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Abstract. We are interested in how robots might learn language from

exposure to utterances and sensory information about the physical con-
texts in which they occur. Although stochastic context free grammars

are often used to represent the syntactic structure of natural languages,

most algorithms for learning them from data require repeated process-
ing of a corpus of sentences. The memory and computational demands

of such algorithms are ill-suited for embedded agents. We present an on-

line algorithm that uses summary statistics computed from sentences in
combination with repeated sampling techniques to learn the parameters

of stochastic context free grammars. Empirical results demonstrate that

the algorithm performs just as well as the Inside-Outside algorithm de-
spite the fact that it has access to less information about the training

data.

1 Introduction

How might an embedded agent, such as a mobile robot, acquire a natural lan-

guage from utterances describing its environment and activities paired with sen-

sory information about the physical contexts in which they occurred? In other

work we investigated the problem of identifying words in the speech signal and

learning their denotations [8]. In this paper we describe the next step in this line

of research - learning syntax of multiple word utterances.

Although natural languages are not entirely context free, stochastic context

free grammars (SCFGs) are an e�ective representation for capturing much of

their structure. However, for embedded agents, most algorithms for learning

SCFGs from data have two shortcomings. First, they need access to a corpus



of complete sentences, requiring that the agent retain every sentence it hears.

Second, they are batch algorithms that make repeated passes over the data,

often requiring signi�cant computation in each pass.

To address these shortcomings we present an online algorithm for learning the

parameters of SCFGs using only summary statistics in combination in with re-

peated sampling techniques. SCFGs contain both structure (i.e. productions)

and parameters (i.e. production probabilities). Many approaches to learning

SCFGs from data alternate between improving the structure of the grammar

given the parameters and then improving the parameters given the structure.

Our algorithm assumes a �xed structure and attempts to �nd parameters that

maximize the likelihood of the data. Future work will address online learning of

grammar structure from summary statistics.

Given a SCFG to be learned, our algorithm has access to the grammar struc-

ture and a set of sentences generated by the grammar, but the parameters are

hidden. The structure is �rst transformed so that each right-hand side is unique

and the resulting productions are given random initial probabilities. The corpus

is then parsed via a chart parser. Note that the parse does not depend on the

probabilities, it only depends on the structure. Associated with each production

is a histogram of the number of times it occurred in the parses of individual

sentences in the corpus. The corpus is then discarded and only the histograms

are retained.

The learner then repeatedly generates a corpus of sample sentences from

its grammar, a process that does depend on the parameters, and parses them.

This results in a second set of histograms. The degree to which the two sets

of histograms di�er is a measure of the di�erence between the current parame-

ters of the learner's grammar and the target parameters. As the learner gener-

ates sentences and observes changes in its histograms, production probabilities

are updated: production probabilities are increased when the histograms of the

generated sentences are similar to the original histograms and decreased when

they're dissimilar. Empirical results show that this procedure yields parameters

that are comparable to those found by the Inside-Outside algorithm.

The remainder of the paper is organized as follows. In sections 2 and 3 we

formally present stochastic context-free grammars and discuss previous research

into learning their structure and parameters. Section 4 presents the algorithm

and gives an analysis of its running time. Section 5 explains some experimental

results and section 6 discusses future work. We conclude the paper in section 7.

2 Stochastic Context Free Grammars

Stochastic Context-Free Grammars 1 (SCFGs) are the natural extension of

Context-Free Grammars to the probabilistic domain [9,1]. Said di�erently, they

are context-free grammars with probabilities associated with each production.

Formally, a SCFG is a four-tuple M = hV;�;R; Si where

1 Stochastic Context-Free Grammars are often called Probabilistic Context-Free

Grammars.



1. V is a �nite set of non-terminals
2. � is a �nite set, disjoint from V , of terminals

3. R is a �nite set of productions (often called rules or rewrite rules) of the

form A ! w where A belongs to V , and w is a �nite string composed

of elements from V and �. We refer to A as the left-hand side (LHS) of

the production and w as the right-hand side (RHS), or expansion, of the

production. Additionally, each production r has an associated probability

p(r) such that the probabilities of productions with the same left-hand side

sum to 1.
4. S is the start symbol.

Grammars can either be ambiguous or unambiguous. Ambiguous grammars

can generate the same string in multiple ways. Unambiguous grammars cannot.

3 Learning Stochastic-Context Free Grammars

Learning context-free grammars is the problem of inducing a context-free struc-

ture (or model) from a corpus of sentences (i.e., data). When the grammars are

stochastic, we have the additional problem of learning production probabilities

(parameters) from the corpus. More formally, given a set of sentence observa-

tions O = fo0 : : : on�1g, the problem is to learn a parameterized modelM that

best �ts the observations.

Typically the problem is framed in terms of search where the objective func-

tion is the likelihood of the data given the grammar. One usually starts with

a sentence corpus consisting of only positive training examples and a grammar

that can generate each of the sentences in the corpus. Positive training examples

are sentences that provide positive evidence of the structure and parameters in a

model whereas negative training examples illustrate what we don't want in our

model.

While we have interest in learning the structure of stochastic context-free

grammars, our main focus here is on learning parameters. For a thorough overview

of techniques for learning structure, see [10] and [3].

3.1 Learning Parameters

The Inside-Outside algorithm [6, 7] is the standard method for estimating param-

eters in SCFGs. The algorithmuses the general-purpose expectation-maximization

(EM) procedure to iterate between calculating expectations of the parameters

and then maximizing the likelihood given both the expectations and the sentence

corpus. Almost all parameter learning is done batch style using some derivation

of the Inside-Outside algorithm.

For example, in learning parameters, [2] initially estimates the production

probabilities using the most probable parse of the sentences given the grammar

(the Viterbi parse) and then uses a post-pass procedure that incorporates the

Inside-Outside algorithm. He transforms the grammar into Chomsky Normal

Form, runs Inside-Outside and then transforms it back.



In using EM to iterate between parameter estimation and maximization, the

entire sentence corpus must be stored. While this storage may not be in the

form of actual sentences, it is always in some representation that easily allows

the reconstruction of the original corpus (e.g., a chart parse). Because we are

interested in language acquisition in embedded agents and are motivated by

developmental psychology, the prospect of memorizing entire sentence corpora

is unpalatable.

This motivation also carries a desire to easily adjust our parameters when

new sentences are encountered. That is, we want to learn production probabili-

ties incrementally. While the Inside-Outside algorithm can be updated with the

new sentences during the iterations, it still uses the entire sentence corpus for

estimation. Hence, adding a new sentence is no di�erent than simply starting

from scratch with the new sentence included in the original corpus.

4 The Algorithm

To address some of the concerns given in the previous section, we have devel-

oped an unsupervised, incremental algorithm for �nding parameter estimates in

stochastic context-free grammars using repeated sampling from the estimation

grammar and without retention of the sentence corpus.

The algorithm is incremental in two ways. First, in the classical sense, at

every iteration it uses the previously learned grammar parameterization as a

stepping stone to the new one. Second, it naturally allows new data to contribute

to learning without restarting the entire process. In fact, because we store only

histograms, the addition of new sentences typically does not increase the memory

requirements.

4.1 Grammar Transformation

For our algorithm to work, we must �rst guarantee some properties of the gram-

mar.All context-free grammars can be reduced to Chomsky Normal Form (CNF)

[9] where each rule r in R is of the form:

A! BC or A! z

where A, B, and C are non-terminals and z is a terminal. This means that

each expansion is either a bigram (in the case of the non-terminal productions)

or a unigram (in the case of the terminal productions). We derive a di�erent

normal form from CNF, called Unique Normal Form (UNF), which guarantees

all rules involving only non-terminals are unique in their expansion and that all

terminal rules have probability 1.0.

First, we replace all terminal rules A ! z with two new rules A ! D and

D ! z where D is a new, unique non-terminal. Additionally, we let p(A! D) =

p(A! z) and p(D ! z) = 1:0. This process pushes the previous probability of

a terminal rule into a rule involving only non-terminals.



Table 1. A grammar that generates palindromes

S ! A A

S ! B B

S ! A C

S ! B D

C ! S A

D ! S B

A ! Y

B ! Z

Y ! y

Z ! z

Second, we ensure that no two productions have the same right-hand side.

Suppose we have an indexed list of the CNF non-terminal rules fr0 : : : rn�1g.
When we �rst encounter a rule rj = A ! XY where the right-hand side of

rj is equivalent to the right-hand side of some earlier rule ri = B ! XY , we

replace rj , and all rules with matching expansions that follow (rk with k > j),

with A! XZ, where Z is a new non-terminal. Next, we add a new rule Z ! Y

with associated probability 1.0 to the end of the list. Inductively repeating this

process with the subsequence frj : : : rn�1g guarantees all rules in our �nal list

(including the rules added at the end) have unique right-hand sides.

Note, this transformation does not keep the grammar in CNF, but does allow

us to identify all productions involving only non-terminals by their expansion

and guarantees the expansion will be either a bigram or unigram. Because our

algorithmuses only summary statistics of the sentence corpus, we need to capture

as much information about the data as possible, so UNF is both required and

appropriate.

4.2 Algorithm Description

Suppose we have n sentence observations, O = fo0 : : : on�1g, and a SCFG,M =

hV;�;R; Si, in UNF with random parameter values that meet the constraints

given in Section 2. Suppose further thatM can generate each observation in our

corpus O.

Let each rule in our grammar have two associated histograms called HO

r

and HL

r
. HO

r
is constructed by parsing the sentences in O and recording the

number of times rule r was used when parsing individual sentences. Histograms

constructed in this way are called observation histograms. The indices of the

histogram range from 0 to k where k is the maximum number of times a rule

was used in a particular sentence parse. In many cases, k remains small, and more

importantly, when a sentence parse does not increase k, the storage requirements

remain unchanged.

Each HL

r
is a histogram used during the learning process, so we call it a

learning histogram. Like HO

r
, it records the number of times rule r occurred in



a single sentence parse. Unlike HO

r
however, the algorithm continually updates

HL

r
during the learning process.

Using M and a standard chart parsing algorithm (e.g., [1]) we parse each

observation o from the sentence corpus. Chart parsing a sentence allows us to

count how many times a particular production (and because of our grammar

form, a particular expansion) was used in deriving that sentence. For example,

suppose we have the palindrome-generating grammar given in table 1 and the

sentence y y y y. Chart parsing the sentence reveals that unigram Y has fre-

quency 4 because y's can only be derived from the rule A ! Y . Additionally,

we know that bigrams AA, AC and S A (the expansion of the rules S ! AA,

S ! AC, and C ! S A) have frequency 1, and the remaining non-terminal

expansions have frequency 0.

After every sentence parse, we update the observation histograms and discard

the sentence along with its parse. We are left with only a statistical summary

of the corpus. As a result, we cannot reconstruct the observation corpus or any

single sentence within it. Since we have less information, estimating parameters

(the production probabilities) would appear more diÆcult.

Beginning the iterative process, we randomly generate a small sentence cor-

pus from the learning grammar OL of size s, chart parse each sentence, and

update each rule's learning histogram HL

r
appropriately. After discarding the

sentences, we rescale the histograms to some �xed size h. If we don't rescale, the

information provided in each additional sentence parse would have a decreasing

impact on the histograms' distributions. This, in turn, decreases the learning

rate. In some cases, decreasing the learning rate is required for convergence to a

set of parameters [12]. However, in our experience, it was conveniently e�ective

to keep h �xed throughout the duration of the algorithm.

So, for each rule r we now have two distributions:HO

r
, reecting the observed

corpus, and HL

r
reecting the overall corpora generated from M . Comparing

HL

r
to HO

r
seems a natural predictor of the likelihood of our observations given

the grammar. Relative entropy (also known as the Kullback-Leibler distance) is

commonly used to compare two distributions p and q [5]. It is de�ned as:

D(pjjq) =
X

x

p(x) log
p(x)

q(x)

Because two distributions are associated with each rule r, we sum the relative

entropies over the rules.

T =
X

r

X

x

pr(x) log
pr(x)

qr(x)

If T decreases between iterations, then the likelihood ofM is increasing, so we

increase the probabilities of productions used in parses of sentences generated

in our small corpus. When s is large, we only increase a small subset of the

productions used in the parse.2 Likewise, if T increases between iterations, we

2 We found, through experimentation, that using only the rules �red during generation

of the last sentence works well.



Table 2. A grammar generating simple English phrases

S ! NP V P

NP ! Det N

V P ! V t NP

V P ! V c PP

V P ! V i

PP ! P NP

Det ! A

Det ! THE

V t ! TOUCHES

V t ! COV ERS

V c ! IS

V i ! ROLLS

V i ! BOUNCES

N ! CIRCLE

N ! SQUARE

N ! TRIANGLE

P ! ABOV E

P ! BELOW

A ! a

THE ! the

TOUCHES ! touches

IS ! is

ROLLS ! rolls

BOUNCES ! bounces

CIRCLE ! circle

SQURE ! square

TRIANGLE ! triangle

ABOV E ! above

BELOW ! below

decrease the production probabilities. For our purposes, multiplicative update

rules are used. For example, if pt(r) is the probability of r at time t and T

decreased between iterations, then pt+1(r) = 0:01 � pt(r). Once the probability
updates are performed we start another iteration beginning with the generation

of a small sentence corpus from our learning grammar. The algorithm stops

iterating when the relative entropy falls below a threshold, or some prespeci�ed

number of iterations has completed.

5 Experiments

The previous section described an online algorithm for learning the parameters

of SCFGs given summary statistics computed from a corpus of sentences. The

question that remains is whether anything is sacri�ced in terms of the quality of



Table 3. An ambiguous grammar

S ! A

S ! B A

A ! C

A ! C C

B ! S

B ! D

B ! E

B ! F

C ! z

D ! y

E ! x

F ! w

the learned grammar by using these statistics rather than the complete corpus.

This section presents the results of experiments that compare the grammars

learned by our algorithm with those learned by the Inside-Outside algorithm.

Let MT be the target grammar whose parameters are to be learned. Let

ML be a grammar that has the same structure as MT but whose production

probabilities have been assigned random values so as to obey the constraint that

the sum of these probabilities for all productions with the same left-hand side

must be one. Let OT be a set of sentences generated stochastically from MT .

The performance of the two algorithms can be compared by running them both

onML and OT and computing the log likelihood of OT given the �nal grammar.

Because we are interested in learning parameters for a �xed structure, the

above procedure involved using a number of di�erent target grammars, each

with the same structure but di�erent production probabilities. The goal was

to determine whether there were any regions of parameter space for which one

algorithm was signi�cantly better. We did this by stochastically sampling from

this space. Note that a new corpus was generated for each new set of parameters

as they inuence which sentences are generated.

The grammar shown in table 2 [10] was used in this manner with 50 dif-

ferent target parameter settings and 500 sentences in OT for each setting. The

mean and standard deviation of the log likelihoods for the online algorithm

with h = s = 100 (histogram size and learning corpus size respectively) were

� = �962:58 and � = 241:25. These values for the Inside-Outside algorithmwere

� = �959:83 and � = 240:85. Recall that equivalent performance would be a

signi�cant accomplishment because the online algorithm has access to much less

information about the data. We began by assuming the means of both empirical

distributions were equal. With our assumption as the null hypothesis, we ran

a two-tailed t-test resulting in p = 0:95. This means that if we reject the null

hypothesis, the probability of making an error is 0.95.



Unfortunately, the above result does not sanction the conclusion that the two

distributions are the same. We can, however, look at the power of the test in this

case. If the test's power is high then it is likely that a true di�erence in the means

would be detected. If the power is low then it is unlikely that the test would

detect a real di�erence. The power of a test depends on a number of factors,

including the sample size, the standard deviation, the signi�cance level of the

test, and the actual di�erence between the means. Given a sample size of 50, a

standard deviation of 240.05, a signi�cance level of 0.05, and an actual delta of

174.79, the power of the t-test is 0.95. That is, with probability 0.95 the t-test

will detect a di�erence in means of at least 174.79 at the given signi�cance level.

Because the mean of the two distributions is minute, we need a more powerful

test.

Since we ran both algorithms on the same problems, we can also use a paired

sample t-test, which is more powerful than the standard t-test. We again set the

null hypothesis to our earlier assumption that the means of the two distribu-

tions are equal. Running the paired sample t-test yielded p < 0:01. That is, the

probability of making an error in rejecting the null hypothesis is less than 0:01.

Closer inspection of the data reveals why this is the case. Inside-Outside per-

formed better than the online algorithm on each of the 50 grammars. However,

as is evident from the means and standard deviation, the absolute di�erence in

each case was quite small. We know that problem variance is minimized when

using the paired sample t-test [4]. So, because the unpaired t-test reported no

signi�cance and the paired t-test did report signi�cance, we can conclude that

the variance in log-likelihood is due almost entirely to problem instance rather

than choice of algorithm. So, as a purely practical matter, the performance of

the algorithms is virtually identical.

The same experiment was conducted with the ambiguous grammar shown in

table 3. The grammar is ambiguous, for example, because z z could be generated

by S ! A ! C C ! z; z or S ! BA with B ! S ! C ! z and A !
C ! z. The mean and standard deviation of the log likelihoods for the online

algorithm were � = �1983:15 and � = 250:95. These values for the Inside-

Outside algorithm were � = �1979:37 and � = 250:57. The standard t-test

returned a p value of 0:94 and the paired sample t-test was signi�cant at the 0:01

level. Again, inside-outside performed better on every one of the 50 grammars,

but the di�erences were very small.

5.1 Some Analysis

The Inside-Outside algorithm runs in O(n3) time in the size of the input [6].

This is because Inside-Outside uses dynamic programming to compute sentence

probabilities. Because we also compute sentence probabilities in the guise of

chart-parsing, our algorithm runs in O(n3) time in the size of the input.

Every iteration of the Inside-Outside algorithm however, requires the com-

plete sentence corpus. So, using the Inside-Outside algorithm in the context of

embedded agents, where the sentence corpus increases continuously with time,



means a corresponding continuous increase in memory. With our algorithm, the

memory requirements remain e�ectively constant.

One drawback of our approach is that learning good parameter estimations

requires manymore iterations than our Inside-Outside counterpart. For example,

when learning grammars in tables 2 and 3 we required 500 to 1000 iterations

whereas the Inside-Outside algorithm only needed 3-5 iterations.

6 Discussion

Our algorithm can loosely be set into an actor-critic framework [12]. In such

methods, the actor performs action selection and the critic criticizes the actor's

selections. Hence, the learning grammar M is the actor and the sets of his-

tograms fHO

r
j r 2 Rg and fHL

r
j r 2 Rg are the critics because M generates the

sentence corpus for each iteration (action selection) and the histograms critique

the selection. [12] note that actor-critic methods may be \more appealing in psy-

chological or biological models" because it is easier to \improve domain-speci�c

constraints".

Because our work is motivated by developmental psychology and the unsu-

pervised acquisition of language by embedded agents, we are interested in learn-

ing structural models of SCFG's. Remember that one appeal of our algorithm

is the ability to add new sentence data naturally and incrementally during the

learning process. But if we encounter a new sentence that our grammar cannot

parse, it is not clear how we should handle the situation. One idea is to add a

completely new set of productions so the sentence can be parsed, and then use

structural learning frameworks such as model merging [11] or move selection [2]

to generalize the grammar.

7 Conclusion

Most parameter learning algorithms for stochastic context-free grammars re-

tain the entire sentence corpus throughout the learning process. Incorporating

a complete memory of sentence corpora seems ill-suited for language acquisition

in embedded agents. We have introduced an incremental algorithm for learning

parameters in stochastic context-free grammars using only summary statistics

of the observed data. Empirical results demonstrate that the algorithm performs

as well as the Inside-Outside algorithm despite using only a statistical summary

of the data.
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