
Optimal Website Design with the Constrained
Subtree Selection Problem

Brent Heeringa and Micah Adler

Department of Computer Science
University of Massachusetts, Amherst

140 Governors Drive
Amherst, MA 01003

{heeringa,micah}@cs.umass.edu

Abstract. We introduce the Constrained Subtree Selection (CSS) prob-
lem as a model for the optimal design of websites. Given a hierarchy of
topics represented as a DAG G and a probability distribution over the
topics, we select a subtree of the transitive closure of G which minimizes
the expected path cost. We define path cost as the sum of the page costs
along a path from the root to a leaf. Page cost, γ, is a function of the
number of links on a page. We give a sufficient condition for γ which
makes CSS NP-Complete. This result holds even for the uniform proba-
bility distribution. We give a polynomial time algorithm for instances of
CSS where G does not constrain the choice of subtrees and γ favors pages
with at most k links. We show that CSS remains NP-Hard for constant
degree DAGs, but also provide an O(log(k)γ(d + 1)) approximation for
any G with maximum degree d, provided that γ favors pages with at
most k links. We also give a complete characterization of the optimal
trees for two special cases: (1) linear degree cost in unconstrained graphs
and uniform probability distributions, and (2) logarithmic degree cost in
arbitrary DAGs and uniform probability distributions.

1 The Constrained Subtree Selection Problem

In this paper, we study the optimal design of websites given a set of page topics,
weights for the topics, and a hierarchical arrangement of the topics. Automatic
website design provides a principled choice for information organization, facili-
tates individualized and user-centric site layout, and decreases the average time
spent searching for relevant information.

As an example, imagine that A Different Drummer’s Kitchen is creating a
new website for their catalog of kitchenware. They want a website where their
customers can quickly find information on specific products by descending a
hierarchy of general to specific categories, much like the Yahoo! portal. They
want to minimize the number of intermediate pages it takes to find pepper mills
but not at the expense of filling a page with links to marginally related products
like tea kettles, cookie cutters and aprons.

Constrained Subtree Selection (CSS) models these website design problems.
We suppose that prior to site development, topics are hierarchically arranged by

a designer to represent their natural organization. We represent this initial hier-
archy as a rooted, directed acyclic graph, called the constraint graph where the
nodes are categories, the leaves are topics and the edges are topical constraints.
A path through the constraint graph follows a general to specific trajectory
through the categories. For example, in the kitchenware hierarchy cutlery leads
to knives leads to paring knives. Note that a particular paring knife may belong
to other categories (like the knife manufacturer), and thus the constraint graph
may be a DAG that is not a directed tree.

A website should preserve this logical relationship in its own topology. We
represent websites as directed trees, where pages are represented by nodes and
links are represented by directed edges. We require that the directed tree satisfy
two conditions. First, there must be a one-to-one mapping M of nodes in the
website to nodes in the constraint graph. This is a constraint since adding new
nodes would infer structure that is not represented in the constraint graph.
Second, if categories in the constraint graph are not included in the website,
a user should still be able to descend naturally toward the desired topic. This
means that if page A descends directly from page B in the website then M(A)
must be reachable fromM(B) in the constraint graph. A necessary and sufficient
condition for both of these conditions to be satisfied is that the website be a
directed subtree of the transitive closure of the constraint graph. In this way, the
initial hierarchy offers a set of constraints on topic layout but frees the web site
developer to move specific pages to more general categories. Finally, we stipulate
that the subtree include the root and leaves of the constraint graph since they
represent the entry and endpoints of any natural descent in the website.

Our objective is to find the website which minimizes the expected time search-
ing for a topic. We say the cost of a search is the sum of the cost of the pages
along the search path. We represent page cost as a function of the number of
links on a page, so we call it the degree cost. Adding more links decreases the
height of the tree, but increases the time spent searching a page; minimizing the
number of links on a page makes finding the right link easy, but adds height to
the website. For this reason, we can also think of the degree cost as capturing
the inherent tension between breadth and depth. Different scenarios demand
different tradeoffs between these competing factors. For example, if network la-
tency is a problem when loading web pages then favoring flatter trees with many
links per page decreases idle waiting. In contrast, web browsers on handheld de-
vices have little screen area, so to reduce unnecessary scrolling it’s better to
decrease the number of links in favor of a deeper tree. In the spirit of generality,
we attempt to keep our results degree-cost independent. At times however, we
examine particular degree costs such as logarithmic and linear.

Naturally, some pages are more popular than others. We capture this aspect
with a probability distribution over the topics, or equivalently by topic weights.
Given a path, we say the weighted path cost is the sum of the page costs along
the path (i.e. the unweighted path cost) multiplied by the topic weight. Since we
want a website that minimizes the average search time for a topic, we take the
cost of a tree as the expected path cost for a topic chosen from the probability

distribution over the topics. An optimal tree is any minimal cost subtree of the
transitive closure of the constraint graph that includes the leaves and root.

We’re now in a position to define our model more formally. Let T be a
directed tree (a branching) with n leaves where leaf ui has weight wi. Let ui =
(ui1 , . . . , uim

) be a path from the root of T to the ith leaf of T . If δ(v) is the
out-degree of node v and γ is a function from the positive integers to the reals,
then the cost of ui is:

c(ui) =
m−1∑
j=1

γ(δ(uij))

and the weighted cost is wi · c(ui). The cost of T is the sum of the n weighted
paths:

c(T) =
n∑

i=1

wi · c(ui)

An instance of the Constrained Subtree Selection problem is a triple I =
(G, γ, (wi)) where G is a rooted, directed, acyclic constraint graph with n leaves,
γ is a function from the positive integers to the non-negative reals, and (wi) =
(w1 . . . wn) are non-negative, real-valued leaf weights summing to one. A solution
to I is a directed subtree T (hereafter a tree) of the transitive closure of G that
includes the leaves and root of G. An optimal solution is one that minimizes
the cost function under γ. Sometimes we consider instances of CSS with fixed
components. For example, we might study the problem when the degree cost is
always linear, or leaf weights form a uniform probability distribution. We refer
to these cases as CSS with γ or CSS with equal leaf weights so that it is clear
that γ and (wi) are not part of the input.

Websites are not the only realization of this model. For example, consider cre-
ating and maintaining user-specific directory structures on a file system. One can
imagine that the location of /etc/httpd may be promoted to the root directory
for a system administrator whereas a developer might find ~/projects/source
directly linked in their home directory. Similarly, users may have individualized
views of network filesystems targeted to their own computing habits. In this
scenario a canonical version of the network structure is maintained, but the CSS
problem is tailored to the individual. In general, any hierarchical environment
where individuals actively use the hierarchy to find information invites modeling
with CSS.

1.1 Results

In this paper, we give results on the complexity of CSS, polynomial time al-
gorithms and characterizations of the optimal solution for certain restricted in-
stances of CSS, and a polynomial time constant approximation algorithm for
fixed-degree constraint graphs in a broad class of degree costs.

First, we show a sufficient condition on the degree cost which makes Con-
strained Subtree Selection NP-Complete in the strong sense for arbitrary input

DAGs. Many natural degree costs (e.g., linear, exponential, ceiling of the loga-
rithm) meet this condition. Furthermore, this result holds even for the case of
uniform leaf weights.

Because of this negative result, we turn our attention to restricted scenarios
and approximation algorithms. We first consider the case of inputs where the
topological constraints of the graph are removed (i.e., where the constraint graph
allows any website tree to be constructed). Within this scenario, we consider
a general class of degree functions, called k-favorable degree costs, where the
optimal solution favors trees such that all the nodes have out-degree k or less.
We give an O(nk+γ(k)) time algorithm for finding an optimal tree when the
topological constraints of the graph are removed and when γ is non-decreasing,
restricted to functions with integer co-domains, and k-favorable. This result holds
for arbitrary leaf weights, and demonstrates that the computational hardness
of the CSS problem is a result of the conditions imposed by the constraint
graph. We also provide an exact characterization of the optimal solution for the
linear cost function (which is 3-favorable) in the case of a uniform probability
distribution and no topological constraints.

We next consider the case of bounded out-degree constraint graphs. We
demonstrate that when γ favors complete k-ary trees, CSS remains NP-Hard
for graphs with degree at most k +5 and uniform leaf weights. However, we also
give a polynomial time constant factor approximation algorithm for constraint
graphs with degree no greater than d and arbitrary leaf weights, provided that
γ is k-favorable for some k. The approximation ratio depends on both d and γ.
Additionally, we show the linear degree cost favors complete k-ary trees.

Finally, for arbitrary constraint graphs, γ(x) = dlog2(x)e, and uniform leaf
weights, we demonstrate that even though this case is NP-Complete, the depth-
one tree approximates the optimal solution within an additive constant of 1. Due
to space constraints, most of the proofs of our results appear in [1].

1.2 Related Work

Constrained Subtree Selection is related to three distinct bodies of work. The first
is work in the AI community by Perkowitz and Etzioni [2]. While the authors
are concerned with many issues related to building intelligent websites, they
concentrate on the index page synthesis problem which seeks to “automatically
generate index pages to facilitate efficient navigation of a site or to offer a novel
view of the site” using new clustering and concept learning algorithms which
harness the access logs of the website. Here efficient means making sure visitors
find their topic of interest (recall) and minimizing the amount of time spent
finding that topic (effort). The time spent finding a topic is measured by the
time it takes to scan successive pages for the right link and the overall number
of links taken. Notice their definition of effort strongly resembles our notion of
cost. In this light, our work may be viewed as supplying a model for the index
page synthesis problem as it relates to minimizing the average effort in finding
the topic of interest.

The Hotlink Assignment (HA) problem introduced by Bose et. al ([3], [4])
also relates to our problem. Here, a website is represented by a DAG with a prob-
ability distribution over the leaves. A constant number of arcs, called hotlinks,
are added to the DAG to minimize the expected distance from the root to leaves.
Since multiple paths from the root to a leaf may exist, the expected distance is
computed using the shortest path. The problem is NP-Hard for arbitrary graphs,
but tractable for binary trees with arbitrary probability distributions over the
leaves. Recently, the problem was revised so that nodes have a fixed page cost
proportional to the size of the web page they represent [5]. In this formulation,
the cost of a path is not its length, but instead the sum of the page costs on the
path. The problem seeks to assign at most k hotlinks per node to minimize the
expected page cost.

Hotlink Assignment (HA) is different from CSS for a number of reasons. The
first is how we model page cost. In HA, page cost does not change with the
addition of hotlinks. In CSS, the cost of a page is a function of the number of
links it contains. This means we can think of CSS as minimizing the expected
amount of choice a user faces when traversing a website as opposed to HA
which essentially minimizes the expected amount of time waiting for pages to
load. Note that the generality of our degree function means we can also include a
network latency term in to our degree cost. Another difference is how we view the
initial topologies. With HA, the DAG represents a website that needs improving.
In CSS, we take the DAG as a set of constraints for building a website. This
difference is both conceptual and technical. While the shortest path tree can be
extracted from the Hotlink DAG after the links are assigned, a tree with longer
paths cannot be considered. We consider all paths in our subtree selection since
longer paths are viewed in terms of constraints and not cost. Finally, HA assigns a
constant number of hotlinks where CSS has no restriction. The constant number
is important to HA because without this restriction, the optimal website would
always have hotlinks from the root to all the leaves. In CSS this corresponds to
a constant degree function where the optimal tree is always the depth-one tree.

Certain relaxed versions of the Constrained Subtree Selection problem bear
resemblance to the Optimal Prefix-free Coding (OPC) problem: The general
problem asks for a minimal prefix code for n weighted words using at most r
symbols where symbol i has cost ci ([6], [7]). This problem is equivalent to finding
a tree with n leaves where all internal nodes having degree at most r, the length
of the ith edge of a node is ci, and the external weighted path length is minimized.
There is no known polynomial time solution for the general problem, but it is
not known to be NP-Hard. When the costs are restricted to fixed integers, there
is an O(nC+2) time dynamic programming algorithm where C is the maximum
integer cost [8].

On the surface, our problems appear similar because they both ask to mini-
mize external weighted path cost—the sum of weighted path costs from the root
to each of the leaves. However the cost in OPC is edge-based, where the cost
of CSS is node-based. More appropriately, the node cost in CSS is dynamic;
adding an additional edge means the cost of the node changes. If we view the

...
s(k)

s(k)

...
|X |

...
|C|

3

C

X

Fig. 1. Setting up the constraint graph given an instance of Exact Cover by 3-sets.

node costs as edge costs, than adding an edge potentially changes the edge costs
of all its siblings. This difference, along with the lack of prior constraints on the
tree structure in prefix-free codes, distinguish the problems enough that it seems
difficult to transform one to the other. Still, by relaxing the graph constraints,
and restricting the degree cost, we can show that some instances of CSS are
exactly instances of OPC for a binary alphabet with equal character costs, and
that in more general cases, we can adapt portions of the dynamic programming
algorithm for finding optimal prefix-free codes to our find optimal trees in the
CSS problem.

2 Complexity

In this section we show that even when the leaf weights are equal, the CSS
problem is NP-Complete in the strong sense for a large class of degree functions.
The reduction is from Exact Cover by 3-Sets (XC3) [9] which, when given a set
X of 3k = n items and a set C of three item subsets of X, asks whether a subset
of C exists that exactly covers X. The related decision problem for CSS asks
whether a subtree of G exists with cost at most D.

Definition 1. Let γ be a non-decreasing function. If for all k ≥ 1, k ∈ Z+ there
exists some c > 0 and some function s(k) ∈ O(kc) such that

γ(s(k) + k + 1) > γ(s(k) + k) + γ(3)
3k

s(k) + 3k

then γ is degree-3-increasing

Many degree costs are degree-3-increasing. For example, the linear degree
cost, γ(x) = x, (choose s(k) = 7k), exponential degree cost γ(x) = exp(x) (again,
s(k) = 7k will work) and ceiling of the logarithm degree cost γ(x) = dlog2(x)e
(choose s(k) = 3k) all meet the definition. The following theorem tells us that
when γ is degree-3-increasing and in NP, that CSS with γ is NP-complete for
any DAG and any probability distribution.

Theorem 1. For any degree-3-increasing degree cost γ where γ is in NP, CSS
with γ is NP-Complete.

Proof. The theorem follows immediately from the following lemmas.

Lemma 1. For any degree-3-increasing degree cost γ, CSS with γ is NP-Hard

Proof. The reduction is from Exact Cover by 3-sets (XC3). Let (X, C) be an
instance of XC3 where |X| = 3k = n with k a positive integer, and C is a
collection of 3-element subsets of X. Furthermore, let γ be degree-3-increasing.
We will build a constraint graph such that (X, C) has an exact cover if and only
if we can find a subtree with cost

D = (s(k) + n)γ(s(k) + k) + nγ(3)

The idea is to create a constraint graph that affords a low cost solution when
an exact cover exists, but increases in cost when no exact cover is available.
Keeping this in mind, construct the constraint graph G = (V,E) from (X, C) in
the following way:

– Make a leaf node for each x ∈ X

– Make an interior node for each c ∈ C

– Make s(k) additional leaf nodes.
– Make a root node r and connect it to the s(k) leaf nodes and the c interior

nodes.
– For each c = {xi, xj , xk} ∈ C, create edges from c to xi, xj , and xk.

The topology of the constraint graph is given pictorially in Fig. 1. It has s(k)+n
leaf nodes and |C| internal nodes, each having degree 3. Let (G, γ, (wi)) be an
instance of CSS where wi = 1 for all i, G is the constraint graph formed from
(X, C), and γ is degree-3-increasing.

Suppose (X, C) has an exact cover, then choose a subtree T from G by
selecting the subtree with paths to the k interior nodes of G that partition X,
along with their corresponding paths to the n leaf nodes. T must also have s(k)
paths to the remaining s(k) leaf nodes. T has a root with degree s(k) + k and
k interior nodes each having degree 3. The length 1 paths each cost γ(s(k) + k)
and the n remaining paths, each have cost γ(s(k) + k) + γ(3) making the total
cost

(s(k) + n)γ(s(k) + k) + nγ(3)

Now suppose (X, C) does not have an exact cover. Any subtree of the transitive
closure of G must have s(k) edges to the s(k) leaf nodes and at least k + 1
additional edges to reach the remaining n leaves. Let e be the number of edges
leading directly from the root to some subset of the remaining n leaves; let f be
the number of edges from the root an interior node with degree 2 and; let g be
the number of edges from the root to an interior node with degree 3. Note that
e + f + g ≥ k + 1 and e + 2f + 3g = n. The cost of T is

(s(k) + n)γ(s(k) + e + f + g) + 2fγ(2) + 3gγ(3)

which, because γ is non-decreasing, is greater than or equal to

(s(k) + n)γ
(
s(k) + k + 1

)
> (s(k) + n)

(
γ(s(k) + k) + γ(3)

n

s(k) + n

)
= (s(k) + n)γ(s(k) + k) + nγ(3)

which is the cost of the subtree when an exact cover exists.

Lemma 2. For any degree cost γ in NP, CSS with γ is in NP.

Proof. Let I = (G, γ, (wi)) be an instance of CSS with γ in NP. Let T be a
solution to I and D the cost of T . We can use the polynomial time verifiers for
the out-degree of each node in T (since γ is in NP) to confirm the cost of each
node. WIth the costs of the nodes in hand, it’s straightforward to compute the
cost of T and verify that it is indeed D.

ut

Because CSS is not a number problem when the leaf weights are equal (i.e.
we can ignore them when computing cost), we can show that it is NP-Complete
in the strong sense for a broad class of degree costs.

Theorem 2. For any degree-3-increasing degree cost γ, γ in NP, if there exists
c > 0 such that γ(s(n/3) + n/3) in O(nc) then CSS with γ is NP-Complete in
the strong sense.

Proof. From Lemma 1 it’s clear CSS remains NP-Hard when the n leaf weights
are equal and since we γ is fixed, we need not worry about its encoding. The
only number we need to encode is the bound on cost D. Since D is bounded
by a polynomial in n, we know the magnitude of the maximum element can be
bound above above by a polynomial factor of the encoding of the instance. Since
γ is degree-3-increasing and in NP we have that CSS remains in NP and the
problem is NP-Complete in the strong sense. Note that many degree costs make
D polynomial in n. For example, γ(x) = x keeps D quadratic in n. ut

Finally, we note (without proof) that CSS is NP-Hard for many costs which
are not degree-3-increasing (e.g., the logarithmic degree cost) when considering
problem instances with arbitrary probability distribution.

3 Subtree Selection without Constraints

Imagine we are building a website without any prior knowledge of the organiza-
tion of the topics. The most natural solution is to build a website that minimizes
the expected search time for the topics, but has no constraints on the topology.
This design problem is an instance of CSS where any website is a subtree of the
transitive closure of the constraint graph. In this section we’ll show that these
instances are solvable in polynomial time for a broad class of degree functions.
This is interesting because it means the NP-Hardness of our problem comes from
the graphical constraints rather than the degree cost and leaf weights.

The unconstrained CSS problem also bears a resemblance to the Optimal
Prefix-free Code (OPC) problem. Both CSS and OPC attempt to minimize ex-
ternal weighted path cost, but with CSS, path cost changes with a change in
node degree. This distinction, along with the topological constraints, prevents us
from casting CSS as an Optimal Prefix-free Code problem. Still, in many circum-
stances we can show instances of CSS that equate to finding optimal Huffman
codes and that in more general cases, we can give a polynomial time solution by
adapting Golin and Rote’s dynamic programming algorithm for optimal prefix-
free codes with integer weights.

We begin with some definitions.

Definition 2 (full tree). A tree is full when every interior node has at least
two children.

Definition 3 (constraint-free graphs). A constraint graph G with n leaves
is called constraint-free when every full tree with n leaves is a subtree of the
transitive closure of G

Definition 4 (monotone tree). A tree is monotone when the leaf weights
cannot be permuted (among the leaves) to yield a tree of less cost.

Definition 2 is self-explanatory. Definition 3 means that G does not constrain
the optimal subtree. Definition 4 says if we listed the leaves in increasing order
by path cost, the weights of the leaves would be in decreasing order. From these
definitions it’s easy to see that every instance of CSS has at least one optimal
solution that is full and that all solutions to CSS are monotone when the the
graph is constraint-free.

The following definition is also useful because it gives us a bound on the
out-degree of any node in an optimal solution to the CSS problem where the
graph is constraint-free.

Definition 5 (k-favorability). A degree cost γ is k-favorable if and only if
there exists k > 0 such that any instance of CSS where G is constraint-free has
an optimal solution under γ where the out-degree of every node is at most k.

Many degree costs are k-favorable. For example, the linear degree function,
γ(x) = x is 3-favorable.

Lemma 3. The linear degree cost, γ(x) = x, is 3-favorable.

Proof. Let I = (G, γ, (wi)) be an instance of CSS where G is constraint-free
and γ(x) = x and T an optimal tree for I. When δ(v) ≥ 4 for some node v in
T we can split the node’s children proportionally among two additional nodes,
connect them to the original root and not increase the cost.

Let T be an optimal tree induced from a constraint-free graph with n leaves
under γ(x) = x. When the degree of a node v is greater than or equal to 4 we
can always split the node’s children proportionally among two additional nodes,
connect them to the original root and never increase the cost since:

γ(x) ≥ p(γ(dx/2e) + γ(2)) + (1− p)(γ(bx/2c) + γ(2))

where p is the proportion of weight in the left child of the root and (1 − p)
is proportion of weight in the right child of the root.

Interestingly, the linear degree cost is not 2-favorable. When a node has
out-degree 3 and none of the three subtrees has probability greater than the
sum of the remaining two subtrees (i.e. the weight of the subtrees is somewhat
uniform), we cannot transform the degree 3 node to a series of degree 2 nodes
without increasing the overall cost of the tree. To see this, imagine the binary
tree with three leaf nodes. Two paths from the root have length 2 and one
path has length 1. The length 2 paths each have total cost 4, while the length
1 path has total cost 2. If one of the leaf nodes has weight over 1/2 we can
choose it as the leaf on the length 1 path and the average path cost falls below
3, however when no such node exists it is advantageous to create a single node
with three paths, each having cost 3 making the average cost 3 as well. It is worth
noting that any instance of CSS where G is constraint-free and γ is 2-favorable
reduces to the optimal prefix code problem for a binary alphabet with equal
letter costs. In other words, Huffman’s greedy algorithm (see [10]) solves these
problems. Examples of degree costs that favor binary trees are γ(x) = dlog(x)e
and γ(x) = ex.

But what happens when γ is k-favorable but not k− 1-favorable and k > 2?
Asked differently, is there a polynomial time algorithm that solves (G, γ, (wi))
when G is constraint-free and γ is k-favorable? If we restrict γ to be non-
decreasing from the positive integers to the positive integers, then we can give
an O(nγ(k)+k) dynamic programming algorithm for finding the optimal tree.

We adapt the dynamic programming algorithm for finding optimal prefix-free
codes given by Golin and Rote ([8]) to the CSS problem when G is constraint-
free and γ is k-favorable, non-decreasing and maps the positive integers to the
positive integers. This adaptation is possible for many reasons. First, we have
an upper bound on cost when γ is non-decreasing and k-favorable. In prefix-free
codes, this equates to the character with largest cost. Second, the dynamic pro-
gramming algorithm works for integer character costs. Since γ maps the positive
integers to the positive integers, all the path costs take on integer values. Third,
prefix-free codes are monotonic and correspond to full, monotone trees. Since G
is constraint-free, we know that optimal subtrees exist which are full and mono-
tone. Fourth, in the unconstrained problem any two trees with leaves having
identical non-weighted path costs have equal total cost since the optimal tree is
monotone. This equivalence on trees helps reduce the search space in both OPC
and CSS, however the nature of search is different in the problems, creating a
divergence between the OPC and CSS algorithms.

When considering the cost of a tree, we can push a node’s degree cost to its
edges and view the tree as lopsided [11]. With lopsided trees, a node’s depth is
equal to its path cost from the root. For example, a lopsided tree for the linear
degree cost is given in Fig. 2 (a). We can view our trees as lopsided too, but

A C

0

1

2

3

4

5

6

LEVEL

γ(x) = x

(a) (b)

FD EFD E

C

A B
(c)

Fig. 2. (a) A tree with 6 leaves depicted as a lopsided tree under the linear degree cost.
Truncations at level-3 (b) and level-1 (c) of the tree in (a).

prefer to retain the traditional meaning of depth (the number of edges between
a node and the root) and use level to indicate a node’s path cost. In other words,
if C is the path cost from the root of T to some node v in T , then v is at level C
and level(v) = C.

Golin and Rote associate a signature with each tree level so that if a tree has
l levels, then it has l signatures. A signature corresponds to an entry in their
dynamic programming table. Each entry records the minimum cost of all trees
bearing that signature. Each cost can be written in terms of the cost of the tree
associated with the signature that precedes it. Likewise, given a tree’s signature
at level i, it’s possible to enumerate what other signatures follow it, in essence,
finding all the trees whose signature at level (i + 1) comes from a tree matching
the signature at level i. This provides a natural method for filling in the dynamic
programming table.

Our dynamic programming table is similar to Golin and Rote’s but we are
forced to fill in the entries differently. Notice that in our problem decreasing
the out-degree of a node may significantly change the structure of the lopsided
tree—adding or removing an edge from a node changes the cost of the entire
subtree rooted at that node. With prefix-free trees, adding or removing an edge
from a node affects only the edge and its descendants. Golin and Rote exploit
these properties when filling in table entries. We must take a different approach.
For clarity and completeness, we give adapted definitions for tree signature,
truncation, and cost first presented in [8].

Definition 6. Let T be a tree. The level-i-truncation of T , denoted Trunci(T),
prunes away all nodes of T with parents at levels deeper than i.

For example, the level-3- and level-1-truncations of the tree in Fig. 2 (a) are
given in Figs. 2 (b) and (c) respectively. Truncation helps us define tree cost and
tree signature:

Definition 7. Let T be a tree with n nodes, v1, . . . , vn, given by level in in-
creasing order. Let w1 . . . , wn be the leaf weights given in decreasing order. The

level-i-cost of T is

ci(T) =
m∑

j=1

level(vj)wj +
n∑

s=m+1

i · ws

where m is the number of leaf nodes in Trunci(T).

It’s easy to see that the level-i-cost of a tree is a lower bound on the overall
cost of a tree. It records the exact cost of the m ≤ n leaves but only the cost to
level i of the remaining n −m leaves. When m = n, the cost of the tree is the
same as the level-i-cost. We associate the cost of a tree with its signature:

Definition 8. Let T be a tree. The level-i-signature of T is the (γ(k)+1) vector:

sigi(T) = (m, l1, . . . , lγ(k))

where m is the number of leaf nodes at levels 0 through i and lj is the number
of nodes at level i + j in Trunci(T).

For example, the level-4-signature of the tree in Fig. 2 (a) is (1, 3, 2, 0) and
the level-3-signature of the same tree is (0, 2, 3, 0). We equate the signature
of a tree (m, l1, . . . , lγ(k)) with an entry in the dynamic programming table
MIN[m, l1, . . . , lγ(k)]. This entry gives the minimum cost of all trees with signa-
ture (m, l1, . . . , lγ(k)). Filling in the table is tantamount to finding the ways two
trees with the same signature at level i can differ in their level-(i + 1)-signature.

Golin and Rote show that if T is a tree with level-i-signature sigi(T) =
(m, l1, . . . , lγ(k)), and T ′ is a tree such that Trunci(T ′) = Trunci(T) then Trunci+1(T ′)
differs from T in at most l1 ways. This is because nodes at levels-(i + 2) and
deeper cannot have children under a level-(i + 1)-truncation—only the nodes at
level (i + 1) are candidates. Some number q of these nodes are internal, and the
choice of q uniquely determines the signature at level (i + 1). This is not true of
our problem. Because our node cost is dynamic, we must develop a process quite
different than the ones used for the OPC problem. We are left then, with not
only choosing how many of the level (i+1) nodes will be internal, but explicitly
choosing among those, which will have degree 2, degree 3, and so on. We denote
these choices with a (k + 1)-vector called a child vector:

Definition 9. Let T be a tree with sigi(T) = (m, l1, . . . , lγ(k)). Let a = (a0, . . . , ak)
be a level-i-child vector of T where a0 is the number of nodes at level-(i+1) that
are internal to T and each aj is the number among those a0 having degree j.

Definition 9 gives us a way to talk about how signatures at level i relate to
signatures at level (i + 1). First, note that a0 ≤ l1 and that a1 = 0 since there is
always an optimal tree without single out-degree nodes. Also, since

∑k
j=2 aj = a0

we know there are O(nk−1) choices for a. In other words, given a level-i-signature,
it is the possible parent of O(nk−1) level-(i+1)-signatures. The following Lemma
tells us exactly which signatures are children of the level-i-signature.

Lemma 4. Let T be a tree with sigi(T) = (m, l1, . . . , lγ(k)) and a = (a0, a1, . . . , ak)
be the level-i-child vector of T yielding T ′, then sigi+1(T ′) = (m′, l′1, . . . , l

′
γ(k))

where
(m′, l′1, . . . , l

′
γ(k)) = (m + l1, l2, . . . , lγ(k), 0) + b

and b = (b0, . . . , bγ(k)) where b0 = −a0 and bγ(i) = i · ai for 2 ≤ i ≤ k

Proof. Let T and be a tree with sigi(T) = (m, l1, . . . , lγ(k)) and a = (a0, . . . , ak)
be the level-i-child vector of T yielding T ′. Given a it is straightforward to
compute sigi+1(T ′): We know exactly how many of the l1 nodes are internal
nodes at level (i + 1) and the distribution of degrees among them. To calculate
sigi+1(T ′) = (m′, l′1, . . . , l

′
γ(k)) we shift the levels from sigi(T) to the left one

index, subtract away the number of internal nodes a0 from m + l1, and then
use a to count the new nodes at each level. Note that if there are aj degree-j
nodes then we must add an additional j · aj nodes to level γ(j). This gives us
the (γ(k) + 1)-vector:

b = (−a0, b1, . . . , bγ(k)) where bγ(j) = j · aj for 2 ≤ j ≤ k

Note that b0 = −a0 since a0 of the nodes are internal. Adding b component wise
to the shifted signature of T at level i gives us:

(m′, l′1, . . . , l
′
γ(k)) = (m + l1, l2, . . . , lγ(k), 0) + b

ut

As an example, consider the tree in Fig. 2 (a) and its level-3-signature
(0, 2, 3, 0). The level-i-child vector for this tree is (1, 0, 1, 0) since one of l1 the
nodes is internal, and it is a degree 2 node, we have b = (−1, 0, 2, 0). Shifting
the level-3-signature and adding b gives us (2, 3, 0, 0) + (−1, 0, 2, 0) = (1, 3, 2, 0)
which is exactly the level-4-signature.

While Lemma 4 tells us how level-i-signatures relate to level-(i+1)-signatures,
it does not tell us how the costs relate. The second part of Lemma 5 from [8]
tells us that if T is a tree with sigi(T) = (m, l1, . . . , lγ(k)) then

ci+1(T) = ci(T) +
n∑

j=m+1

wj (1)

Fortunately, this result holds for all monotone, lopsided trees with level-i-
costs defined as we did in Def. 7. To see why, recall that the level-i-cost of
T gives the exact weighted cost of all m leaves at or shallower than level-i in
addition to the cost up to level i of the remaining n −m leaves. When moving
from level-i to level-(i + 1), we know l1 − a0 of the nodes become leaves and we
need to record their exact cost, but the remaining n−m− (l1− a0) leaves must
also incremented by a level in the cost structure. Taken together, we need to
update the n−m deepest paths which gives us the summation term in 1.

We’ve now established a method for filling in the dynamic programming
table. What’s left to give is an ordering of the table entries that is consistent

with their dependency structure. Golin and Rote give a linear ordering of the
table entries and demonstrate that it respects the dependencies. This ordering
works for our problem too, but their proof of this fact no longer applies because
our table entries have a different dependency structure. We repeat the ordering
here and prove that under it, we never expand a node until all its parents have
been processed.

Definition 10. Let S = (m, l1, . . . , lγ(k)) and S′ = (m′, l′1, . . . , l
′
γ(k)) We say

that S � S′ if and only if

(m + l1 + · · ·+ lγ(k),m + l1 + · · ·+ lγ(k)−1, . . . ,m + l1,m)

is lexicographically smaller than

(m′ + l′1 + · · ·+ l′γ(k),m
′ + l′1 + · · ·+ l′γ(k)−1, . . . ,m

′ + l′1,m
′)

As an example, compare the vector for the level-3-signature of Fig. 2 (a)
(5,5,2,0) with the level-4-signature of Fig. 2 (a) (6,6,4,1). Since 5 < 6 we would
expand the level-3-signature before the level-4-signature. If the first positions of
the vectors had the same magnitude we would compare the the second positions
and so on. This ordering guarantees that we will never expand a signature until
all its parents are expanded. As stated in the main text, we cannot apply Golin
and Rote’s result because of the differences in dependency structure between
OPC and CSS.

Lemma 5. Let S = (m, l1, . . . , lγ(k)) and S′ = (m′, l′1, . . . , l
′
γ(k)). If a = (a0, . . . , ak)

takes S to S′ then S � S′.

Proof. Let S = (m, l1, . . . , lγ(k)) and S′ = (m′, l′1, . . . , l
′
γ(k)) such that S yields

S′ with level-i-child vector a = (a0, . . . , ak). If a0 > 0 then m′ + l′1 + · · ·+ l′γ(k) >
m + l1 + · · ·+ lγ(k) since a0 of the l1 nodes are replaced by at least 2 · a0 nodes
so S � S′. If a0 = 0 then each term s′i in S′ is greater than or equal to its
corresponding term si in S with at least one of the final terms in S′ exclusively
greater since at least one of the li terms is non-zero. Again, in this case we have
S � S′. ut

Since we have a consistent ordering for filling in the table entries, as well as
a method for knowing the dependencies among the entries, we can build trees,
level by level, using the level-i-signatures. A description of the algorithm is given
in the Appendix under Fig. 3. Note that all the table entries are initially set to
∞ save the entries of all the depth-one trees, which we set to 0. As previously
shown, checking the dependencies for a table entry takes time O(nk−1) and there
are O(nγ(k)+1) entries to check, so the total time of the algorithm is O(nγ(k)+k).
Finally, note that we store the child vectors which lead to the minimum cost
for each level in the EXP table entries. We can recreate the tree corresponding
to the optimal cost by using the child vectors to backtrack through the table
entries.

Initialization
1 MIN[m, l1, . . . , lγ(k)] ←∞ for all m + l1 + · · ·+ lγ(k) ≤ n
2 for j ← 2 to γ(k)
3 do MIN[m, l, 0, . . . , 0] ← 0 for l = 2 to γ(k)

Body
4 Foreach (m, l1, . . . , lγ(k)) in lexicographic order from (0, 2, 0, . . . , 0) to (n, 0, . . . , 0)
5 do cost← MIN[m, l1, . . . , lγ(k)] +

Pn
s=m+1 ws

6 Foreach expansion vector (a0, . . . , ak) where

a0 ≤ l1, a1 = 0, and
Pk

t=2 at = a0

7 do b = (b0, . . . , bγ(k)) where
b0 = −a0 and bγ(i) = i · ai for 2 ≤ i ≤ k

8 (m′, l′1, . . . , l
′
γ(k))← (m + l1, l2, . . . , lγ(k), 0) + b

9 if m′ + ll1 + · · ·+ l′γ(k) ≤ n

10 then MIN[m′, l′1, . . . , l
′
γ(k)] ← min(MIN[m′, l′1, . . . , l

′
γ(k)], cost)

11 EXP[m′, l′1, . . . , l
′
γ(k)] ← (a0, . . . , ak)

12 MIN[n, 0, . . . , 0] is the cost of the optimal subtree
13 EXP[n, 0, . . . , 0] tells us how to create the optimal subtree

Fig. 3. The algorithm for finding minimal cost subtrees with k-favorable degree costs
from constraint-free graphs with arbitrary leaf weights

4 Approximations

Many hierarchies have the property that no category has more than a con-
stant number of subcategories. This means the out-degree of every node in the
constraint graph is bounded above by a constant. In this section we give two
theorems dealing with such cases. The first theorem says that even if we restrict
the problem to DAGs of constant maximum degree, CSS remains NP-Hard for
certain degree costs. The second theorem gives an O(log(k)γ(d + 1)) approx-
imation algorithm for all instances of CSS where the maximum degree of the
constraint graph is bounded above by some constant d, and γ is k-favorable and
has a lower bound of 1.

Let a cost function be k-tree optimal if, for all instances of CSS with constraint-
free graphs and equal leaf weights, the unique optimal website tree with kc leaves,
for any positive integer c, is a complete k-ary tree of depth c. For example, in
subsection 5.1 we show that the linear degree function is 3-tree optimal.

Theorem 3. For any cost function that is k-tree optimal, for any k ≥ 3, the
CSS problem is NP-Hard even when restricted to the uniform probability distri-
bution and DAGs with degree at most k + 5.

Proof. Consider the Partitioned Exact Cover by 3 Sets problem, which we define
here, and abbreviate by PX3S. The input is a set S of 3q elements, where q is an
integer, a collection C of subsets of S of size 3, and a partition P of the collection
C into exactly q cells. We ask whether there is an exact cover of S that uses
exactly one subset from each cell of P .

−nodesP

C −nodes

S−leaves

dummy
nodes

Fig. 4. An example DAG construction for the case where k = 3 and q is a power of 3.

The proof is in two parts. We first show that the PX3S problem is reducible
to the CSS problem with a k-tree optimal cost function, restricted to DAGs of
degree at most k + r− 1, where r is the maximum number of subsets in any cell
of the partition P . We then show that the PX3S problem is NP-Complete even
when we restrict r to six.

We construct a CSS problem with S leaves augmented by a number of dummy
leaves to be made precise below. We refer to the former as S-leaves. We use the
uniform probability distribution. The DAG we use has a single node for each
cell of the partition P , called a P -node, as well as a single node for each of the
subsets in C, called a C-node. Each P -node x points to the (at most r) C-nodes
that belong to the cell for x. In addition, x points to k − 1 dummy nodes only
used by x, and each of these in turn point to k distinct dummy leaves. There
are also an additional k − 3 dummy nodes for x. Let y be a C node pointed to
by x. y points to these k − 3 dummy nodes, as well as to the 3 S-leaves for the
subset represented by y.

If q is a power of k, then we are done merely by connecting to the P -nodes
using a complete k-ary tree of depth log3 q. See Figure 4 for an example of this.
If not, let t be the smallest power of k such that t > q. We add t − q complete
k-ary trees of height two to the DAG, and then connect to these nodes as well
as the P -nodes using a complete k-ary tree of depth dlog3 qe.

Claim. This DAG has a complete k-ary tree as a subgraph iff the original PX3S
input was a YES instance.

To see that this claim is true, note that a YES instance of PX3S can be
converted into a complete k-ary tree simply by having each P -node point to the
single C-node that corresponds to the subset of S included in the solution to
the PX3C input. Each P -node also points to all of its k− 1 child dummy nodes,
which in turn point to their dummy leaves.

For the other direction of the if and only if, note that for any possible complete
k-ary tree, the distance from the root to any S-leaf must be exactly dlogk qe. This
implies that each S leaf must have a parent that is a C-node. Thus, to have a
complete k-ary tree, each P -node must have exactly one C-node as a child. The
set of such C-nodes defines a solution to the PX3S problem.

T T TF F F FTTF

Elements

Sets

Fig. 5. An example variable structure. The sets (in the top row) point to the elements
(the bottom row) that they contain. This does not include the elements for each clause.
Note also that the partition of the sets is depicted.

From this claim, we see that PX3S reduces to CSS, since the complete k-ary
tree is the unique optimal solution to the unconstrained version of the problem,
and thus cannot be matched by any other solution.

We next show that PX3S is NP-Complete by a reduction from Not-All-Equal-
3-SAT (denoted here by NE3SAT). In order to do so, we start by taking the
NE3SAT input φ, and converting it to the formula φ′, where each clause in φ
appears in φ′ twice: once as it is in φ, and once with each literal negated from
its value in φ. It is easy to see that φ′ is valid iff φ is valid. Furthermore, we shall
take advantage of the facts that (a) each variable in φ′ appears as many times
negated as unnegated, and (b) each such pair of clauses in φ′ must have exactly
3 true literals in any valid assignment to the variables.

We next describe a variable structure used for each variable x. Let n(x) be
the number of appearances of x in the formula (exactly half of which will be
negated). There will be n(x) + 4 3-sets for x, as well as n(x) + 6 elements of S
for x. We denote the 3-sets c1, . . . , c`, ` = n(x)+ 4, and the elements s1, . . . , sm,
m = n(x) + 6. The set c1 contains s1, s2 and s3. The set c2 contains s1, s2 and
s4. The set c`−1 contains sm−3, sm−1 and sm. The set c` contains sm−2, sm−1

and sm. For 3 ≤ i ≤ `− 2, ci contains si and si+2, as well as a third element to
be described later. An example of this is depicted in Figure 5.

It is now not difficult to see that in any possible exact three cover, it must be
the case that the cover includes either exactly those sets cj such that j = 1 mod 4
or j = 0 mod 4, or those sets cj such that j = 2 mod 4 or j = 3 mod 4. The
first of these will represent that variable being set to FALSE, and the second
will represent that variable being set to TRUE. We partition the sets c1, . . . , c`

into consecutive pairs; each of these pairs forms one cell of the final partition P .
For each pair of clauses in φ′ (that corresponded to a single clause in φ), we

have a set of six elements: one for each literal. Each of these elements is used as
the remaining element of a set ci, for 3 ≤ i ≤ `− 2. In particular, if the literal is
x, then we use a set ci for the variable x such that i = 1 mod 4 or i = 0 mod 4.
If the literal is x, then we use a set ci for the variable x such that i = 2 mod 4
or i = 3 mod 4.

Finally, for each pair of clauses we have a set of six sets that form a single
cell of the partition C. Since the literals in the first clause in the pair are negated
versions of the literals in the second clause, there are exactly six ways to pick
three literals set to false in a valid assignment of variables in this pair of clauses.
Each of these last six sets contains the three elements corresponding to the false
literals for one of these six settings.

It is now not difficult to see that there is an exact three cover for our con-
structed PC3S problem if and only if there is a valid (not all equal) assignment
to the variables of φ. Furthermore, each cell of the partition P has at most 6
subsets.

Theorem 4. For any constraint graph G with m nodes where every node has
out-degree at most d and for every k-favorable degree cost γ where γ is bounded
below by 1, CSS with G and γ has a O(m2) time O(log(k)γ(d+1))-approximation
to the optimal solution.

Proof. We begin by giving a lower bound on any instance of CSS where the
degree cost is k-favorable and bounded below by 1. Take W as the probability
distribution over leaf weights, W (x) as the total weight of the leaves in the
subtree rooted at x and H as the entropy function.

Lemma 6. For any k-favorable degree cost γ with γ bounded below by 1, H(W)
log(k)

is a lower bound on the cost of an optimal solution to CSS with γ.

Proof. Let I = (G, γ, (wi)) be an instance of CSS where γ is k-favorable, and
γ(x) ≥ 1 for all x ≥ 1. Let T be an optimal tree for I. Now consider the tree
T ′ corresponding to the optimal prefix-free code for n words weighted by (wi)
using a k-character alphabet where the cost of each character is 1. By Shannon’s
theorem, the expected path length of T ′ is bounded below by H(W)

log(k) . If c is the
cost function under γ and c′ is the cost function for γ(x) = 1 then c′(T) is a
lower bound on c(T). But c′(T ′) must be a lower bound on c′(T), so H(W)

log(k) is a
lower bound on c(T).

Our approximation algorithm also requires the following result.

Lemma 7. For any tree with with weights on its m nodes, there exists one node,
which, when removed, divides the tree into subtrees where every subtree has at
most half the weight of original tree. Furthermore we can find this node in O(m)
time.

Proof. Let T be a tree with weights on its m nodes. Let W be the sum of all the
weights. If we do a pre-order traversal of the tree, assigning interior nodes an
additional new weight which is the sum of the additional weights of its children
plus its own regular weight, then the first node we encounter with new weight
exceeding half of W should be removed.

Claim. The node we remove divides the tree into subtrees where each subtree
has at most half the weight of the original tree.

It’s clear the children of the removed node are all roots of new subtrees, each with
weight less than half of W since their parent is the first node in the pre-order
traversal having exceeding half the total weight. Likewise, the root of the original
tree forms a new subtree with weight less than half ofW because the total weight
of the subtree rooted at the removed node exceeds half of W. Calculating W
and performing the pre-order traversal takes time O(m).

Let I = (G, γ, (wi)) be an instance of CSS where where every node in G
has out-degree at most d and γ is k-favorable. Extract any spanning tree T
from G. Using Lemma 7 we can identity a node in T called the splitter which,
when removed, divides T into subtrees where each subtree has at most half the
probability mass of T . In our algorithm, we don’t remove the splitter from the
tree but rather, remove the edge(s) connecting it to its parent(s). We reconnect
the splitter to the root of T . Recursively apply this procedure on the subtrees
rooted by the children of the root of T and call the final tree T ′. Note that T ′

is still a subtree of the transitive closure of G since the splitter node is always
descendent of the root of the tree under consideration. If G has m nodes than
extracting a spanning tree from G takes O(m) time. The complete procedure
takes O(m2) time since we apply Lemma 7 to all m nodes m times.

Claim. If r and s are nodes in T ′ where r is the grandparent of s, then W (r) ≥
2 ·W (s)

This claim follows immediately from the construction of T ′ with respect to
Lemma 7. Since any two hops in T ′ divides the probability mass of the subtree
in half, we know the depth of leaf i is bounded above by −2 log2(wi). Since each
node in T ′ has degree at most d + 1, the cost of T ′ is at most

2 · γ(d + 1)
n∑

i=1

wi(− log2(wi)) = 2 · γ(d + 1)H(W)

Since O(γ(d + 1)H(W)) approximates the lower bound of H(W)
log(k) by a multi-

plicative factor of O(log(k)γ(d + 1)) we have an O(m2) time, O(log(k)γ(d + 1))
approximation algorithm to all instances of CSS where G has no nodes with
degree greater than d and γ is k-favorable. ut

5 Leaves of Equal Weights

It is easy to imagine nascent companies building websites without any prior pop-
ularity statistics on their products. To gather such statistics, they may want a
website which puts all their products on an equal footing. Finding the optimal
website for equally-weighted topics corresponds to instances of CSS with a uni-
form probability distribution over the leaves. We characterize optimal trees for
these instances of CSS for the linear degree cost when the graph is constraint-
free, and for the logarithmic degree cost for any DAG.

5.1 Linear Degree Cost

Characterizing the optimal tree for the linear degree cost in constraint-free
graphs involves three parts. First, we push all the out-degree-two nodes in an
optimal tree down toward the leaves so that all but a few interior nodes have
out-degree-three. Next, we show that balancing the tree decreases its cost, and

finally, we show an optimal arrangement of the leaves for the balanced tree. All
the results in this section assume a constraint-free graph, equal leaf weights,
and the linear degree function, γ(x) = x. Additionally, we use the term de-
gree in lieu of out-degree since we only concern ourselves with the out-degree of
any node. Since γ is 3-favorable, we always assume the optimal trees have only
out-degree-two and out-degree-three nodes.

A B

A

B

l(A) l(B)

c(A) c(B)
l(A)

l(B)

c(A)

c(B)

C D

l(C) l(D)

c(C) c(D)

ED

l(E)l(D)

c(E)c(D)

E

l(E)

c(E)

C

l(C)

c(C)

Fig. 6. (left) A degree 2 node with one degree-two child and one degree-three child.
(right) The node after the transformation.

A B

A B

l(A) l(B)

c(A) c(B)
l(A) l(B)

c(A) c(B)
C D

l(C) l(D)

c(C) l(D)

C D

l(C) l(D)

c(C) l(D)

Fig. 7. (left) A degree-two node with two degree-two children. (right) The node after
the transformation.

C

A B

A B

l(A) l(B)

c(A) c(B)
l(A) l(B)

c(A) c(B)

C

Fig. 8. (left) A degree-two node with one degree-two child and one leaf child. (right)
The node after the transformation.

Theorem 5. If (G, γ, (wi)) is an instance of CSS where G is constraint-free,
γ(x) = x, and the n leaf weights are equal, then if n ≤ 2·3k, where k = blog3(n)c,

D

A B

l(A) l(B)

c(A) c(B)

C

l(C)

c(C)

A B

l(A) l(B)

c(A) c(B)
C D

l(C)

c(C)

Fig. 9. (left) A degree-two node with one degree-three child and one leaf child. (right)
The node after the transformation.

A B A B

l(A) l(B)

c(A) c(B)

l(A) l(B)

c(A) c(B)

C D

l(C) l(D)

c(C) c(D)

ED

l(E)l(D)

c(E)c(D)

E

l(E)

c(E)

C

l(C)

c(C)

F

l(F)

c(F)

F

l(F)

c(F)

Fig. 10. (left) A degree-two node with two degree-three children. (right) The node
after the transformation.

an optimal tree has cost
3nk + 4(n− 3k)

otherwise it has cost

3(k + 1)(3k+1)− ((3k+1 − n)(3(k + 1) + 2))

Proof. We begin by showing the existence of an optimal tree with the following
property:

Property 1. Every nodes has degree-two or degree-three. Additionally, all nodes
with degree-two are only parents of leaves.

Lemma 8. If (G, γ, (wi)) is an instance of CSS where G is constraint-free, the
leaf weights are distributed uniformly, and γ(x) = x then there is an optimal tree
with Property 1.

Proof. The proof is by cases. We know an optimal tree exists with only degree-
two and degree-three nodes since γ(x) is three-favorable. Suppose this optimal
tree has an interior degree-two node which is the grandparent or some earlier
ancestor of a leaf node. There are five possible combinations of node degrees for
the children of this interior node. We’ll show that in each case, we can push the
degree two nodes down in the tree without increasing the overall cost. In our
analysis, we’ll let l(a) be the number of leaves in subtree rooted at node a (which
corresponds to the number of paths through node a) and we’ll let c(a) be the
total non-weighted cost of the subtree rooted at a.

– Consider a degree-two node with one degree-two child and one degree-three
child like the one given on the left in Figure 6. Let l(A) ≥ l(B) and T =
c(A) + c(B) + c(C) + c(D) + c(E). The cost of the tree is 4(l(A) + l(B)) +

5(l(C) + l(D) + l(E)) + T , but the tree on the right has total cost 3l(A) +
5(l(B) + l(C) + l(D) + l(E)) + T which has cost no greater than the tree on
the left since l(A) ≥ l(B).

– Consider a degree-two node with two degree-two children like the one given
on the left in Figure 7. Let l(A) ≥ l(B) ≥ l(C) ≥ l(D) and T = c(A) +
c(B)+ c(C)+ c(D). The cost of the tree is 4(l(A)+ l(B)+ l(C)+ l(D))+ T ,
but the tree on the right has cost 3(l(A)+ l(B))+5(l(C)l(D))+T and since
l(A)+ l(B) ≥ l(C)+ l(D) we know the cost of the tree never increases when
transforming the structure from the left figure to the right figure.

– Consider a degree-two node with one degree-three child and one leaf child like
the one given on the left in Figure 9 where l(A) ≥ l(B) ≥ l(C) ≥ l(D) = 1
and T = c(A) + c(B) + c(C) + c(D). The cost of the left tree is

5(l(A) + l(B) + l(C)) + 2l(D) + T ≥ 4l(A) + 5(l(B)) + l(C)) + 3l(D) + T

≥ 4(l(A) + l(B) + l(D)) + 5(l(C) + T

≥ 3l(A) + 4l(B) + 5(l(C) + l(D)) + T

> 3(l(A) + l(B)) + 5(l(C) + l(D)) + T

which is the cost of the right tree. So transforming the left tree to the right
tree always decreases the total cost.

– Consider a degree-two node with one degree-two child and one leaf child like
the one given on the left in Figure 8 where l(A) ≥ l(B) ≥ l(C) = 1 and
T = c(A) + c(B) + c(C). The cost of the tree on the left is

4(l(A) + l(B)) + 2l(C) + T ≥ 3(l(A) + l(C)) + 4l(B) + T

> 3(l(A) + l(B) + l(C)) + T

which is the cost of the tree on the right. So transforming the left tree to the
right tree always decreases the cost.

– Consider a degree-two node with two degree-three children like the one on
the left in Figure 10. Transforming the left tree into the right tree keeps the
cost of the tree invariant because of the symmetry between two degree-three
nodes and three degree-two nodes. In each arrangement, the path cost is
always five from the root to the grandchildren.

Since these cases are exhaustive and since we never increase the cost of the tree
by pushing degree-two nodes down in the topology, we can always transform an
optimal tree into another optimal tree where every ancestor above the parent of
a leaf has degree three.

Next we show that making a tree more balanced only improves the overall
cost of the tree. In addition we characterize the fringe of the tree.

Lemma 9. If (G, γ, (wi)) is an instance of CSS where G is constraint-free,
γ(x) = x, and the leaf weights are distributed uniformly, then any optimal tree
having Property 1 has the following properties:

(a) no two leaves differ in depth by more than one.
(b) degree-two internal nodes have the same depth.
(c) no internal node has degree greater than any other internal node of less depth.
(d) no degree-three internal nodes have the same depth of a leaf.

Proof. We begin by proving (a). Let T be an optimal tree meeting Property 1.
Such a tree exists by by Lemma 8. Let a and b be leaf nodes and a′ and b′ be
their respective parents. Suppose that depth(a) > depth(b) + 1, then if the path
cost to b′ is 3k for some non-negative integer k, the path cost to a′ must be at
least 3(k + 2). We can always move a to b′ and decrease the cost of the tree:
If b′ is a degree-two node, we can add a leaf and increase the overall cost by
3k + 5. If b′ is a degree-three node, we can make b an internal degree-two node
and increase the overall cost by 3k + 7. If a′ is a degree-two node, removing a
saves us 3k +10 and if a′ is a degree-three-node, removing a saves us 3k +11. In
all four combinations of leaf removal from a′ and leaf addition to b′ we decrease
the cost of the tree, a contradiction of the optimality of T , so all leaves of T
differ in depth by at most one.

Since all degree-two nodes are only parents of leaves, and all leaves differ
in depth by at most one, to prove (b) and (c), we need to show that if b is a
leaf at depth k with a degree-two parent b′, that a′ cannot be a degree-three or
degree-two parent of a k+1-depth leaf. Suppose this were true, then we can add
a leaf to b′, increasing the cost by 3k + 2 and remove a leaf at a′, decreasing
the cost by at least 3k+4, giving us at least a net savings of two, a contradiction.

Since T has properties (a), (b), and (c), to prove (d), we need only show that
if a is a leaf node at depth k + 1 with a degree-three parent node a′ at depth k,
that no leaf b exists at depth k. Suppose this were true, then we could make b
an internal node (rename it b′′) with two children a and b at a cost of 3k + 4,
but removing a from a′ saves us 3k + 5, again, contradiction of optimality.

At this point we know the exact structure of an optimal tree T . Lemma 8 and
property (a) of Lemma 9 tell us that the tree is balanced, and that any degree-
two node must be the parent of only leaf nodes. Property (b) restricts degree-
two nodes to parents of leaves at the lowest depth, so that if T has n leaves, it
always begins with a complete tertiary tree of height blog3(n)c. Finally, property
(c) implies that a leaf has a degree-three parent, only when all the leaves of the
tree have the same depth. In total, given n leaves, we build the largest complete
tertiary tree of size k = blog3(n)c, then add additional leaves by making leaves of
the height-k tertiary tree into degree-two parents of leaves, and finally adding an
additional leaf to the binary nodes when no leaves at depth k remain. This means,
the bottom row of the optimal tree gets filled with degree-two nodes first and
then, when additional leaves are required, the degree-two nodes are expanded to
degree-three nodes. Given this fixed structure, we can give an exact measure of
its cost. When n ≤ 2·3k we know the bottom row is exclusively degree-two nodes,
so the total cost of the optimal tree is 3nk+4(n−3k) where the first component

of the sum is the cost of the complete tertiary tree, and the second component
of the sum is the cost of the additional leafs. When the bottom row contains
leaves coming from degree-three parents, we can think of the cost of the optimal
tree in terms of subtracting away from the complete tertiary tree of depth k +1.
Making a degree three node a degree two node means removing one leaf which
reduces the overall cost by 3(k + 1), but since the degree on the parent changes,
each sibling path is reduced by one, making the overall savings 3(k+1)+2. This
means the total cost of the tree is 3(k + 1)(3k+1)− ((3k+1 − n)(3k+1 + 2) where
the first part of the sum is the cost of the complete tertiary tree and the second
part is the reduction in cost by removing the appropriate number of leaves. ut

In Section 4 we defined a degree cost γ as k-tree optimal when, for constraint-
free graphs and equal leaf weights, the the unique optimal tree with kc leaves,
for any positive integer c, is a complete k-ary tree of depth c. Here we show that
the linear degree cost is 3-tree-optimal.

Theorem 6. The degree cost γ(x) = x is 3-tree-optimal.

Proof. Let T be an optimal tree for the CSS problem where the graph is constraint-
free, the degree cost is γ(x) = x, and there are n = 3k leaves, for some positive
integer k, of equal weight. T may have nodes with degree two, three, or four.
Nodes with degree five or larger don’t appear in an optimal tree since replacing
them with degree-two and degree-three nodes always decreases the cost of the
tree. We replace all degree-four nodes from T with complete binary trees of size
three at no additional cost. By Lemma 8 we can push the degree-two nodes down
to the fringe. Furthermore, since T is optimal, we won’t match Figures 9 and 8
because they are strictly cost-decreasing transformations. Since the other trans-
formations always preserve at least one of the degree-two nodes, any optimal
tree with degree-two nodes has a corresponding tree of equal cost with at least
one degree-two node and all degree-two nodes are parents of only leaves (i.e., it
exhibits Property 1). By Lemma 9, we know T has at least 3k−1 + 1 leaves, but
no more than 3k−1 leaves because there is at least one degree-two parent of only
leaves. But T has n = 3k leaves, a contradiction, so T cannot have degree-two
or degree-four nodes. This means the optimal tree has only degree-three nodes,
and by Theorem 5, is a complete tertiary tree with n = 3k leaves. ut

5.2 Logarithmic Degree Costs

Another natural choice of degree cost is γ(x) = lg(x) (where lg = log2) because
it gives the number of bits needed to encode the out-degree of the node. In this
section we’ll show the depth-one tree (where the root has n edges of its n leaves)
is an optimal solution to any instance of CSS where the n leaf weights are equal
and γ(x) = lg(x). This result holds for arbitrary graphs because the depth-one
tree is always a subtree of the transitive closure.

Theorem 7. Let I = (G, γ, (wi)) be an instance of CSS where γ(x) = log(x)
and the n leaf weights are equal. An optimal tree for I is the depth-one tree.

...
drd1

m

r
...

... ...

1 r

n

Fig. 11. The topology of an mrn-tree.

Finally, we noted in Sec. 2 that CSS with degree cost γ(x) = dlog2(x)e is
NP-Hard even with equal leaf weights. This is somewhat surprising given the
depth-one tree is optimal for γ(x) = log(x) with equal leaf weights. The result
holds because the ceiling provides a place where the cost jumps enough so that
any non-optimal tree suffers the impact of this slight increase. We show here
though as a corollary to Theorem 7, that the depth-one tree approximates the
optimal solution to γ(x) = dlog2(x)e within an additive constant of 1.

Proof. For clarity, we distinguish between the leaves at depth one and the leaves
at depth two. Let T = (m, (d1, . . . , dr)),m, di ∈ Q+ be a depth-two tree with
m+n leaves: m depth-one leaves and n =

∑r
i=1 di depth-two leaves. Each depth-

two leaf has a single path from the root to it through one of the r intermediate
nodes. We denote the degree of each intermediate node i as di. We call these
trees mrn-trees and illustrate the general topology in Figure 11. We begin by
proving an intermediate result on the nature of convex functions.

Lemma 10. Let I be any real interval and (x− α, x + c + α), a subinterval of
I where c and α are real values with c ≥ 0 and α > 0. If g : I → R is convex on
I (and has a second derivative in I) we have

g(x + c + α) + g(x− α) > g(x + c) + g(x)

Proof. Suppose g(x) is defined over some real interval I and (x − α, x + c + α)
is a subinterval of I with c ≥ 0 and α > 0. Suppose further that g(x) is convex
on I (and has a second derivative on I), then g′(x) is increasing so

g′(x + c + y)− g′(x− α + y) > 0 c > 0, α ≥ 0 and 0 ≤ y ≤ α

⇔
∫ α

0

g′(x + c + y)− g′(x− α + y)dy > 0

⇔
∫ α

0

g′(x + c + y)dy >

∫ α

0

g′(x− α + y)dy

⇔ g(x + c + α)− g(x + c) > g(x)− g(x− α)
⇔ g(x + c + α) + g(x− α) > g(x + c) + g(x)

Lemma 10 means that making the degrees of the intermediate nodes of an
mrn-tree proportional always improves its cost.

Lemma 11. If γ(x) is an increasing, differentiable function over the positive
reals, then the r intermediate nodes of the minimum cost mrn-tree have out-
degree n/r when the weights of the leaves are equal.

Proof. Lemma 11 Let γ(x) be increasing and differentiable over the positive reals.
Then g(x) = xγ(x) has a positive second derivative on the positive reals, so it is
convex. Let T = (m, (d1, . . . , dr)) be an mrn-tree with m + n equally weighted
leaves. For the sake of contradiction, suppose T has at least two intermediate
nodes, i and j, with disproportionate out-degree, so that di > dj > 0. Let
di = dj + β for some positive β ∈ Q. Shifting some rational part of the path,
0 < α ≤ β/2 from node i to node j to make i and j more proportional, decreases
the cost of the subtree rooted at i by

diγ(di)− (di − α)γ(di − α) (2)

but the cost of the subtree rooted at j increases by

(dj + α)γ(gj + α)− djγ(dj) (3)

Letting g(x) = xγ(x), we need to show that the decrease in cost is greater than
the increase in cost:

g(di)− g(di − α) > g(dj + α)− g(dj) (4)

Since α ≤ β/2 we have β = 2α + c for some c ≥ 0 so di = dj + 2α + c. Letting
x = dj + α we have di = x + α + c and by rearranging the terms from the
inequality in 4 we have

g(x + c + α) + g(x− α) > g(x + c) + g(x)

which holds from Lemma 10 and gives us a contradiction, so the minimum cost
mrn-tree with equal leaf weights must have proportional degrees among its r
interior nodes. In other words, each interior node with out-degree n/r.

From the proportional mrn-tree, we can move to the depth-one tree with
m + n leaves without increasing the overall cost:

Lemma 12. If γ(x) = log(x) then any mrn-tree with equal leaf weights has an
equivalent cost depth-one tree with equal leaf weights.

Proof. Let γ(x) = log(x) and T = (m, (d1, . . . , dr)) be an mrn-tree with equal
leaf weights. By Lemma 11 we can transform T , at no additional cost, so that
each intermediate node has out-degree n/r. This makes the cost of T :

(n + m) log(r + m) + n log(n/r)

whereas the cost of the equivalent depth-one tree with (n + m) leaves is

(n + m) log(n + m)

We’d like to show that the cost of the depth-one tree is no greater than the cost
of the mrn-tree. Subtracting the cost of the depth-one tree from the cost of the
mrn-tree gives us:

f(n, m, r) = (n + m) log(r + m) + n log(n/r)− (n + m) log(n + m) (5)

where n, m, r are non-negative rational values and r ≤ n. Showing f never takes
on negative values gives us the desired result, so we show it is non-decreasing in
n, m and r. Taking the partial derivative of f with respect to m give us:

∂f

∂m
= log(r + m) +

n− r

r + m
− log(n + m) (6)

and taking the partial derivative of 7 gives us:

∂2f

∂m∂n
=

1
r + m

− 1
n + m

(7)

which is greater than or equal to 0 since r ≤ n. It immediately follows that 7
is non-decreasing, so we know 6 is non-decreasing in n and since n is bounded
below by r, we let n = r whence 6 equals 0. This means 5 is non-decreasing in
m, so we let m = 0 in f :

f(n, 0, r) = n log(r) + n log(n/r)− n log(n) = 0

Since f is non-decreasing in all variables, the cost of the depth-one tree is no
greater than the cost of the mrn-tree.

We’re now in a position to prove our result. Let I = (G, γ, (wi)) be an
instance of CSS where γ(x) = log(x) and G has n leaves of equal weight. Let T
be an optimal tree for I containing the minimum number of nodes. Suppose T is
not a depth-one tree. Then there exists a node having both (and only) children
and grandchildren. This is an mrn-tree, and by Lemma 12, we can covert it into
a depth-one tree at no additional cost, transforming T into a new optimal tree
with less nodes, a contradiction, so T must be a depth-one tree. ut

Corollary 1. If (G, γ, (wi)) is an instance of CSS with γ(x) = dlog2(x)e and n
leaf weights are equal, then the depth-one tree approximates the optimal cost tree
within an additive constant of 1.

Proof. Let I = (G, γ, (wi)) be an instance of CSS with degree cost γ(x) =
dlog2(x)e and n uniformly distributed leaf weights. Furthermore, let c be the cost
of a tree under γ(x) = dlog2(x)e and c′ be the cost of a tree under γ(x) = log2(x).

If T is an optimal solution for I and T ′ is a depth-one tree with n leaves, we
have the following inequality:

log2(n) = c′(T ′)
≤ c′(T)
≤ c(T)
≤ c(T ′)
= dlog2(n)e
≤ log2(n) + 1

which gives the desired lower and upper bounds. ut

6 Final Thoughts

While we have positive results for CSS when the initial hierarchy is constraint-
free, and negative results when it is a DAG, we have yet to characterize the
problem for directed trees. We have looked at specific tree topologies, like binary
trees and complete r-ary trees, but even in these cases, have not characterized the
optimal solutions for the linear degree cost. Additionally, we have not explored
probability distributions other than arbitrary and uniform. For example, what
happens with a geometric or Zipfian distribution? Finally, we are interested in
CSS in dynamic environments. For example, on a website, page statistics are
constantly changing. Is there a way to dynamically update the optimal tree
without unnecessary computation?

References

1. Heeringa, B., Adler, M.: Optimal website design with the constrained subtree
selection problem. Technical Report 04-09, University of Massachusetts Amherst
(2004)

2. Perkowitz, M., Etzioni, O.: Towards adaptive web sites: Conceptual framework
and case study. Artificial Intelligence 118 (2000) 245–275

3. Bose, P., Czyzowicz, J., Gasienicz, L., Kranakis, E., Krizanc, D., Pelc, A., Martin,
M.V.: Strategies for hotlink assignments. In Lee, D.T., Teng, S.H., eds.: Algorithms
and Computation, 11th International Conference. Volume 1969 of Lecture Notes
in Computer Science., Springer (2000) 23–34

4. Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Martin, M.V.: Evaluation of
hotlink assignment heuristics for improving web access. In: Second International
Conference on Internet Computing, CSREA Press (2001) 793–799

5. Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Martin, M.V.: Enhancing hy-
perlink structure for improving web performance. Journal of Web Engineering 1
(2003) 93–127

6. Karp, R.: Minimum-redundancy coding for the discrete noiseless channel. IRE
Transactions on Information Theory IT (1961) 27–29

7. Golin, M.J., Kenyon, C., Young, N.E.: Huffman coding with unequal letter costs.
In: Proceedings of the thiry-fourth annual ACM symposium on Theory of comput-
ing, ACM Press (2002) 785–791

8. Golin, M.J., Rote, G.: A dynamic programming algorithm for constructing optimal
prefix-free codes with unequal letter costs. IEEE Transactions on Information
Theory 44 (1998) 1770–1781

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, New York (1979)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2 edn. The MIT Press/McGraw-Hill Book Company (2001)

11. Siu-Ngan Choi and Golin, M.: Lopsided Trees I: A Combinatorial Analysis. Algo-
rithmica 31 (2001) 240–290

