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Abstract

Let us call a sequence of numbers heapable if they
can be sequentially inserted to form a binary tree
with the heap property, where each insertion subse-
quent to the first occurs at a leaf of the tree, i.e.
below a previously placed number. In this paper we
consider a variety of problems related to heapable se-
quences and subsequences that do not appear to have
been studied previously. Our motivation for introduc-
ing these concepts is two-fold. First, such problems
correspond to natural extensions of the well-known
secretary problem for hiring an organization with a
hierarchical structure. Second, from a purely com-
binatorial perspective, our problems are interesting
variations on similar longest increasing subsequence
problems, a problem paradigm that has led to many
deep mathematical connections.

We provide several basic results. We obtain an
efficient algorithm for determining the heapability
of a sequence, and also prove that the question of
whether a sequence can be arranged in a complete
binary heap is NP-hard. Regarding subsequences
we show that, with high probability, the longest
heapable subsequence of a random permutation of n
numbers has length (1 − o(1))n, and a subsequence
of length (1 − o(1))n can in fact be found online
with high probability. We similarly show that for
a random permutation a subsequence that yields a
complete heap of size αn for a constant α can be
found with high probability. Our work highlights
the interesting structure underlying this class of
subsequence problems, and we leave many further
interesting variations open for future work.
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1 Introduction

The study of longest increasing subsequences is a fun-
damental combinatorial problem, and such sequences
have been the focus of hundreds of papers spanning
decades. In this paper, we consider a natural, new
variation on the theme. Our main question revolves
around the problem of finding the longest heapable
subsequence. Formal definitions are given in Sec-
tion 2, but intuitively: a sequence is heapable if the
elements can be sequentially placed one at a time
to form a binary tree with the heap property, with
the first element being placed at the root and ev-
ery subsequent element being placed as the child of
some previously placed element. For example, the
sequence 1, 3, 5, 2, 4 is heapble, but 1, 5, 3, 2, 4 is not.
The longest heapable subsequence of a sequence then
has the obvious meaning. (Recall that a subsequence
need not be contiguous within the sequence.)

Our original motivation for examining such prob-
lems stems from considering variations on the well-
known secretary problem [5, 6] where the hiring is not
for a single employee but for an organization. For ex-
ample, Broder et al. [3] consider an online hiring rule
where a new employee can only be hired if they are
better than all previous employees according to some
scoring or ranking mechanism. In this scenario, with
low ranks being better, employees form a decreasing
subsequence that is chosen online. They also con-
sider rules such as a new employee must be better
than the median current employee, and consider the
corresponding growth rate of the organization.

A setting considered in this paper corresponds
to, arguably, a more realistic scenario where hiring is
done in order to fill positions in a given organization
chart, where we focus on the case of a complete binary
tree. A node corresponds to the direct supervisor of
its children, and we assume the following reasonable
hiring restriction: a boss must have a higher rank
than their reporting employees.1 A natural question
is how to best hire in such a setting. Note that, in this
case, our subsequence of hires is not only heapable,
but the heap has a specific associated shape. As
another variation our organization tree may not have
a fixed shape, but must simply correspond to a binary

1We do not claim that this always happens in the real world.



tree with the heap property—at most two direct
reports per boss, with the boss having a higher rank.

We believe that even without this motivation, the
combinatorial questions of heapable sequences and
subsequences are compelling in their own right. In-
deed, while the various hiring problems correspond
to online versions of the problem, from a combinato-
rial standpoint, offline variations of the problem are
worth studying as well. Once we open the door to
this type of problem, there are many fundamental
questions that can be asked, such as:

• Is there an efficient algorithm for determining if
a sequence is heapable?

• Is there an efficient algorithm for finding the
longest heapable subsequence?

• What is the probability that a random permuta-
tion is heapable?

• What is the expected length and size distribution
of the longest heapable subsequence of a random
permutation?

We have answered some, but not all, of these ques-
tions, and have considered several others that we de-
scribe here. We view our paper as a first step that
naturally leads to many questions that can be con-
sidered in future work.

1.1 Overview of Results We begin with hea-
pable sequences, giving a natural greedy algorithm
that decides whether a given sequence of length n is
heapable using O(n) ordered dictionary operations.
Unfortunately, when we place further restrictions on
the shape of the heap, such as insisting on a com-
plete binary tree, determining heapability becomes
NP-hard. Our reduction involves gadgets that force
subsequences to be heaped into specific shapes which
we exploit in delicate ways. However when the input
sequence is restricted to 0-1 the problem again be-
comes tractable and we give a linear-time algorithm
to solve it. This case corresponds naturally to the
scenario where candidates are rated as either strong
or weak and strong candidates will only work for
other strong candidates (weak candidates are happy
to work for whomever).

Turning to heapable subsequences, we show that
with high probability, the length of the longest hea-
pable subsequence in a random permutation is (1 −
o(1))n. This result also holds in the online setting
where elements are drawn uniformly at random from
the unit interval, or even when we only know the
ranking of a candidate relative to the previous can-
didates. In the case when we restrict the shape of

the tree to complete binary trees, we show that the
longest heapable subsequence has length linear in n
with high probability in both the offline and online
settings. In all cases our results are constructive,
so they provide natural hiring strategies in both the
online and offline settings. Throughout the paper,
we conduct Monte Carlo simulations to investigate
scaling properties of heapable subsequences at a finer
granularity than our current analyses enable. Finally,
we discuss several attractive open problems.

1.2 Previous Work The problems we consider
are naturally related to the well-known longest in-
creasing subsequence problem. As there are hundreds
of papers on this topic, we refer the reader to the ex-
cellent surveys [1, 8] for background.

We briefly summarize some of the important re-
sults in this area that we make use of in this paper. In
what follows, we use LIS for longest increasing subse-
quence and LDS for longest decreasing subsequence.
Among the most basic results is that every sequence
of n2 + 1 distinct numbers has either an LIS or LDS
of length at least n + 1 [4, 8]. An elegant way to
see this is by greedy patience sorting [1]. In greedy
patience sorting, the number sequence, thought of as
a sequence of cards, is sequentially placed into piles.
The first card starts the leftmost pile. For each sub-
sequent card, if it is larger than the top card on every
pile, it is placed on a new pile to the right of all previ-
ous piles. Otherwise, the card is placed on the top of
the leftmost pile for which the top card is larger than
the current card. Each pile is a decreasing subse-
quence, while the number of piles is the length of the
LIS – the LIS is clearly at most the number of piles,
and since every card in a pile has some smaller card
in the previous pile, the LIS is at least the number of
piles as well.

In the case of the LIS for a random permuta-
tion of n elements, it is known that the asymptotic
expected length of the LIS grows as 2

√
n. More de-

tail regarding the distribution and concentration re-
sults can be found in [2]. In the online setting, where
one must choose whether to add an element and the
goal is to obtain the longest possible increasing sub-
sequence, there are effective strategies that obtain an
asymptotic expected length of

√
2n. Both results also

hold in the setting where instead of a random permu-
tation, the sequence is a collection of independent,
uniform random numbers from (0, 1).

2 Definitions

Let x = x1, . . . , xn be a sequence of n real numbers.
We say x is heapable if there exists a binary tree T
with n nodes such that every node is labelled with



exactly one element from the sequence x and for every
non-root node xi and its parent xj , xj ≤ xi and j < i.
Notice that T serves as a witness for the heapability
of x. We say that x is completely heapable if x is
heapable and the solution T is a complete binary tree.

If T is a binary tree with k nodes, then there
are k + 1 free slots in which to add a new number.
We say that the value of a free child slot is the value
of its parent, as this represents the minimum value
that can be placed in the slot while preserving the
heap property. Let sig(T ) = 〈x1, x2, . . . , xk+1〉 be
the values of the free slots of T in non-decreasing
sorted order. We call sig(T ) the signature of T . For
example, heaping the sequence 1, 4, 2, 2 yields a tree
with 5 slots and signature 〈2, 2, 2, 4, 4〉. Given two
binary trees T1 and T2 of the same size k, we say that
T1 dominates T2 if and only if sig(T1)[i] ≤ sig(T2)[i]
for all 1 ≤ i ≤ k + 1 where sig(T )[i] is the value of
slot i of T .

Now define the depth of a slot i in T to be be the
depth of the parent node associated with slot i of T .
We say that T1 and T2 have equivalent frontiers if and
only there is a bijection between slots of T1 and slots
of T2 that preserves both value and depth of slots.
A sequence is uniquely heapable if all valid solution
trees for the sequence have equivalent frontiers.

Given a sequence, we say a subsequence (which
need not be contiguous) is heapable with the obvious
meaning, namely that the subsequence is heapable
when viewed as an ordered sequence. Hence we may
talk about the longest heapable subsequence (LHS)
of a sequence, and similarly the longest completely-
heapable subsequence (LCHS).

We also consider heapability problems on permu-
tations. In this case, the input sequence is a permu-
tation of the integers 1, . . . , n. For offline heapability
problems, heaping an arbitrary sequence of n distinct
real numbers is clearly equivalent to heaping the cor-
responding (i.e. rank-preserving) permutation of the
first n integers. Here we assume the input sequence
is drawn uniformly at random from the set all of n!
permutations on [1, n]. Several of our results show
that given a random permutation x on [1, n] that the
LHS or LCHS has length f(n) with high probability,
i.e. with probability 1− o(1).

3 Heapable Sequences

3.1 Heapability in polynomial time In this
section we give a simple greedy algorithm Greedy-
Sig that decides whether a given input sequence
is heapable using O(n) ordered associative array
operations, and explicitly constructs the heap when
feasible.

Greedy-Sig builds a binary heap for a sequence
x = x1, . . . , xn by sequentially adding xi as a child
to the the tree Ti−1 built in the previous iteration,
if such an addition is feasible. The greedy insertion
rule is to add xi into the slot with the largest value
smaller than or equal to xi. To support efficient
updates, Greedy-Sig also maintains the signature
of the tree, sig(Ti), where each element in the
signature points to its associated slot in Ti. Insertion
of xi therefore corresponds to first identifying the
predecessor, pred(xi), in sig(Ti−1) (if it does not
exist, the sequence is not heapable). Next, xi is
inserted into the corresponding slot in Ti−1, coupled
with deleting pred(xi) from sig(Ti−1), and inserting
two copies of xi, the slots for xi’s children. Greedy-
Sig starts with the tree T1 = x1 and iterates until
it exhausts x (in which case it returns T = Tn) or
finds that the sequence is not heapable. Standard
dictionary data structures supporting pred, insert
and delete require O(log n) time per operation,
but we can replace each number with its rank in
the sequence, and use van Emde Boas trees [9] to
index the signatures, yielding an improved bound of
O(log log n) time per operation, albeit in the word
ram model.

Theorem 3.1. x is heapable if and only if Greedy-
Sig returns a solution tree T .

Proof. Let T1 and T2 be binary trees, each with
k leaves. Let y be a real number such that y ≥
sig(T2)[1]. It is easy to see that the following claim
holds.

Claim 1. If sig(T1) dominates sig(T2) then sig(T ′1)
dominates sig(T ′2) where T ′2 is any valid tree created
by adding y to T2 and T ′1 is the tree produced by
greedily adding y to T1.

If Greedy-Sig returns a solution then by construc-
tion, x is heapable. For the converse, let x =
x1, . . . , xn be a heapable sequence and let T ∗ be a
solution for x. Since T ∗ is a witness for x, it defines
a sequence of trees T ∗1 , T

∗
2 , . . . , T

∗
n = T ∗. It follows

from Claim 1 that at each iteration, the greedy tree
Ti strictly dominates T ∗i , thus Greedy-Sig correctly
returns a solution.

We used Greedy-Sig to compute the probability
that a random permutation of n numbers is heapable
as n varies. The results are displayed in Figure 3.

3.2 Hardness of complete heapability We now
show that the problem of deciding whether a sequence
is completely heapable is NP-complete. First, com-
plete heapability is in NP since a witness for x is



just the final tree, T , if one exists. To show hard-
ness, we reduce from the NP-hard problem Exact
Cover by 3-Sets which, when given a set of n el-
ements Y = {1, . . . , n} and a collection of m sub-
sets C = {C1, . . . , Cm} such that each Ci ⊂ Y and
|Ci| = 3, asks whether there exists an exact cover of
Y by C: a subset C ′ ⊂ C such that |C ′| = n/3 and⋃

Cj∈C′

Cj = Y.

3.2.1 Preliminaries Without loss of generality,
we use triples of real numbers in our reduction instead
of a single real number and rely on lexicographic
order for comparison. Our construction relies on
the following set of claims that force subsequences
of x = x1, . . . , xt to be heaped into specific shapes.

Claim 2. If xi > xj for all j > i then x is heapable
only if xi appears as a leaf in the heap.

Proof. Any child of xi must have a value xj ≥ xi with
j > i, a contradiction.

Claim 3. If x′ = x′1, x
′
2, . . . , x

′
k is a decreasing sub-

sequence of x then for all x′i and x′j, i 6= j, x′j cannot
appear in a subtree rooted at x′i (and vice-versa).

Proof. Take such a subsequence and a pair x′i and
x′j . x′j succeeds x′i in the input, so x′i cannot be a
descendant of x′j . Also, x′j cannot be a descendant of
x′i without violating the heap property.

We use claim 3 to create sequences that im-
pose some shape on the heap. For example, con-
sider the sequence u = (1, 0, 2), (1, 0, 1), (1, 1, 4), . . . ,
(1, 1, 1), (1, 2, 8), . . . , (1, 2, 1), which, when occurring
after (1, 0, 0), must be heaped into two perfect binary
subtrees of height 3. Since we generate sequences like
u often in our reduction, we use ∆(x, k, h) to denote
a sequence of values of length k(2h − 1), all of the
form (x, ∗, ∗), that can be heaped into k perfect bi-
nary trees of height h. Figure 2 gives an iterative
definition of ∆ whereby ∆(1, 2, 3) generates u.

Claim 4. A sequence ∆(x, k, h) spans initial width
at least k, and consumes depth at most h. These
bounds on width and depth are also simultaneously
achievable.

Proof. The initial k values of ∆(x, k, h) (i = 0
in Figure 2) are decreasing and by Claim 3, must
therefore be placed at k distinct leaves of the heap.
The longest increasing subsequence of ∆(x, k, h) is
formed by choosing one element (x, i, ∗) for each
i, and thus the deepest heapable subsequence of
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Figure 1: A schematic of the heap that x forces.
Since the prologue sequence a1, . . . , a7 and epilogue
sequence c1, c2, c3 are uniquely heapable, the com-
plete heapability of x reduces to fitting the sequence
b into the black area.

∆(x, k, h) :

1: for i← 0 to (h− 1) do
2: for j ← k · 2i down to 1 do
3: print (x, i, j)
4: end for
5: end for

Figure 2: An iterative definition of ∆(x, k, h).

∆(x, k, h) is h. To achieve these bounds tightly,
simply store ∆(x, k, h) level-wise in a row of k free
slots.

We also define Γ(x, k, h) to be the prefix of
∆(x, k, h) that omits the final k terms, i.e. a sequence
of length k(2h−2) that can be heaped into k complete
binary trees with k elements missing in the final level.
We can now generalize Claim 3 as follows:

Claim 5. If x′ = F1(s1, k1, h1), F2(s2, k2, h2), . . . ,
Ft(st, kt, ht) is a subsequence of x such that the
sequence {si} is decreasing and such that Fi ∈ {∆,Γ}
for all i, then for every x′i ∈ Fi(si, ki, hi), x

′
j ∈

Fj(sj , kj , hj), i 6= j, x′i and x′j have no ancestor /
descendant relationship.

3.2.2 The Reduction

Theorem 3.2. Complete heapability is NP-Hard.



Proof. Given an Exact Cover by 3-Sets instance
(Y, C) where |Y |=n and |C|=m, we construct a
sequence x = a, b, c of length 2h − 1 where h is
the height of the heap and x is partitioned into a
prologue sequence a, a subset sequence b, and an
epilogue sequence c.

Prologue sequence. The prologue sequence a
consists of seven consecutive sequences a = a1, a2,
a3, a4, a5, a6, and a7:

a1: ∆(−3, 1, h1)

a2: ∆(Z, 2M1 − 1, h2 + 3)

a3: ∆(−1, 1, h2)

a4: ∆(Y,M2, 3)

a5: Γ(n− ε, 1, 2),Γ((n−1)− ε, 1, 2), . . . ,Γ(1− ε, 1, 2)

a6: Γ(0− ε, 3m− n, 2)

a7: ∆(−2, m2 , 1)

Epilogue sequence. Similarly the epilogue se-
quence is defined to be c = c1, c2, c3:

c1: ∆(X, 8m,h2 − 2)

c2: ∆(n, 4, 1),∆(n− 1, 4, 1), . . . ,∆(1, 4, 1)

c3: ∆(0.1, 6m− 2n, 1)

Taken together, the prologue and epilogue sequences
enforce the following key property.

Claim 6. The prologue sequence a is uniquely hea-
pable; moreover, if x is completely heapable, then the
epilogue sequence c is uniquely heapable with respect
to a and b.

Proof. By Claim 4, the sequence a1 forces a complete
binary tree with N1 leaves. Call this tree Ta1 .
Now consider the subsequence a2, a3, a7. Since the
sequence Z,−1,−2 is decreasing, by Claim 5, these
blocks have no ancestor/descendant relationships.
Moreover, since values of a3 are strictly smaller than
those of a2 and values of a7 are strictly smaller
than those of a2 . . . a6, these three blocks must all
be rooted at a1. Since a2, a3 and a7 begin with
decreasing subsequences of length 2M1 − 1, 1, and
m/2 respectively, these values fill the 2 · (M1 +m/4)
children of a1, and thus the remaining levels of a2
and a3 are forced, also by Claim 4 (see Figure 1).

Next consider the subsequence a4, a5, a6. At the
time these values are inserted, attachment points are
only available beneath a3, as a2 reached the bottom
of the heap and remaining slots below a1 are reserved

for a7. Since the sequence Y, n, n − 1, . . . , 1, 0 is
decreasing, Claim 5 ensures that the components
of a4 through a6 lie side-by-side beneath a3. The
construction of a5 forces n free slots at level h1+h2+2
beneath parents of respective values n − ε, n − 1 −
ε, . . . , 1− ε. The construction of a6 forces 3m−n free
slots at that same level beneath parents of values 0−ε.
The white area of Figure 1 depicts the final shape of
a.

As for the epilogue sequence, by Claim 2, the
sequence c2, c3, as well as the final subsequence in
c1 must all be on the bottom row of the heap. This
completely fills the bottom row of the heap (after
a). Then by Claim 5, c1, c2 and c3 have no ancestor-
descendant relationship, so the rest of c1 forms a
contiguous trapezoid of height h2 − 2 with the top
row having length 8m. The grey area of Figure 1
depicts the final shape of c.

This property ensures that after uniquely heap-
ing a we produce the specific shape depicted by the
white area in Figure 1. Then, given that sequence c is
uniquely heapable with respect to a and b, c also pro-
duces a specific shape depicted by the shaded area in
Figure 1. Taken together, the prologue and epilogue
force sequence b to be heaped into the black area of
Figure 1.

The height of the heap, h, is defined below.
Without any loss of generality, we assume m is
a multiple of 4 and, for convenience, define the
following values

h1 = dlog2(m/4 + 1)e N1 = 2h1 M1 = N1 −m/4

h2 = dlog2 3m/2e N2 = 2h2 M2 = N2 − 3m/2.

Finally, let h = h1 + h2 + 3, K = 2h, L = K + 1,
X = K + 2, Y = K + 2, Z = K + 3 and ε be a small
constant such that 0 < ε < 1. Z, Y , X, L and K are
the 5 largest values appearing in the first position of
any tuple in our sequence x.

Consider Figure 1 again. Sandwiched between
a7 and the trapezoid formed by c1 is room for m
complete binary trees of depth 4. We call these
the tree slots. A similar sandwich of 3m singleton
slots is formed between a5, a6 on the top and c2, c3
on the bottom. More precisely, from the specific
construction of a and c, there are 3m− n slack slots
sandwiched between a6 and c3 and there are n set
cover slots sandwiched between a5 and c2

Claim 7. Each slack slot can only accept some value
in the range (0− ε, 0.1), and each set cover slot with
parent value i − ε can only accept some value in the
range (i− ε, i.0).



Proof. The values in c3 are strictly smaller than
those in a5, so they must be placed below a6. Each
resulting slack slot therefore has a parent 0−ε and two
children of value 0.1. Similarly c2 is heapable below
a5 if and only if each sequence ∆(i, 4, 1) pairs off
with and is heaped below the corresponding sequence
Γ(i− ε, 1, 2).

The centerpiece of our reduction, the subset se-
quence b, is comprised ofm subsequences representing
the m subsets in C. For each subset Ci = {ui, vi, wi},
let ui < vi < wi w.l.o.g. and let bi be the sequence of
18 values

bi = (−1, i, 0), (−1, i, 1), (K, i, 1), (K, i, 0),

(ui, 0, 0), (vi, 0, 0), (wi, 0, 0),

∆(0, 1, 2), (L, i, 8), (L, i, 7), . . . , (L, i, 1)

Now take b = bm, bm−1, . . . , b1. Claim 6 implies that
if x is completely heapable then b must totally fit into
the remaining free slots of the heap (i.e., the black
area in Figure 1).

Claim 8. If x is completely heapable, then the m
roots of the complete binary trees comprising the tree
slots must be the initial (−1, i, 0) values from each of
the bi subsequences.

Proof. Observe that the (−1, i, 0) values form a de-
creasing subsequence, and are too small for any of the
singleton slots. They must therefore occupy space in
the m complete binary trees. By Claim 3, they mu-
tually have no ancestor/descendant relationship, and
must be in separate trees. But as they are the m
smallest values in b they must occupy the m roots of
these trees.

Claim 8 implies that the values of each bi must
be slotted into a single binary tree in the black area of
Figure 1 as well as some singleton slots. The following
claim shows that the values occupying the singleton
slots correspond to choosing the entire subset Ci or
not choosing it at all.

Claim 9. If x is completely heapable, then each bi
sequence fills exactly 15 tree slots from a single
complete binary tree and exactly 3 singleton slots.
Furthermore, the 3 singleton values are either the
three values (ui, 0, 0), (vi, 0, 0), (wi, 0, 0) or the three
values ∆(0, 1, 2).

Proof. By Claims 3 and 2, the 8m decreasing L values
must occupy level 4 (i.e. the final row of the black
area in Figure 1). For a given subsequence bi, Claim 8
implies that the suffix (L, i, 8), . . . , (L, i, 1) occupy the

leaves of the binary tree rooted at (−1, i, 0). As a
consequence, we need to select a completely-heapable
subsequence of length exactly 7 from the residual
prefix of bi (prior to (L, i, 8)).

First, note that the first four values of bi must be
included, as they cannot be placed elsewhere in the
heap. Moreover, the orientation of these four values is
forced: since (K, i, 1) and (K, i, 0) can only be parents
of nodes of the form (L, i, ∗), they must be placed at
level two, with (−1, i, 1) as their parent at level one.

Now consider (ui, 0, 0). If this value is included
in the complete heapable subsequence, its location is
forced to be the available child of the root (−1, i, 0),
and therefore both (vi, 0, 0) and (wi, 0, 0) must also
be selected as its children (the zeroes in ∆(0, 1, 2) are
too large to be eligible) to conclude the complete hea-
pable subsequence. The three values of ∆(0, 1, 2) are
necessarily exiled to slack slots in this case. Alterna-
tively, if (ui, 0, 0) is not selected in the complete hea-
pable subsequence, then the three nodes concluding
the heapable subsequence must be ∆(0, 1, 2), since
neither (vi, 0, 0) nor (wi, 0, 0) has two eligible chil-
dren in the considered prefix of bi. Therefore, the
three values (ui, 0, 0), (vi, 0, 0), (wi, 0, 0) are exiled to
slack slots in this case.

The hardness result follows directly from the follow-
ing lemma.

Lemma 3.1. (Y, C) contains an exact cover iff x is
completely heapable.

Proof. For the if-direction, examine the complete
heap produced by x. For each bi tree, use subset
Ci as part of the exact cover if and only if that tree
includes ∆(0, 1, 2) in its entirety. By Claim 9 the set
values from Ci were all assigned to the set cover slots
which we know enforces a set cover by Claim 7, so
the union of our n/3 subsets is an exact cover.

For the only-if direction, for each subset Ci in
the exact cover, heap the subset sequence bi so that
(ui, 0, 0), (vi, 0, 0), (wi, 0, 0) occupy set cover slots
and the remaining 15 values occupy tree slots. Taken
together, these fill up the n set cover slots and n/3 of
the complete binary trees. Heap the m− n/3 subset
sequences not in the cover so as to exile triples of the
form ∆(0, 1, 2), filling up the 3m − n slack slots and
the remaining m− n/3 complete binary trees. Since
the epilogue c perfectly seals the frontier created by
b, x is completely heapable.

3.3 Complete heapability of 0-1 sequences
When we restrict the problem of complete heapability
to 0-1 values, the problem becomes tractable. The
basic idea is that any completely heapable sequence



of 0-1 values can be heaped into a canonical shape
dependent only upon the number of 1s appearing in
the sequence. After counting the number of 1s, we
attempt to heap the sequence into the shape. If it
fails, the sequence is not heapable.

Without loss of generality, let x be a sequence
of n = 2k − 1 0-1 values since we can always pad
the end of x with 1s without affecting its complete
heapability. With 0-1 sequences, once a 1 is placed
in the tree, only 1s may appear below it. Thus, in
any valid solution tree T for x, the nodes labelled
with 1 form a forest F(T ) of perfect binary trees.
Let V (T ) be the set of nodes of T that are labeled
with 0 and fall on a path from the root of T to the
root of a tree in F(T ). Note that the nodes in V (T )
form a binary tree. Let y1, . . . , yr be the nodes of
V (T ) in the order they appear in x. If yi is a non-
full node in V (T ) then let α(yi) be the number of
nodes appearing in the perfect trees of 1s of which yi
is the parent. If yi is a full node then let α(yi) = 0.
Now let β(yi) = α(yi)+β(yi−1) where β(y1) = α(y1).
The values β(y1), . . . , β(yr) represent the cumulative
number of 1s that the first i nodes in V (T ) can absorb
from F(T ). That is, after inserting y1, . . . , yi, we can
add at most β(yi) of the 1s appearing in F(T ).

Suppose x has m 1s in total and let T ∗ be a
perfect binary tree of height k where the first m nodes
visited in a post-order traversal of T ∗ are labelled
1 and the remainder of nodes are labelled 0. Note
that the nodes labelled with 1 in T ∗ form a forest
F(T ∗) = T ∗1 , T

∗
2 , . . . , T

∗
z of z perfect binary trees

in descending order by height. Let v1, . . . , vm be
the nodes of F(T ∗) given by sequential pre-order
traversals of T ∗1 , T

∗
2 , . . . , T

∗
z . Let u1, . . . , us be the

nodes given by a pre-order traversal of V (T ∗). We
build T ∗ so that the first s 0s appearing in x are
assigned sequentially to u1, . . . , us and the m 1s
appearing in x are assigned sequentially to v1, . . . , vm.

Lemma 3.2. x is completely heapable if and only if
T ∗ is a valid solution for x.

Proof. It’s clear that if T ∗ is a valid solution for x
then, by definition x is completely heapable. Now,
suppose x is completely heapable. Then there exists
a valid solution tree T . We show that whenever a 1
is added to T , we can also add a 1 to T ∗. It should
be clear that whenever a 0 is added to T we can add
a 0 to T ∗.

Let y1, . . . , yr be the nodes of V (T ) in the order
they appear in x. Note that s ≤ r. This follows
because F(T ∗) has the fewest number of binary trees
in any valid solution for x. One way to see this is by
imagining each perfect tree of 1s as corresponding to
one of the 2i − 1 terms in the (unique) polynomial

decomposition of m into m = al(2
l−1)+al−1(2l−1−

1) + · · · + a1(21 − 1) where each coefficient ai is
either 0 or 1 except for the final non-zero coefficient
which may be 2. This is essentially an “off-by-one”
binary representation of m. Thus, the perfect trees
in F(T ∗) have strictly decreasing heights except for,
potentially, the shortest two trees which may have
identical heights. It’s clear that assigning the 0s
in this order makes the largest number of 1 slots
available as quickly as possible in any valid solution
tree. Thus, for for 1 ≤ j ≤ s we have β(uj) ≤ β(yj).
Therefore, anytime a 1 is placed in T , we can place a
1 in T ∗.

We’re now prepared to prove the main theorem
of this section.

Theorem 3.3. Complete heapability of sequences of
0-1 values is decidable in linear time.

Proof. Algorithm 1 provides a definition of
Complete-Heap which we use to decide in
linear time if x is completely heapable. Initially,
we build an unlabeled perfect binary tree of height
k. We also count the number of 1s appearing in x.
Both these operations take linear time. Next we
identify where and in what order the 1s should be
assigned and build a queue of nodes Qi for each tree
T ∗i ∈ F(T ∗). These operations take linear time in
total since we can build the T ∗i in one post-order
traversal of T ∗ and each Qi can be built from a
single pre-order traversal of T ∗i . We also identify
where and in what order the 0s should be assigned
to T ∗ and enqueue these nodes in Q0.

Now we simply try and assign each value in x
to the appropriate node in T ∗ if it is available. The
idea is that once the parent of tree T ∗i gets labeled
with a 0, then the nodes in Qi are available for
assignment. We can mark these parent nodes ahead
of time to ensure our algorithm runs in linear time. If
Q ever runs dry of nodes, then we don’t have enough
0s to build the frontier necessary to handle all the
1s, so x is not completely heapable. On the other
hand, if we terminate without exhausting Q, then the
sequence is completely heapable. The correctness of
the algorithm follows immediately from Lemma 3.2.

4 Heapable Subsequences

In this section, we focus on the case where the se-
quence corresponds to a random permutation. There
are three standard models in this setting. In the first,
the sequence is known to be a permutation of the
numbers from 1 to n, and each element is a corre-
sponding integer. Let us call this the permutation
model. In the second case, the sequence is again



Algorithm 1 Complete-Heap (x) where x is a sequence of n = 2k − 1 0-1 values

1: T ∗ ← perfect binary tree with n nodes u1, . . . , un
2: m← number of 1s in x
3: Q← empty queue
4: F(T ∗) = {T ∗1 , . . . , T ∗z } ← a forest of z trees given by the first m nodes in a post-order traversal of T ∗

and ordered by height
5: for i← 1 to z do
6: Qi ← a queue of nodes given by a pre-order traversal of T ∗i
7: end for
8: Q0 ← a queue of n−m nodes given by a pre-order traversal of T ∗ −F(T ∗)
9: for i← 1 to n do

10: if xi = 0 then
11: u← dequeue(Q0)
12: if u is the parent of some tree T ∗j in F(T ∗) then
13: dequeue the elements from Qi and enqueue them into Q
14: end if
15: else
16: u← dequeue(Q)
17: end if
18: if u = nil then
19: return “NOT HEAPABLE”
20: else
21: assign xi to u
22: end if
23: end for
24: return T ∗

known to be a permutation of [1, n], but when an
element arrives one is given only its ranking relative
to previous items. Let us call this the relative ranking
model. In the third, the sequence consists of indepen-
dent uniform random variables on (0, 1). Let us call
this the uniform model. All three models are equiva-
lent in the offline setting, but they differ in the online
setting, where the relative ranking model is the most
difficult.

We first show that the longest heapable subse-
quence in any of these models, has length (1− o(1))n
with high probability, and in fact such subsequences
can even be found online. For simplicity we first con-
sider the offline case for the uniform model. We then
show how to extend it to the online setting and to the
relative ranking model. (As the permutation model
is easier, the result follows readily for that model as
well.) We note that we have not attempted to opti-
mize the o(1) term. Finding more detailed informa-
tion regarding the distribution of the LHS in these
various settings is an open problem.

Theorem 4.1. In the uniform model, the longest
heapable subsequence has length (1− o(1))n with high
probability.

Proof. We break the proof into two stages. We first
show that we can obtain an LHS of length Ω(n) with
high probability. We then bootstrap this result to
obtain the theorem.

Let A1 be the subsequence consisting of the el-
ements with scores less than 1/2 in the first n/2 el-
ements. With high probability the longest increas-
ing subsequence of A1 is of length Ω(

√
n). Organize

the elements from the LIS of A1 into a heap, with
F = Ω(

√
n) leaf nodes.

Now let A2 be the subsequence consisting of
the elements with scores greater than 1/2 in the
last n/2 elements. Starting with the heap obtained
from A1, we perform the greedy algorithm for the
elements of A2 until the first time we cannot place
an element. Our claim is that with high probability
a linear number of elements are placed before this
occurs. Consider the F subheaps, ordered by their
root element in decreasing order. In order not to
be able to place an element, we claim that we have
seen a decreasing subsequence of F elements in A2.
This follows from the same argument regarding the
length of the LIS derived from patience sorting.
Specifically, each time an element was placed on
a subheap other than the first, there must be a
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Figure 3: The probability that a random permutation
of n numbers is heapable as n varies. For values of n
up to 10 the probabilities are exact; for larger values
of n they are estimated from a set of 10! ≈ 4 ∗ 106

sample permutations.

corresponding larger element placed previously on
the previous subheap. Hence, when we cannot place
an element, we have placed at least one element on
each subheap, leading to a chain corresponding to
a decreasing subsequence of F elements. As F =
Ω(
√
n), with high probability such a subsequence

does not appear until after successfully placing Ω(n)
elements of A2.

Given this result, we now prove the main result.
Let B1 be the subsequence consisting of the elements
less than n−1/8 in the first n7/8 elements. With
high probability there are Ω(n3/4) elements in B1

using standard Chernoff bounds, and hence by the
previous paragraphs we can find an LHS of B1 of size
Ω(n3/4). Now let B2 be the subsequence consisting
of the elements greater than n−1/8 in the remaining
n−n7/8 elements. We proceed as before, performing
the greedy algorithm for the elements of B2 until
the first time we cannot place an element. For the
process to terminate before all elements of B2 having
been placed, B2 would have to have an LDS of length
Ω(n3/4), which does not occur with high probability.

We implemented the algorithm described in The-
orem 4.1 and applied it to a range of sequences of
increasing size. Figure 4 displays the size of the re-
sulting heap (averaged over 1000 iterations for each
value of n) relative to the length of the original se-
quence, n.

The proof extends to the online case.

4.1 The case of random permutations

Corollary 4.1. In the uniform model, a heapable
subsequence of length (1− o(1))n can be found online
with high probability.

Input sequence B11 and B2 Heap
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Figure 4: The size of the heap found using the
algorithm described in Theorem 4.1, as well as the
joint length of subsequences B1 and B2, both with
respect to the length of the input sequence n.

Proof. We use the fact that there are online algo-
rithms that can obtain increasing subsequences of
length Ω(

√
n) in random permutations of length n [7].

Using such an algorithm on A1 as above gives us an
appropriate starting point for using the greedy algo-
rithm, which already works in an online fashion, on
A2, to find an increasing subsequence of length Ω(n)
with high probability. We can then similarly extend
the proof as in Theorem 4.1 to a sequence of length
(1 − o(1))n using the subsequences B1 and B2 simi-
larly.

There are various ways to extend these results to
the relative ranking model. For the offline problem,
we can treat the first εn elements as a guide for any
constant ε > 0; after seeing the first εn elements,
perform the algorithm for the uniform model for the
remaining (1 − ε)n elements, treating an element as
having a score less than 1/2 if it is ranked higher
than half of the initial εn elements and greater than
1/2 otherwise. The small deviations of the median
of the sample from the true median will not affect
the asymptotics of the end result. Then, as in
Theorem 4.1, bootstrap to obtain an algorithm that
finds a sequence of length (1− o(1))n.

For the online problem, we are not aware of
results giving bounds on the length of the longest
increasing (or decreasing) subsequence when only
relative rankings are given, although it is not difficult
to obtain an Ω(

√
n) high probability bound given

previous results. For example, one could similarly use
the above approach, using the first εn elements as a
guide to assign approximate (0, 1) values to remaining
elements, and then use a variation of the argument
of Davis (presented in [7][Section 7]) to obtain a
longest increasing subsequence on the first half of the
remaining elements of size Ω(

√
n).



We describe a more direct variation. Order the
first εn elements, and split the lower half of them
by rank into

√
n subintervals. Now consider next

(1−ε)n/2 elements. Split them, sequentially, into
√
n

subgroups; if the ith subgroup of elements contains
an element that falls in the ith subinterval, put it
in our longest increasing subsequence. Note that
this can be done online, and for each subinterval the
probability of obtaining an element is a constant.
Hence the expected size of the longest increasing
subsequence obtained this way is Ω(

√
n), and a

standard martingale argument can be used to show
that in fact this holds with high probability. Then,
as before we can show that in the next (1 − ε)n/2
elements, we add Ω(n) elements to our heap with high
probability using the greedy algorithm. As before,
this gives the first part of our argument, which can
again be bootstrapped.

Corollary 4.2. In the relative ranking model, a
heapable subsequence of length (1 − o(1))n can be
found both offline and online with high probability.

We now turn our attention to the problem of
finding the longest completely heapable subsequence
in the uniform and relative ranking models, as well as
the associated online problems. For convenience we
start with finding completely heapable subsequences
online in the uniform model, and show that we can
obtain sequence of length Ω(n) with high probability.
Our approach here is a general technique we call
banding; for the ith level of the tree, we only accept
values within a band (ai, bi). We chose values so
that a1 < b1 = a2 < b2 = a3 . . ., that the bands
are disjoint and naturally yield the heap property.
Obviously this gives that the LCHS is Ω(n) with high
probability as well. We note no effort has been made
to optimize the leading constant in the Ω(n) term in
the proof below.

Theorem 4.2. In the uniform model, a completely
heapable subsequence of length Ω(n) can be found
online with high probability.

Proof. As previously, we can find an LIS of size
Ω(
√
n) online within the first n/2 elements restricted

to those with value less than 1/2. This will give
the first (log n)/2 − c1 levels of our heap, for some
constant c1.

We now use the banding approach, filling subse-
quent levels sequentially. Suppose from the LIS that
our bottom level has t0 nodes. Consider the next
u1 elements, and for the next level use a band of
size v1, which in this case corresponds to the range
(1/2, 1/2 + v1). We need t1 = 2t0 elements to fill
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Figure 5: The number of levels in a perfect heap con-
structed using the algorithm described in Theorem
4.2 as n varies. Note the logarithmic scale of the
x−axis.

8 7 6 5 4 3 2 1

16 15 14 13 12 11 10 9

24 23 22 21 20 19 18 17

32 31 30 29 28 27 26 25

Figure 6: An illustration of Theorem 4.3 for n =
32. The elements are ordered left-to-right, top-to-
bottom. For example 8 precedes 7 and 1 precedes
16. A representative longest increasing heapable
subsequence is highlighted.

the next level. Note that if we choose for example
u1v1 = 2t1 = 4t0, we will be safe, in that Chernoff
bounds guarantee we obtain enough elements to fill
the next level. We let u1 = 2

√
t0n

1/2 and v1 = u1/n.
For each subsequent level we will need twice as

many items, so generalizing for the ith level after
the base we have ti = 2it0, and we can can consider
the next ui = (

√
2)i+1

√
t0n

1/2 elements using a band
range of size vi = ui/n. We continue this for L levels.

As long as
∑L

i=1 u1 ≤ n/2 and
∑L

i=1 v1 ≤ 1/2, the
banding process can fill up to the Lth level with high
probability. As the sums are geometric series, it is
easy to check that we can take L = (log n)/2 − c2
for some constant c2 (which will depend on t0).
This gives the result, and the resulting tree now has
log n− c1 − c2 levels, corresponding to Ω(n) nodes.

We implemented the algorithm described in The-
orem 4.2 and applied it to a range of sequences of
increasing size. For each sequence size, Figure 5 dis-
plays the average number of levels in the resulting



perfect heap. We verify that the number of elements
of the resulting heap grows linearly to the length of
the original sequence, as expected.

We can similarly extend this proof to the relative
ranking case. As before, using the first εn elements
as guides by splitting the lower half of these elements
into
√
n regions, we can obtain an increasing sequence

of size Ω(
√
n) to provide the first (log n)/2 − c1 lev-

els of the heap. We then use the banding approach,
but instead base the bands on upper half of first εn
elements in the natural way. That is, we follow the
same banding approach as in the uniform model, ex-
cept when the band range is (α, β) in the uniform
model, we take elements with rankings that fall be-
tween the dαεneth and bβεncth of the first εn ele-
ments. It is straightforward to show that with high
probability this suffices to successfully fill an addi-
tional (log n)/2 − c2 levels, again given a completely
heapable subsequence of length Ω(n).

Again, for all of these variations, the question of
finding exact assymptotics or distributions of the var-
ious quantities provides interesting open problems.

4.2 Longest increasing and decreasing hea-
pable subsequences Because the longest heapable
subsequence problem is a natural variation of the
longest increasing subsequence problem, and the lat-
ter has given rise to many interesting combinatorial
problems and mathematical connections, we expect
that the introduction of these ideas will lead to many
interesting problems worth studying. For example,
as we have mentioned, one of the early results in the
study of increasing subsequences, due to Erdös and
Szekeres, is that every sequence of n2 + 1 distinct
numbers has either an increasing or decreasing sub-
sequence of length n+ 1 [4]. One could similarly ask
about the longest increasing or decreasing heapable
subsequence within a sequence. We have the follow-
ing simple upper bound; we do not know whether it
is tight.

Theorem 4.3. There are sequences of n elements
such that the longest increasing or decreasing heapable
subsequence is upper bounded by O(n/ log n).

Proof. In fact we can show something stronger; there
are sequences such that the longest increasing hea-
pable subsequence and the longest decreasing subse-
quence have length O(n/ log n). Consider the follow-
ing construction: we begin by splitting the sequence
of n elements into B equally sized blocks. Each block
is a decreasing subsequence, and the subsequences
are in increasing order, as illustrated in Figure 6. It
can be easily seen that the longest decreasing sub-
sequence has length n/B. For the longest increasing

heapable subsequence, note that our optimal choice is
to take one element from the first block, two from the
next block, and so on so forth. We want to select an
appropriate value for B so that the last block is the
last full level of our increasing heap. The number of
heap elements is then 2B−1. Setting 2B−1 and n/B
equal we have B(2B−1) = n, which for large n is ap-
proximated by B2B = n. Recall that the solution to
this equation is B = W (n) where W is the Lambert
W function. The latter has no closed form but a rea-
sonable approximation is log n− log log n, so asymp-
totically we can arrange a bound of O(n/ log n).

5 Open Problems

Besides finding tight bounds for the problem in the
previous section, there are several other interesting
open questions we have left for further research.

• Is there an efficient algorithm for finding the
longest heapable subsequence, or is it also NP-
hard? If it is hard, are there good approxima-
tions?

• For binary alphabets, we have shown complete
heapability can be decided in linear time, while
for permutations on n elements, the problem is
NP-hard. What is the complexity for intermedi-
ate alphabet sizes?

• What is the probability that a random permu-
tation is heapable – either exactly, or asymptot-
ically?

• Can we find the exact expected length or the
size distribution of the longest heapable subse-
quence of a random permutation? The longest
completely-heapable subsequence?

• The survey of Aldous and Diaconis [1] for
LIS shows several interesting connections be-
tween that problem and patience sorting, Young
tableaux, and Hammersley’s interacting particle
system. Can we make similar connections to
these or other problems to gain insight into the
LHS of sequences?

We expect several other combinatorial variations to
arise.

There are also many open problems relating
to our original motivation: viewing this process as
a variation of the hiring problem. For example,
we can consider the quality of a hiring process as
corresponding to some function of the ranking or
scores of the people hired, as in [3]. Here we have
focused primarily on questions of maximizing the
length of the sequence, or equivalently the number



of people hired. More general reward functions, such
as penalizing unfilled positions or allowing for errors
such as an employee being more qualified than their
boss in the hierarchy tree, seem worthy of further
exploration.
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