Williams College Homework 4 Brent Heeringa

Question 1 (JE). Describe and analyze a data structure to support the following operations on an array A[l ...n] as quickly
as possible. Initially, A[i] = 0 for all i.

e Given an index i such that Afi] = 0, set Ali] to 1.
e Given an index i, return Ali].
e Given an index i, return the smallest index j > i such that A[j] = 0, or report that no such index exists.

For full credit, the first two operations should run in worst-case constant time, and the amortized cost of the third operation
should be equivalent to the amortized cost of the UNION-FIND data structure.

Question 2 (DPV). Suppose you are choosing between the following three algorithms:

1. Algorithm A solves problems by dividing them into five subproblems of half the size, recursively solving each subproblem,
and then combining the solutions in linear time.

2. Algorithm B solves problems of size n by recursively solving two subproblems of size n — 1 and then combining the
solutions in constant time.

3. Algorithm C solves problems of size n by dividing them into nine subproblems of size n/3, recursively solving each
subproblem, and then combining the solutions in O(n?) time.

What are the running times of each of these algorithms (in asymptotic notation) and which would you choose?

Question 3 (DPV). An array A[l...n] is said to have a majority element if more than half of its entries are the same. Given
an array , the task is to design an efficient algorithm to tell whether the array has a majority element, and, if so, to find that
element. The elements of the array are not necessarily from some ordered domain like the integers, and so there can be no
comparisons of the form Ali] > A[j]. You should think of the array elements as, say, JPEG files. However, you can answer
questions of the form: Ali] = A[j] in O(1) time.

(a) Show how to solve this problem in O(nlogn) time. Make sure to prove that your algorithm is correct (via induction) and
give a recurrence relation for the running time of your algorithm. A hint for this problem is available at the end of the
homework.

(b) Can you give a linear-time algorithm? A hint for this problem is available at the end of the homework.

Question 4 (JE). An inversion in an array A[l...n] is a pair of indices (i, j) such that i < j and Ali] > A[j]. The number of
inversions in an n-element array is between 0 (if the array is sorted) and (Z) (if the array is sorted backward). Describe and
analyze an algorithm to count the number of inversions in an n-element array in O(nlogn) time.

Question 5. [found this homework (a) challenging, but fun; (b) challenging, but not fun; (c) fun, but not challenging; (d) not
fun and not challenging.

Extra Credit

This question adapted from the Design and Analysis of Algorithms course at the University of Konstanz by Dr. Ulrik Brandes
and Dr. Sabine Cornelsen

Question 6 (Least Common Ancestor). Let T = (V, E) be an oriented tree with root v € V and let P C {{u,v}|u,v € V}
be a set of unordered pairs of vertices. For eachv € V let 1, = {r,...,v} CV denote the sequence of vertices along the path
Sfrom 1 to v and let d(v) = |II,| — 1 denote the depth of v € T. The least common ancestor of pair {u,v} € P is defined as
w eV withw € I1, NIL, and d(w) > d(w) for all w € 1L, N IL,.

LCA(r) traverses T to determine the least common ancestors of all pairs {u,v} € P . At the beginning, all vertices are
unmarked.

Due: 11.00, 08 March 2013 Algorithm Design and Analysis - CS 256 1

Williams College Homework 4 Brent Heeringa

Algorithm 1: LCA(u)

1 Makeset (u)

2 ancestor[Find(u)] «— u

3 foreach child v of uwin T do

4 LCA(v)

5 Union(Find(u),Find(v))
6 ancestor[Find(u)] +— u
7 end

8 mark u

9 foreach v with {u,v} € P do

10 if v is marked then

11 print “LCA(” + u + “” +v “)is” + ancestor[Find(v)]
12 end

13 end

(a) Show that, when Line 8 in LCA(u) is executed, the set FIND(U) contains all vertices of the subtree T, C T' with root u.
Hint: Do an induction on the height h(u) of u. (h(u) = 0 if u is a leaf)

(b) Show that the number of sets in the Union-Find data structure at the time of call LCA(v) equals d(v).
Hint: The recursive calls of LCA specify a traversing order of T which implies an order on V . Do an induction on the
position of v in this order.

(c) Prove that LCA(r) determines the least common ancestors of all {u,v} € P correctly.
Hint: Differentiate the two cases: 1. w.l.o.g. v € Tyand 2. v ¢ T, and u & T,,.

(d) Analyze the running time of LCA(r).

Hints

Hint for 3 (a) Split the array A into two arrays A; and A, of half the size. Does knowing the majority elements of A; and A,
help you figure out the majority element of A? If so, can you use a divide-and-conquer approach?

Hint for 3 (b) Arbitrarily pair up the elements of the array. For each pair, if the two elements are different, discard both of
them; if they are the same, keep just one of them. Show that after this procedure executes, there are at most n/2 elements
left, and that they have a majority element if A does.

Due: 11.00, 08 March 2013 Algorithm Design and Analysis - CS 256 2

