [], Orig) ->
map_nodes(ArgL, Orig, Orig);

map_nodes([{M, F, A}|Tail], [Node|MoreNodes], Orig) ->
[promise:call(Node, M, F, A) | map_nodes(Tail, MoreNodes, Orig)].

One can see from the function definition that parallel_eval  gathers a list of nodes using the
nodes() function, appends itself (i.e. through the call to node() ) onto the list, and consequently
generates a li st of promises through map_nodes , using the argument list and available nodes as input.

map_nodes  recurses through the argument li st, binding the module, function and argument list, of each
sub-tuple to variables M, F, and A respectively. It also binds Node to the first term of the node li st.  It then
constructs a list of function calls to promise:call  with the previous bound variables using a recursive
call with arguments Tai l , MoreNodes, and Orig .   It is important to note that when the node li st
becomes empty, it is matched with the second case definition of map_nodes .  This declaration then call s
map_nodes  with the original node li st Ori g that conveniently has been passed along by the function,
creating a round robin style of node distribution.  Finall y, the yield  function is mapped to the list of
promises generated by map_nodes  (which has been bound to the variable Keys ).

A promise solves many problems related to synchronous message passing in that it provides a place holder
for returned remote procedure call values, successfully eliminating the need to wait for a process to return
in order to continue with evaluation of an algorithm.  The Erlang promise module is written as follows:

-module(promise).

call(Node, Mod, Fun, Args) ->
spawn(promise, do_call, [self(), Node, Mod, Fun, Args]).

yield(Key) ->
    receive
        {Key, {promise_reply, R}} ->
            R
    end.

 do_call(ReplyTo,N,M,F,A) ->
    R =  rpc:call(N,M,F,A),
    ReplyTo ! {self(), {promise_reply, R}}.



The promise module while small, provides important support for eff icient distributed computations.  The
call  function spawns as a local process do_call , providing the caller’s process identification number
(the call to self()  returns the PID), the name of the node on which to execute, the module and function
to execute, and an argument list as arguments.  Note that Erlang’s spawn function is analogous to UNIX’s
“&” in that it returns a PID.  do_call  in turn uses the remote procedure server to evaluate function F in
module M over the argument list A on node N producing result R.  It subsequently sends a message to itself
(using the “!” operator) which includes the result R.

The idea of a promise, or simply, a place holder, results from this explicit message passing. The function
yield  will return R, the desired result, only when it has been informed by do_call  that R has been
evaluated.  Thus, yield  will only finish evaluating when it receives the proper message, in essence
blocking advancement of the function till a message is sent to it. One can see from the above definition of
parallel_eval  that wrapping yiel d around a function call to promise:call  completes the
parallel evaluation process.

Overall, Erlang provides a simple but powerful framework within which it is possible to develop
concurrent application routines.  The parallel_eva l  and promise  modules provide good abstractions
over concurrency, giving the programmer suff icient control of decisions relating to the distribution of
arguments.

Appendix 1:  Implementation Details Regarding Various Parallel Map Declarations

Appendix 0 provided significant details of distributed Erlang as it relates to li st processing.  Appendix 1
will examine various parallel map functions, designed and  implemented as part this research.

As stated previously in Appendix 0, the crux of parallel_eval  lies within the collection of arguments
given to parallel_eva l  in the form of an argument list.  For simplicity, we will call the formation of
argument lists, splitting.  Erlang provides a simple splitting routine for its parallel li brary map routine
(pmap) which returns a li st containing the normal Module, Function, Argument List triple but restricts the
Argument List to a singleton;  that is, of the form:

[{mod_name, function, [term 1]}, . . . ,{mod_name, function, [term n]}]

As was discussed earlier in the paper, this approach is rather ineff icient, creating an unnecessary amount of
overhead.  Two other splitting techniques though seemed quite plausible, and admittedly, more efficient.

The first smap, splits the arguments into sublists of eight terms, thereby mimicking the serial nature of
pmap, without the overhead of remote procedure calls with single element lists.  The split definition for
smap is declared in the following way:

split_args(M,F,As,List,Len,Ack) ->
   case Len < 9 of
     true -> [{lists,map,[{M,F},As,List]}|Ack];
     false -> split_args(M,F,As,lists:nthtail(8,List),Len – 8,
          [{lists, map, [{M, F}, As lists:sublist(List, 8),]} | Ack])
   end.

split_args  takes a module M, a function F, a li st As, a li st List , the length of List  (Len ), and an
accumulator Ack .  The cas e statement Len <  9,  stops the recursion, while any li st larger then 9 is spli t
on the first 8 terms, appended to the accumulator, and used as the new Ack  in the (tail ) recursive call to
split_args .  The behavior of smap dictates that the non-parallel li brary routine map, wil l be executed
as a spawned process, as opposed to pmap, where the actual applied function is spawned.



The second splitting technique used in tmap , performs a simple binary spli t of the input.  The declaration
is a bit different though. Instead of giving 3-tuples of the form {lists,map,[foo]}  or
{mod,applied_func,[foo]}  to parallel_eval  as input, it sends itself, thereby creating a
recursive spawning behavior.  As a result, the declaration calling parallel_eval  must include a base
case to stop the recursion.  We take advantage of this fact, stopping recursive spawns on li sts of length
eight or less, then choosing the smap style of evaluation through the non-parallel library routine map.

tmap , the function which call s parallel_eval  is defined below:

tmap(M, F, As, 0, []) -> [];
tmap(M, F, As, Len, List) when Len < 9 ->

lists:map({M, F}, As, List);
tmap(M, F, As, Len, List) ->

lists:append(rpc:parallel_eval(
                   tree_split_args(M, F, As, List, Len))).

tree_split_args  is defined below:

tree_split_args(M, F, As, List, Len) ->
L_O_L = Len div 2,

      [{newtmap, tmap,
        [M, F, As, L_O_L, lists:sublist(List, L_O_L)]},
       {newtmap, tmap,
        [M, F, As, Len - L_O_L, lists:nthtail(L_O_L, List)]}].

Note div  is Erlang’s integer division infix operator, and lists :sublist(List, n)  gives the first n
items of li st List , while lists:nthtail(n, List )  provides items n+1  to end of li st.

References

[Armstrong et al. 1996] Armstrong, Joe, et al. (1996).  Concurrent Programming in Erlang.  Englewood Cli ffs, NJ:
Prentice-Hall Inc.

[Springer 1989]  Springer, George; Friedman, Daniel P. (1989) Scheme and The Art of Programming.  Cambridge,
Massachusetts:  The MIT Press.

[Wilhelm 1995]  Wilhelm, Reinhard;  Maurer, Dieter. (1995).  Compiler Design.  Edinburgh Gate, Harlow, England:
Addison-Wesley Publishing Company Inc.

[Plasmeijer 1997]  Plasmeijer, Rinus; van Eekelen, Marko.  (1997).  Concurrent Clean Language Report.  University of
Nijmegen.

Acknowledgments

Great appreciation is given to the University of Minnesota, Morris in regards to financial support for this research
through the Morris Academic Partnership (MAP) Program.

Many thanks to Jason Anderson for his helpful work in the University of Minnesota, Morris Computer Science lab
(a.k.a. The Dungeon).

Also, a quick thanks to the students of Dian Lopez’s Computer Systems and Organization class for putting up with the
times when computers were unavailable due to our research.


