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Abstract

This paper describes an unsupervised algorithm for
segmenting categorical time series into episodes. The
VOTING-EXPERTS algorithm first collects statistics about
the frequency and boundary entropy of ngrams, then passes
a window over the series and has two “expert methods” de-
cide where in the window boundaries should be drawn. The
algorithm successfully segments text into words in four lan-
guages. The algorithm also segments time series of robot
sensor data into subsequences that represent episodes in
the life of the robot. We claim thatVOTING-EXPERTS

finds meaningful episodes in categorical time series be-
cause it exploits two statistical characteristics of meaning-
ful episodes.

1 Introduction

Though we live in a continuous world, we have the
impression that experience comprises episodes: writing a
paragraph, having lunch, going for a walk, and so on.
Episodes have hierarchical structure; for instance, writing a
paragraph involves thinking of what to say, saying it, editing
it; and these are themselves episodes. Do these examples
of episodes have anything in common? Is there a domain-
independent, formal notion of episode sufficient, say, for
an agent to segment continuous experience into meaningful
units?

One can distinguish three ways to identify episode
boundaries: First, they may bemarked, as spaces mark
word boundaries and promoters mark coding regions in
DNA. Second, episodes may berecognized. For instance,
we recognize nine words in the sequence “itwasabright-
colddayinapriland”. Third we mightinfer episode bound-
aries given the statistical structure of a series. For exam-
ple, “juxbtbcsjhiudpmeebzjobqsjmboe” is formally (statis-
tically) identical with “itwasabrightcolddayinapriland” —
one is obtained from the other by replacing each letter with

the adjacent one in the alphabet — however, the latter is eas-
ily segmented by recognition whereas the former requires
inference.

This paper proposes two statistical characteristics of
episode boundaries and reports experiments with an un-
supervised algorithm called VOTING-EXPERTS based on
these characteristics. We offer the conjecture that these
characteristics are domain-independent and illustrate the
point by segmenting text in four languages.

2 The Episode Boundary Problem

Suppose we remove all the spaces and punctuation from
a text, can an algorithm figure out where the word bound-
aries should go? Here is the result of running VOTING-
EXPERTS on the first 500 characters of George Orwell’s
1984. The? symbols are induced boundaries:

Itwas? a? bright? cold? day? in ? April ? andthe? clock-
swere? st ? ri ? king ? thi ? rteen? Winston? Smith? his
? chin ? nuzzl? edinto? his ? brea? st ? in ? aneffort? to
? escape? the? vilewind ? slipped? quickly ? through? the
? glass? door? sof ? Victory ? Mansions? though? not ?
quickly ? en? ought? oprevent? aswirl ? ofgrit ? tydust?
from ? ent? er ? inga? long ? with ? himThe? hall ? ways
? meltof? boiled? cabbage? and? old ? ragmatsA? tone?
endof? it ? acoloured? poster? too ? large? for ? indoor?
dis? play? hadbeen? tack? ed? tothe? wall ? It ? depicted
? simplya? n ? enormous? face? more? than? ametre?
widethe? faceof? aman? of ? about? fortyfive ? witha ?
heavy? black? moustache? and? rugged? ly ? handsome?
featur

The segmentation is imperfect: Words are run together
(Itwas, aneffort) and broken apart (st? ri ? king). Occasion-
ally, words are split between segments (to in en? ought?
oprevent). Still, the segmentation is surprisingly good when
one considers that it is based on nothing more than statisti-
cal features of subsequences of letters — not words, as no
word boundaries are available — in Orwell’s text.

How can an algorithm identify subsequences that are
meaningfulin a domain lacking any knowledge about the



domain; and particularly, lacking positive and negative
training instances of meaningful subsequences? VOTING-
EXPERTSmust somehow detectdomain-independentindi-
cators of the boundaries of meaningful subsequences. In
fact, this is a good description of what it does. It implements
a weak theory of domain-independent features of meaning-
ful units. The first of these features is that entropy remains
low inside meaningful units and increases at their bound-
aries; the second is that high-frequency subsequences are
more apt to be meaningful than low-frequency ones.

3 Characteristics of Episodes

The features of episodes that we have implemented in the
VOTING-EXPERTS algorithm are calledboundary entropy
andfrequency:
Boundary entropy. Every unique subsequence is char-
acterized by the distribution of subsequences that follow
it; for example, the subsequence “en” in this sentence re-
peats seven times and is followed by tokensc (4 times),t,
s and ” , a distribution of symbols with an entropy value
(1.66, as it happens). In general, every subsequenceS has
a boundary entropy, which is the entropy of the distribu-
tion of subsequences of lengthm that follow it. If S is an
episode, then the boundary entropies of subsequences ofS
will have an interesting profile: They will start relatively
high, then sometimes drop, then peak at the last element
of S. The reasons for this are first, that the predictability
of elements within an episode increases as the episode ex-
tends over time; and second, the elements that immediately
follow an episode are relatively uncertain. Said differently,
within episodes, we know roughly what will happen, but at
episode boundaries we become uncertain.
Frequency. Episodes, recall, are meaningful sequences.
They are patterns in a domain that we call out as special,
important, valuable, worth committing to memory, worth
naming, etc. One reason to consider a pattern meaningful is
that one can use it for something, like prediction. (Predic-
tiveness is another characteristic of episodes nicely summa-
rized by entropy.) Rare patterns are less useful than com-
mon ones simply because they arise infrequently, so all hu-
man and animal learning places a premium on frequency. In
general, episodes are common patterns, but not all common
patterns are episodes.

4 Related work

Many methods have been developed for segmenting time
series. Of these, many deal with continuous time series
(e.g., [11]) and are not directly applicable to the problem
we consider here. Some methods for categorical series are
based on compression (e.g., [10]), but compression alone
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Figure 1. A trie having depth 3.

finds common, not necessarily meaningful, subsequences.
Some methods are trained to find instances of patterns or
templates (e.g., [9, 5]) or use a supervised form of compres-
sion (e.g., [12]), but we wanted an unsupervised method.
There is some work on segmentation in the natural language
and information retrieval literature, for instance, techniques
for segmenting Chinese, which has no word boundaries in
its orthography, but again, these methods are often super-
vised. The method in [14] is similar to ours, though it re-
quires supervised training on very large corpora. Parsing
based on mutual information used in [8] is similar to our
notion of boundary entropy. [6] and [7] use boundary en-
tropy (but not frequency information) to find separators, but
we’re interested in categorical data where explicit boundary
demarcations are removed. [2] provides a developmentally
plausible unsupervised algorithm for word segmentation,
but the procedure assumes known utterance boundaries. [1]
give an unsupervised segmentation procedure for Japanese,
however it too supposes known sequence boundaries. With
minor alterations, their segmentation technique is applica-
ble to our domain, but we found that VOTING-EXPERTS

consistently outperforms it. We know of no related research
on characteristics of meaningful episodes, that is, statistical
markers of boundaries of meaning-carrying subsequences.

5 The Voting Experts Algorithm

VOTING-EXPERTS includes experts that attend to
boundary entropy and frequency and is easily extensible
to include experts that attend to other characteristics of
episodes. The algorithm simply moves a window across
a time series and asks for each location in the window
whether to “cut” the series at that location. Each expert
casts a single vote. Each location takesn steps to traverse a
window of sizen, and is seen by the experts inn different
contexts, and may accrue up ton votes from each expert.
Given the results of voting, we cut the series at locations
with high vote counts. Here are the steps of the algorithm:
Build an ngram trie of depth n + 1. Nodes at leveli + 1
of the trie represent ngrams of lengthi. The children of
a node are the extensions of the ngram represented by the
node. For example,a b c a b d produces the depth 3 trie in
Figure 1
Every ngram of length 2 or less in the sequencea b c a b



d is represented by a node in this tree. The numbers in the
lower half of the nodes represent the frequencies of the sub-
sequences. For example, the subsequenceab occurs twice,
and every occurrence ofa is followed byb.

For the first 10,000 characters in Orwell’s text, an ngram
trie of depth 8 includes 33774 nodes, of which 9109 are leaf
nodes. That is, there are over nine thousand unique subse-
quences of length 7 in this sample of text, although the av-
erage frequency of these subsequences is 1.1—most occur
exactly once. The average frequencies of subsequences of
length 1 to 7 are 384.4, 23.1, 3.9, 1.8, 1.3, 1.2, and 1.1.
Calculate boundary entropy. The boundary entropy of
an ngram is the entropy of the distribution of tokens that
can extend the ngram. The entropy of a discrete random
variableX is

H(X) = −
∑
x∈X

p(x) log p(x)

Boundary entropy is easily calculated from the trie. For
example, the nodea in the tree above has entropy equal to
zero because it has only one child,ab, whereas the entropy
of nodeb is 1.0 because it has two equiprobable children,bc
andbd. Clearly, only the firstn levels of the ngram tree of
depthn + 1 can have node entropy scores.
Standardize frequencies and boundary entropies. In
most domains, there is a systematic relationship between
the length and frequency of patterns; in general, short pat-
terns are more common than long ones (e.g., on average, for
subsets of 10,000 characters from Orwell’s text, 64 of the
100 most frequent patterns are of length 2; 23 are of length
3, and so on). Our algorithm will compare the frequen-
cies and boundary entropies of ngrams of different lengths,
but in all cases we will be comparing howunusualthese
frequencies and entropies are, relative to other ngrams of
the same length. To illustrate, consider the words “a” and
“an.” In the first 10000 characters of Orwell’s text, “a” oc-
curs 743 times, “an” 124 times, but “a” occurs only a little
more frequently than other one-letter ngrams, whereas “an”
occurs much more often than other two-letter ngrams. In
this sense, “a” is ordinary, “an” is unusual. Although “a”
is much more common than “an” it is much less unusual
relative to other ngrams of the same length. To capture
this notion, we standardize the frequencies and boundary
entropies of the ngrams. To standardize a value in a sam-
ple, subtract the sample mean from the value and divide by
the sample standard deviation. This has the effect of ex-
pressing the value as the number of standard deviations it is
away from the sample mean. Standardized, the frequency
of “a” is 1.1, whereas the frequency of “an” is 20.4. In
other words, the frequency of “an” is 20.4 standard devia-
tions above the mean frequency for sequences of the same
length. We standardize boundary entropies in the same way,
and for the same reason.

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

frequency

entropy i t w a s a c o l d . . .

i t w a s a c o l d . . .

i t w a s a c o l d . . .

0 0 3 0 21

Figure 2. Sample execution of VOTING-
EXPERTS.

Score potential segment boundaries. In a sequence of
lengthk there arek − 1 places to draw boundaries between
segments, and, thus, there are2k−1 ways to divide the se-
quence into segments. Our algorithm is greedy in the sense
that it considers justk − 1, not 2k−1, ways to divide the
sequence. It considers each possible boundary in order,
starting at the beginning of the sequence. The algorithm
passes a window of lengthn over the sequence, halting at
each possible boundary. All of the locations within the win-
dow are considered, and each garners zero or one vote from
each expert. Because we have two experts, for boundary
entropy and frequency respectively, each location may ac-
crue a maximum of2n votes. This is illustrated in Fig-
ure 2. A window of length 3 is passed along the sequence
itwasacold . Initially, the window coversitw . The en-
tropy and frequency experts each decide where they could
best insert a boundary within the window (more on this, be-
low). The entropy expert favors the boundary betweent
andw, while the frequency expert favors the boundary be-
tweenwand whatever comes next. Then the window moves
one location to the right and the process repeats. This time,
both experts decide to place the boundary betweent andw.
The window moves again and both experts decide to place
the boundary afters , the last token in the window. Note that
each potential boundary location (e.g., betweent andw) is
seenn times for a window of sizen, but it is considered in a
slightly different context each time the window moves. The
first time the experts consider the boundary betweenw and
a, they are looking at the windowitw , and the last time,
they are looking atwas. In this way, each boundary gets up
to 2n votes, orn = 3 votes from each of two experts. The
wa boundary gets one vote, thetw boundary, three votes,
and thesa boundary, two votes.

The experts use slightly different methods to evaluate
boundaries and assign votes. Consider the windowitw
from the viewpoint of the boundary entropy expert. Each
location in the window bounds an ngram to the left of the
location; the ngrams arei , it , anditw , respectively. Each
ngram has a standardized boundary entropy. The bound-
ary entropy expert votes for the location that produces the
ngram with the highest standardized boundary entropy. As



it happens, for the ngram tree produced from Orwell’s text,
the standardized boundary entropies fori , it , anditw are
0.2, 1.39 and 0.02, so the boundary entropy expert opts to
put a boundary after the ngramit .

The frequency expert places a boundary so as to maxi-
mize the sum of the standardized frequencies of the ngrams
to the left and the right of the boundary. Consider the win-
dow itw again. If the boundary is placed afteri , then (for
Orwell’s text) the standardized frequencies ofi andtw sum
to 1.73; if the boundary is placed afterit , then the stan-
dardized frequencies ofit andw sum to 2.9; finally, if it
is placed afteritw , the algorithm has only the standard-
ized frequency ofitw to work with; it is 4.0. Thus, the
frequency expert opts to put a boundary afteritw .
Segment the sequence. Each potential boundary in a se-
quence accrues votes, as described above, and now we must
evaluate the boundaries in terms of the votes and decide
where to segment the sequence. Our method is a familiar
“zero crossing” rule: If a potential boundary has a locally
maximum number of votes, split the sequence at that bound-
ary. In the example above, this rule causes the sequence
itwasacold to be split afterit andwas. We confess to
one embellishment on the rule: The number of votes for a
boundary must exceed an absolute threshold, as well as be
a local maximum. We found that the algorithm splits too
often without this qualification.

Let us review the design of the experts and the seg-
mentation rule, to see how they test the characteristics of
episodes described earlier. The boundary entropy expert as-
signs votes to locations where the boundary entropy peaks
locally, implementing the idea that entropy increases at
episode boundaries. The frequency expert tries to find a
“maximum likelihood tiling” of the sequence, a placement
of boundaries that makes the ngrams to the left and right of
the boundary as likely as possible. When both experts vote
for a boundary, and especially when they vote repeatedly
for the same boundary, it is likely to get a locally-maximum
number of votes, and the algorithm is apt to split the se-
quence at that location.

6 Evaluation

In these experiments, induced boundaries stand in six re-
lationships to episodes.

1. The boundaries coincide with the start and end of the
episode;

2. The episode falls entirely within the boundaries and begins
or ends at one boundary.

3. The episode falls entirely within the boundaries but neither
the start nor the end of the episode correspond to a boundary.

4. One or more boundaries splits an episode, but the start and
end of the episode coincide with boundaries.

5. Like case 4, in that boundaries split an episode, but only one
end of the episode coincides with a boundary.

6. The episode is split by one or more boundaries and neither
end of the episode coincides with a boundary.

These relationships are illustrated graphically in Figure 3,
following the convention that horizontal lines denote actual
episodes, and vertical lines denote induced boundaries. The
cases can be divided into three groups. In cases 1 and 4,
boundaries correspond to both ends of the episode; in cases
2 and 5, they correspond to one end of the episode; and in
cases 3 and 6, they correspond to neither end. We call these
casesexact, dangling, andlost to evoke the idea of episodes
located exactly, dangling from a single boundary, or lost in
the region between boundaries.

We use both hit and false-positive rates to measure the
accuracy of our episode finding algorithms. To better ex-
plain the trade-off between hits and false-positives we em-
ploy the F-measure [13]. This standard comparison metric
finds the harmonic mean between precision and recall and
is defined as

F-measure=
2× Precision× Recall

Precision+ Recall

where Recall is the hit-rate and Precision is the ratio of
correct hits to proposed hits. Note that the difference in
proposed and correct hits yields the number of false posi-
tives. Higher F-measures often indicate better overall per-
formance.

For control purposes we compare VOTING-EXPERTS

with two control conditions. The first generates a random,
sorted sequence of boundaries that is equal in size to the ac-
tual number of episodes. We call this procedure RANDOM-
SAMPLE. The second control condition induces a boundary
at every location. We call this procedure ALL -LOCATIONS.

In many of the experiments, we compare the results of
VOTING-EXPERTS with another unsupervised algorithm,
SEQUITUR, which also finds structure in categorical time
series. SEQUITUR is a compression-based algorithm that
builds a context-free grammar from a string of discrete to-
kens [10]. It has successfully identified structure in both
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Figure 3. A graphical depiction of the relation-
ships between boundaries and episodes.



text and music. This structure is denoted by the rules of the
induced grammar. Expanding the rules reveals boundary
information. In our experiments, expanding only the rule
associated with the start symbol – what we refer to as level
1 expansion – most often gives the highest F-measure.

6.1 Word Boundaries

We removed spaces and punctuation from texts in four
languages and accessed how well VOTING-EXPERTScould
induce word boundaries. We take word boundaries as our
gold standard for meaning-carrying units in text because
they provide, in most cases, the most unambiguous and un-
contentious denotation of episodes. Clearly word prefixes
and suffixes might also carrying meaning, but most humans
would likely segment a discrete stream of text into words.

6.1.1 English

We ran VOTING-EXPERTS, SEQUITUR, and both con-
trol conditions on the first 50,000 characters of Orwell’s
1984. The detailed results are given in Table 1. VOTING-
EXPERTS performs best when the window length is 7 and
the threshold 4. The algorithm induced 12153 boundaries,
for a mean episode length of 4.11. The mean word length
of the text is 4.49. The algorithm induces boundaries at
80% of the true word boundaries (the hit rate) missing 20%
of the word boundaries. 27% of the induced boundaries
did not correspond to word boundaries (the false positive
rate). Exact cases, described above, constitute 62.6% of all
cases; that is, 62.6% of the words were bounded at both
ends by induced boundaries. Dangling and lost cases con-
stitute 33.9% and 3.3% of all cases, respectively. Said dif-
ferently, only 3.3% of all words in the text got lost between
episode boundaries. These tend to be short words, in fact,
59% of the lost words have length 3 or shorter and 85%
have length 5 or shorter. In contrast, all 89% of the words
for which the algorithm found exact boundaries have length
3 or longer.

SEQUITUR performs best when expanding only to the
level 1 boundaries. That is, it achieves its highest F-measure
by not further expanding any non-terminals off the senten-
tial rule. Expanding to further levels leads to a substantial
increase in the false positive rate and hence an overall de-
crease in F-measure. For example, when expanding to level
5, SEQUITUR identified 78% of the word boundaries cor-
rectly, 20% dangling and only 2% missed. This happens
because it is inducing more boundaries. In fact, at level
5, the false-positive rate of 68% is near the 78% maximum
false positive rate achieved by ALL -LOCATIONS. The same
behavior occurs to a smaller extent in VOTING-EXPERTS

when the splitting threshold is decreased. For example,
with a window length of 4 and a threshold of 2, VOTING-
EXPERTSfinds 74% of the word boundaries exactly but the
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Figure 4. The proportion of "lost" words as a
function of corpus length.

F-measure decreases because of a corresponding increase in
the false-positive rate. In general, SEQUITUR finds likely
patterns, but these patterns did not always correspond to
word boundaries.

It is easy to ensure that all word boundaries are found,
and no word is lost: use ALL -LOCATIONS to induce a
boundary between each letter. However, this strategy in-
duces a mean episode length of 1.0, much shorter than the
mean word length. The false-positive count equals the total
number of non-boundaries in the text and the false-positive
rate converges to the ratio of non-boundaries to total loca-
tions (.78). In contrast, VOTING-EXPERTS finds roughly
the same number of episodes as there are words in the text
and loses very few words between boundaries. This success
is evident in the high F-measure (.76) achieved by VOTING-
EXPERTS. Not surprisingly, RANDOM-SAMPLE performed
poorest on the text.

The appropriate control conditions for this experiment
were run and yielded the expected results: VOTING-
EXPERTSperforms marginally less well when it is required
to segment text it has not seen. For example, if the first
10,000 characters of Orwell’s text are used to build the
ngram tree, and then the algorithm is required to segment
the next 10,000 characters, there is a very slight decrement
in performance. The algorithm performs very poorly given
texts of random words, that is, subsequences of random let-
ters. The effects of the corpus size and the window length
are shown in Figure 4. The proportion of “lost” words
(cases 3 and 6, above) is plotted on the vertical axis, and the
corpus length is plotted on the horizontal axis. Each curve
in the graph corresponds to a window length,k. The pro-
portion of lost words becomes roughly constant for corpora
of length 10,000 and higher.

Said differently, corpora of this length seem to be re-
quired for the algorithm to estimate boundary entropies and
frequencies accurately. As to window length, recall that
a window of lengthn means each potential boundary is
considered n times by each expert, inn different contexts.
Clearly, it helps to increase the window size, but the benefit



Algorithm F-measure Hit Rate F.P. Rate Exact % Dangling % Lost %

VOTING-EXPERTS .76 .80 .27 .63 .34 .03
SEQUITUR .58 .58 .43 .30 .56 .14

ALL -LOCATIONS .36 1.0 .78 1.0 0.0 0.0
RANDOM-SAMPLE .21 .22 .79 .05 .34 .61

Table 1. Results of running four different algorithms on George Orwell’s 1984.
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diminishes.
Further evidence of VOTING-EXPERTS ability to find

meaningful word boundaries is given in Figures 5 and 6. In
Figure 5 we graph the percentage of exact word matches as
a function of word length. For example, SEQUITUR exactly
matches 30% of words having length 15 while VOTING-
EXPERTS matches 70%. The curves converge at word
length 17 because only two words in our corpus have length
17 and both algorithms find only one of them. The curves
roughly mimic each other except in the word length inter-
val from 2 to 4. In this period, VOTING-EXPERTS accel-
erates over SEQUITUR because it finds disproportionately
more exact matches than SEQUITUR. This phenomenon is
even easier to see in Figure 6. Here cumulative percent-
age of exact word matches is plotted as a function of word
lengths and the distribution of word lengths is given behind
the curves. The slope of VOTING-EXPERTS is steeper than
SEQUITUR in the interval from 2 to 4 revealing the suc-
cess it has on the most frequent word lengths. Furthermore,
words with length 2, 3, and 4 comprise over 57% of the Or-
well corpus, so at places where accuracy is perhaps most
important, VOTING-EXPERTSperforms well.

6.1.2 Chinese, German and Roma-ji

As a test of the generality of VOTING-EXPERTS, we ran it
on corpora of Roma-ji, Chinese and German texts. Roma-ji
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Figure 6. A comparison of cumulative exact
match-rate over word length for SEQUITUR and
VOTING-EXPERTS. The background histogram
depicts the distribution of word lengths in the
Orwell corpus.

is a transliteration of Japanese into roman characters. The
Roma-ji corpus was a set of Anime lyrics comprising 19163
characters. The Chinese text comes from Guo Jim’s Man-
darin Chinese PH corpus. The PH corpus is taken from sto-
ries in newspaper texts and is encoded in in the standard
GB-scheme. Franz Kafka’sThe Castlein the original Ger-
man comprised the final text. For comparison purposes we
selected the first 19163 characters of Kafka’s text and the
same number of characters from1984and the PH corpus.
As always, we stripped away spaces and punctuation, and
the algorithm induced word boundaries. The window length
was 6. The results are given in Table 2.

Clearly the algorithm is not biased to do well on En-
glish. In particular, it performs very well on Kafka’s text,
losing only 4% of the words and identifying 61% exactly.
The algorithm performs less well with the Roma-ji text; it
identifies fewer boundaries accurately (i.e., places 34% of
its boundaries within words) and identifies fewer words ex-
actly. VOTING-EXPERTSperformed worst on Chinese cor-
pus. Only 42% of the boundaries were identified although
the false positive rate is an extremely low 7%. The expla-
nation for these results has to do with the lengths of words
in the corpora. We know that the algorithm loses dispro-
portionately many short words. Words of length 2 make



VOTING-EXPERTS F-measure Hit Rate F.P. Rate Exact % Dangling % Lost %

German .75 .79 .31 .61 .25 .04
English .71 .76 .33 .58 .38 .04
Roma-ji .65 .64 .34 .37 .53 .10
Chinese .57 .42 .07 .13 .57 .30

Table 2. Results of running VOTING-EXPERTSon Franz Kafka’s The Castle, Orwell’s 1984, a subset of the
Chinese PH corpus of newspaper stories, and a set of Roma-ji Anime lyrics.

up 39% of the Chinese corpus, 32% of the Roma-ji corpus,
17% of the Orwell corpus, and 10% of the Kafka corpus, so
it is not surprising that the algorithm performs worst on the
Chinese corpus and best on the Kafka corpus.

If we incorporate the knowledge that Chinese words are
rather short in length by decreasing the splitting thresh-
old, we can increase the F-measure of VOTING-EXPERTS

to 77% on the PH corpus. In general, knowledge of the
mean episode length can help improve the boundary detec-
tion of VOTING-EXPERTS. Like [1], pretraining on a small
amount of segmented text may be sufficient to find suitable
window and threshold values.

6.2 Robot Episodes

We ran VOTING-EXPERTS and SEQUITUR on a multi-
variate timeseries of robot controller data comprising 17788
time steps and 65 unique states. Each state was mapped to
a unique identifier, and these tokens were given to the al-
gorithm as input. The timeseries data was collected with
a Pioneer 2 mobile robot, equipped with sonar and a Sony
pan-tilt-zoom camera. The robot, under control of a hy-
brid subsumption architecture, wandered around a room-
size playpen for 30 minutes looking for interesting objects.
Upon finding an object, the robot orbited it for a few min-
utes. The multivariate timeseries consisted of eight binary
variables representing different controllers in our agent ar-
chitecture. Each variable is 1 when its corresponding con-
troller is active and 0 when its inactive, so potentially, we
have28 = 256 different states, but as mentioned earlier,
only 65 manifested during the experiment.

• MOVE-FORWARD

• TURN

• COLLISION-AVOIDANCE

• VIEW-INTERESTING-OBJECT

• RELOCATE-INTERSTING-OBJECT

• SEEK-INTERESTING-OBJECT

• CENTER-CHASIS-ON-OBJECT

• CENTER-CAMERA-ON-OBJECT

This timeseries can be broken up into five different ob-
servable robot behaviors. Each behavior represents a quali-

tatively different episode in the timeseries. We denote these
episodes as

• FLEEING

• WANDERING

• AVOIDING

• ORBITING-OBJECT

• APPROACHING-OBJECT

Table 3 summarizes the results of running VOTING-
EXPERTSand SEQUITUR on the robot controller data. The
definition of hit-rate and false-positive rate is slightly dif-
ferent here. Because the controller data can be noisy at
the episode boundaries, we allowhits a window of length
1 in either temporal direction. For example, if we induce
a boundary at location 10, but the actual boundary is at lo-
cation 9, we still count it as a hit. We also enforce a rule
that actual boundaries can only count once toward induced
boundaries. For example, if we induce a boundary at 8 and
count it as a hit toward the actual boundary 9, the induced
boundary at 10 can no longer count toward 9.

The mean episode length in the robot controller data is
7.13. This length is somewhat smaller than expected be-
cause the robot often gets caught up in the corners of its
playpen for periods of time and performs a series of wan-
dering, avoiding, and fleeing behaviors to escape. The total
number of true episodes was 2491. VOTING-EXPERTS in-
duced 3038 episodes with a hit rate of 66% and a false-
positive rate of 46% for a combined F-measure of 59%.
Like on Orwell, VOTING-EXPERTS consistently outper-
forms SEQUITUR on the F-measure. SEQUITUR does best
when expanding to the level 1 boundaries. The transition
from level 1 to level 2 produces a sharp increase in the
false-positive rate with a corresponding increase in hit rate,
however the F-measure decreases slightly. At level 5, SE-
QUITUR loses only 8% of the episodes but its false-positive
rate is 78%, which is near the maximum possible rate of
86%.

7 Conclusion

For an agent to generalize its experiences, it must di-
vide them into meaningful units. The VOTING-EXPERTS



Robot Data F-measure Hit Rate F.P. Rate Exact % Dangling Rate Lost Rate

SEQUITUR

Level 1 .55 .57 .47 .17 .37 .46
Level 2 .51 .77 .62 .34 .37 .29
Level 3 .32 .88 .71 .48 .33 .19
Level 4 .38 .94 .76 .56 .32 .12
Level 5 .36 .97 .78 .63 .29 .08

VOTING-EXPERTS

Depth 7, Threshold 4 .59 .66 .46 .20 .39 .41
Depth 9, Threshold 6 .59 .60 .41 .18 .38 .44
Depth 5, Threshold 2 .56 .80 .56 .27 .42 .31

Table 3. Results of running SEQUITUR and VOTING-EXPERTSon 30 minutes of robot controller data.

algorithm uses statistical properties of categorical time se-
ries to segment them into episodes without supervision
or prior training. Although the algorithm does not use
explicit knowledge of words or robot behaviors, it de-
tects episodes in these domains. The algorithm success-
fully segments texts into words in four languages. With
less success, VOTING-EXPERTSsegments robot controller
data into activities. In the future we will examine how
other, domain-independent experts can help improve per-
formance. Additionally we are interested in unifying the
frequency and boundary entropy experts to more accurately
capture the balance of strengths and weaknesses of each
method. On a related note, we could employ supervised
learning techniques to learn a weigh parameter for the ex-
perts, however we favor the unification approach because
it removes a parameter from the algorithm and keeps the
method completely unsupervised, The idea that meaningful
subsequences differ from meaningless ones in some formal
characteristics—that syntactic criteria might help us iden-
tify semantic units—has practical as well as philosophical
implications.
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