
Williams College Homework 8 Brent Heeringa

Question 1. Suppose you have a biased coin that, when flipped, takes on heads with unknown probability p and tails with
probability 1− p. Show how to use this coin to construct a string of n independent bits such that each bit is equally likely to be
a 0 or a 1. In other words, show how to use this coin to construct an algorithm that, when run, behaves like an unbiased coin.
What is the expected running time of your algorithm as a function of p?

Question 2 (Inspired by Dave Moore ’10). Imagine a procedure RANDOM(a, b) that, when called, returns an integer between
a and b inclusively and uniformly at random. That is, each integer in the range [a, b] is equally likely to appear on a call to
RANDOM(a, b). Now, suppose you have a fair coin. Describe an implementation of RANDOM(a, b) that is only allowed to flip
this coin (i.e., it can’t use any other source of randomness). What is the expected running time of your procedure, as a function
of a and b?

Question 3. Suppose you have the same biased coin as in Question 1, however, this time you don’t wish to construct an
algorithm to produce an unbiased coin (i.e. a coin with probability 1/2 of coming up heads) but rather another unbiased coin
with some given probability q of coming up heads. Show how to use your coin to construct an algorithm that, when run, behaves
like a biased coin with probability q of returning heads. You may assume that q is a rational number. Can your solution to
Question 2 help?

Question 4 (JE). Suppose you have a set of n complementary nuts and bolts where the size of each pair is unique. Consider
the following randomized algorithm for choosing the largest bolt. Draw a bolt uniformly at random from the set of n bolts, and
draw a nut uniformly at random from the set of n nuts. If the bolt is smaller than the nut, discard the bolt, draw a new bolt
uniformly at random from the unchosen bolts, and repeat. Otherwise, discard the nut, draw a new nut uniformly at random
from the unchosen nuts, and repeat. Stop either when every nut has been discarded, or every bolt except the one in your hand
has been discarded. What is the exact expected number of nut-bolt tests performed by this algorithm? Prove your answer is
correct. [Hint: What is the expected number of unchosen nuts and bolts when the algorithm terminates?]

Question 5 (Extra Credit). This question asks you to implement a skip list in Java. Recall that a skip list is a collection of
linked lists, organized by level. Every item in the list appears at level 0. Items appear at successive levels with geometrically
diminishing probability. Our skip list will take advantage of two boundaries along the left and right edges of the skip list, as
well as a boundary above the highest level of the skip list. These boundaries will make finding, inserting, and removing items
easier. Here’s a picture of a skip list with values 13, 34, and 79.

L R13 34 79

34L R
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Addition

Recall that after an item is inserted at level 0, it is promoted to level 1 with probability 1/2. The process then repeats itself.
In general, an item at level i is promoted to level i + 1 with probability 1/2. However, an item is never promoted above the
top boundary. In fact, we always have an upper boundary that never contains any egers. If an item is ever promoted to the
upper boundary, we immediately take away its coin (so that it can’t be promoted anymore), and add a new upper boundary.
For example, say we insert the value −3 into an empty skip list.
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RL
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Notice that level 0 has an upper boundary. We first find the correct node on level 0 (this node should have the largest value
not exceeding -3).

L R

RL

We then insert a new node with value -3 and update the appropriate pointers.

L R

RL

-3

Next, we flip a coin. Say it ends up heads. Then we promote -3 to the next level.

L R

RL

-3

-3

However, since -3 has reached the top boundary, we steal its coin away and no longer allow it promotion. Furthermore, we
add a new upper boundary.

L R

RL

-3

-3

RL

Removal

Removing a node is similar. However, beware of superfluous upper boundaries. That is, we should never see a skip list like this.

L R
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Due: 11.00, 03 May 2013 Algorithm Design and Analysis - CS 256 2



Williams College Homework 8 Brent Heeringa

Implementation

You should implement a skip list as described above. Use turnin to turn in your SkipList.java file. Please note and
adhere to the following:

• Your skip list should be a Java class called SkipList. It should be placed inside a file called SkipList.java.

• Your skip list is generic—it should be parameterized by some type T which is Comparable. The type T is the type of
the values stored in the skip list.

• Starter code is provided on the website. It contains a sparse skeleton of the SkipList class as well as moderate
skeletons of three inner private classes Node, LeftBoundaryNode, and RightBoundaryNode. Feel free to use
the starter code or ignore it. However, your final code must adhere to the constraints outlined herein. Note that the
starter code uses a Node class with pointers in all four directions. null is the default value of these pointers. The
default value of a node is also null.

• Do not place your code inside a specific package.

• Your SkipList class should not contain a main method when you turn it in. That said, you will find a main method
helpful when testing.

• Your SkipList class should support the following methods:

1. public boolean add(T i) where the return value indicates if the addition was successful (duplicate ele-
ments are not allowed).

2. public boolean remove(T i) where the return value indicates if the removal was successful.

3. public boolean contains(T i)

4. public T predecessor(T i) – returns the largest item less than or equal i in the skip list. Note that i may
not be in the skip list. This is called floor in Java’s TreeSet.

5. public T successor(T i) – return the smallest item greater than or equal to i in the skip list. Note that i
may not be in the skip list. This is called ceiling in Java’s TreeSet.

6. public int size() – return the number of items in level 0 (boundary nodes don’t count). Do not return the
number of nodes in the skip list.

• Duplicate items are not permitted in the skip list.

• Use the nextBoolean() method of the Random class for coin flips.

• The starter code seeds the random number generator with 47. Your code should match the given example output if you
maintain this seed.

Running your completed code with the following main method

public static void main(String[] args) {
SkipList<Integer> l = new SkipList<Integer>();
System.out.println(l);
l.add(new Integer(-1000));
System.out.println(l);
l.add(new Integer(3000));
System.out.println(l);

}

should produce the following output
assonance:SkipLists heeringa$ java -Xms512m -Xmx1024m SkipList
[ L ] -- [ R ]
[ L ] -- [ R ]

[ L ] -- [ R ]
[ L ] -- [ -1000 ] -- [ R ]
[ L ] -- [ -1000 ] -- [ R ]

[ L ] -- [ R ]
[ L ] -- [ -1000 ] -- [ R ]
[ L ] -- [ -1000 ] -- [ 3000 ] -- [ R ]

The -Xms512m -Xmx1024m arguments to the java virtual machine tell it that the minimum heap size should be 512 MB
and the maximum heap size should be 1024 MB.
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Experiments

William Pugh, the creator of skip lists, reports that the randomized data structure offers comparable if not better performance
than red-black trees. We should test this claim (albeit modestly) using your implementation and the Java TreeSet class which
is (conveniently) implemented using a red-black tree. Use the following syntax to create a TreeSet of integers:

TreeSet<Integer> set = new TreeSet<Integer>();

Notice that we must use the Java Object type Integer rather than the primitive int. To add an integer, use:

set.add(new Integer(-3));

More information about the Java TreeSet class is available at http://download.oracle.com/javase/6/docs/api/java/util/TreeSet.html.
Perform the following experiments (you probably want to disable the JIT by using -Xint as an additional flag to the Java

interpreter:

1. Insert 50,000 random integers into your skip list. Insert the same integers into a Java TreeSet. Report on the total and
average insertion time for both data structures. Draw conclusions. You may find
System.currentTimeMillis() helpful. Recall that duplicates are not allowed, so your sets will likely have size
less than 50,000.

2. Now insert an additional random 50,000 integers into your skip list. Insert the same integers into the TreeSet. Both
data structures should have the same size. Now delete the first 50,000 integers (some of these deletions may not be
possible which is okay since your remove method will report that no deletion occurred). Report on the total and average
removal time for both data structures. Draw conclusions.

3. Perform one well motivated experiment of your own design. Describe it in detail and report on the results.
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