
Williams College Homework 9 Brent Heeringa

Baby Boy Heeringa (8 pounds, 20.5 inches long) was born at 06.18 on Saturday, 04 May 2013, just in time to delay the
posting of this last homework in Algorithms. We will revisit several themes from the course — graphs, induction, greedy
algorithms, matchings — by focusing on a classic problem in computer science: the traveling salesperson problem (TSP).
TSP has no known polynomial time solution. At present, there is an O(n22n) dynamic programming algorithm for TSP
which improved the brute-force n! solution that considers all permutations of the cities. At present, this dynamic programming
procedure is the most efficient algorithm for solving TSP exactly1. However, there are several well-known polynomial-time
algorithms for solving TSP approximately. That is, finding a solution that is not necessarily optimal, but provably within some
constant, say α, of optimal. Here we will develop a 3/2-approximation due to Christofedes. Given any instance of TSP where
the distances obey the triangle inequality, Christofedes’ algorithm returns a solution with cost at most 3/2 ·OPT where OPT
is the cost of an optimal, minimum cost cycle.

Question 1. Given a complete, undirected graph G = (V,E) with non-negative and real-valued edges costs c : E → R, the
goal of TSP is to find a minimum cost cycle that visits every vertex in V exactly once. The cost of the cycle is the sum of the costs
of the edges in the cycle. Metric TSP refers to a class of TSP instances where the edge costs obey the triangle inequality. This
means that shortcuts between two cities don’t exist; it’s always best to take the direct route. Formally the triangle inequality
means that

c(u, v) ≤ c(u,w) + c(w, v) for all u, v, w ∈ V .

We will develop a polynomial-time 3/2-approximation for Metric TSP. In all parts, G = (V,E) is the complete, undirected
input graph. V is the set of nodes and E is the set of edges where |V | = n and |E| = m. The function c gives the real-valued
edge costs that obey the triangle inequality. Sometimes we extend c to a set of edges E′ ⊆ E so that c(E′) =

∑
e∈E′ c(e).

Please answer the following questions clearly and concisely. If you get stuck on a particular part, move on — you can assume
previous results and still make progress.

(a) Let C∗ be the cost of the minimum cost cycle in G. Let T be a minimum spanning tree in G with cost c(T ). Show that
c(T ) ≤ C∗.

(b) Use induction to show that all trees have an even number of odd-degree nodes.

An undirected multigraph H is an undirected graph with parallel edges. That is, pairs of nodes may have multiple edges
between them. An Euler tour of a connected, undirected multigraph H = (V ′, E′) is a cycle that traverses each edge of H
exactly once, although it may visit a vertex more than once. We denote a cycle as a list of vertices, u0 . . . um′ where u0 = um′

and for all 0 ≤ i < m′, (ui, ui+1) is an edge in E′. Note that an Euler tour has length m′ = |E′|.

(c) Earlier in the semester you showed that a graph has an Euler tour if and only if the degree of every vertex in the graph is
even. Quickly argue why your analysis also holds for multi graphs.

(d) Similarly, quickly argue that your linear time algorithm for finding Euler tours in graphs extends without alteration to
multigraphs.

A minimum weight perfect matching in a graph G′ with n nodes and non-negative edge costs is a matching M of size n/2
with minimum cost c(M). Edmonds showed in the 60’s how to find a minimum weight perfect matching of a graph in O(n4)
time. Gabow recently improved this running time to O(n(m+ n log n)).

(e) Use parts (a) and (b) along with Gabow’s algorithm as a black box, to produce first, a minimum weight perfect matching
M , and second, a multigraph H = (V,E′) where all the nodes in V have even degree. Note that V refers to the same set
of nodes as the input graph.

(f) Show that c(M) ≤ 1/2 · C∗. Using part (a), conclude that c(E′) ≤ 3/2 · C∗.

(g) Use parts (c) and (d) along with the multigraph H (and the fact that c obeys the triangle inequality) to produce a cycle
v0v1 . . . vn that visits every vertex in V exactly once. Conclude that this cycle is a 3/2-approximation for the metric TSP
problem.

Question 2. I found this homework:

1Actually, two years ago there was a slight improvement which was the first progress in over 20 years
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