
Williams College Homework 2 Brent Heeringa

Some practice counting

Question 1. Let G = (V,E) be an undirected graph with n vertices and m edges. Show that if every vertex
has degree at least n/2, the graph is connected. You may assume that n is even. As a hint, think about cuts
in the graph. A cut (S, T) is a partition of the vertices into two sets S and T such that S ∪ T = V and
S ∩ T = ∅.

Question 2 (KT 3.9). There’s a natural intuition that two nodes that are far apart in a communication
network—separated by many hops—have a more tenuous connection than two nodes that are close together.
There are a number of algorithmic results that are based to some extent on different ways of making this
notion precise. Here’s one that involves the susceptibility of paths to the deletion of nodes.

Suppose that an n-node undirected graph G = (V,E) contains two nodes s and t such that the distance
between s and t is strictly greater than n/2. Show that there must exist some node v, not equal to either
s or t, such that deleting v from G destroys all s − t paths. (In other words, the graph obtained from G
by deleting v contains no path from s to t.) Give an algorithm with running time O(m + n) to find such
a node v. Describe your algorithm in prose and prove that it works correctly. Make sure your algorithmic
description is clear and concise. As a hint, imagine performing a breadth-first search from s. How large is
each layer Li along the way to t?

Algorithms in the wild

Question 3 (KT 3.8). A number of stories in the press about the structure of the Internet and the Web have
focused on some version of the following question: How far apart are typical nodes in these networks? If
you read these stories carefully, you find that many of them are confused about the difference between the
diameter of a network and the average distance in a network; they often jump back and forth between these
concepts as though they’re the same thing.

As in the text, we say that the distance between two nodes u and v in a graph G = (V,E) is the minimum
number of edges in a path joining them; we’ll denote this by dist(u, v). We say that the diameter of G is the
maximum distance between any pair of nodes; and we’ll denote this quantity by diam(G).

Let’s define a related quantity, which we’ll call the average pairwise distance in G (denoted apd(G)).
We define apd(G) to be the average, over all

(
n
2

)
sets of two distinct nodes u and v, of the distance between

u and v. That is,

apd(G) =
[∑
{u,v}⊆V

dist(u, v)
]
/

(
n

2

)
Here’s a sample example to convince yourself that there are graphs G for which diam(g) 6= apd(G). Let G
be a graph with three nodes u, v, w, and with two edges {u, v} and {v, w}. Then

diam(G) = dist(u,w) = 2,

while
apd(G) = [dist(u, v) + dist(u,w) + dist(v, w)]/3 = 4/3.

Of course, these two numbers aren’t all that far apart in the case of this three-node graph, and so it’s natural
to ask whether there’s always a close relation between them. Here’s a claim that tries to make this precise.

Claim 1. There exists a positive natural number c so that for all connected graphs G, it is the case that

diam(G)

apd(G)
≤ c

This claim is actually false. Show that given a constant c > 0 you can always construct a graph G such
that diam(G)/apd(G) > c. As hint, you may find inspiration from star-tipped, magic wands.

Due: 11.00, 22 February 2013 Algorithm Design and Analysis - CS 256 1

Williams College Homework 2 Brent Heeringa

Diameters revisited (from a computer scientist’s perspective)

Question 4. In the last question we defined the diameter of a graph, but we did not discuss methods for
computing it. Here we will consider trees. Give a linear time, O(n +m)-algorithm to find the diameter of
a tree T = (V,E). Prove that your algorithm is correct.

Question 5. Does your algorithm in Question 4 extend to undirected graphs? If so, prove it. If not, provide
a counterexample.

Extra credit: Approximating the diameter of a graph

Question 6. There’s a good chance your linear-time algorithm in Question 4 doesn’t extend to undirected
graphs. If it does, you almost certainly have a STOC publication. Congratulations! It turns out that, until
very recently, we didn’t have any method for computing the diameter of a graph that didn’t first compute the
shortest path between all pairs of nodes. When graphs are dense, all-pairs shortest paths is fairly expensive,
so some people have explored quicker algorithms which estimate the diameter of the graph. Develop a
linear-time algorithm that, given a graph G, returns a diameter estimate that is always within a factor of
1/2 of the true diameter. That is, if the true diameter is diam(G) then you should return a value k where
diam(G)/2 ≤ k ≤ diam(G).

Question 7. I found this assignment:

1. Icky. I’d prefer a slow spinal tap.

2. Light. C’mon Brent, throw me the deuce!

3. Perfect. Like a slow sip of the finest bourbon and bitters.

4. Pleasurable, but pushy in a good way.

5. Draining. I barely made it. I need sleep. Send in the closer.

6. Awful. Donald Knuth couldn’t solve these problem, how do you expect me to?

Due: 11.00, 22 February 2013 Algorithm Design and Analysis - CS 256 2

