
~ . ~ -

A

. . . . _ _ _ ~ - ' ~ / . . ~ ~ . ~ - . - -

. _ r ~ .

A Self-Adjusting Search Tree

204 Communications of the ACM March 1987 Volume 30 Number 3

TURING AWARD LECTURE

ALGORITHM DESIGN

The quest for efficiency in computational methods yields not only fast
algorithms, but also insights that lead to elegant, simple, and general
problem-solving methods.

ROBERT E. TARJAN

I was surprised and delighted to learn of my selec-
tion as corecipient of the 1986 Turing Award. My
delight turned to discomfort, however, when I began
to think of the responsibility that comes with this
great honor: to speak to the computing community
on some topic of my own choosing. Many of my
friends suggested that I preach a sermon of some
sort, but as I am not the preaching kind, I decided
just to share with you some thoughts about the
work I do and its relevance to the real world of
computing.

Most of my research deals with the design and
analysis of efficient computer algorithms. The goal
in this field is to devise problem-solving methods
that are as fast and use as little storage as possible.
The efficiency of an algorithm is measured not by
programming it and running it on an actual com-
puter, but by performing a mathematical analysis
that gives bounds on its potential use of time and
space. A theoretical analysis of this kind has one
obvious strength: It is independent of the program-
ming of the algorithm, the language in which the
program is written, and the specific computer on
which the program is run. This means that conclu-
sions derived from such an analysis tend to be of
broad applicability. Furthermore, a theoretically effi-
cient algorithm is generally efficient in practice
(though of course not always).

But there is a more profound dimension to the
design of efficient algorithms. Designing for theoreti-
cal efficiency requires a concentration on the impor-
tant aspects of a problem, so as to avoid redundant

©1987ACMO001-0782/87/0300-0205 75¢

computations and to design data structures that ex-
actly represent the information needed to solve the
problem. If this approach is successful, the result is
not only an efficient algorithm, but a collection of
insights and methods extracted from the design
process that can be transferred to other problems.
Since the problems considered by theoreticians are
generally abstractions of real-world problems, it is
these insights and general methods that are of most
value to practitioners, since they provide tools that
can be used to build solutions to real-world problems.

Ishall illustrate algorithm design by relating the
historical contexts of two particular algorithms. One
is a graph algorithm, for testing the planarity of a
graph that I developed with John Hopcroft. The
other is a data structure, a self-adjusting form of
search tree that I devised with Danny Sleator.

I graduated from CalTech in June 1969 with a B.S.
in mathematics, determined to pursue a Ph.D., but
undecided about whether it should be in mathemat-
ics or computer science. I finally decided in favor of
computer science and enrolled as a graduate student
at Stanford in the fall. I thought that as a computer
scientist I could use my mathematical skills to solve
problems of more immediate practical interest than
the problems posed in pure mathematics. I hoped to
do research in artificial intelligence, since I wished
to understand the way reasoning, or at least mathe-
matical reasoning, works. But my course adviser at
Stanford was Don Knnth, and I think he had other
plans for my future: His first advice to me was to
read Volume 1 of his book, The Art of Computer
Programming.

By June 1970 1 had successfully passed my Ph.D.

March1987 Volume30 Number3 Communications of the ACM 205

Turing Award Lecture

qualifying examinations, and I began to cast around
for a thesis topic. During that month John Hopcroft
arrived from Cornell to begin a sabbatical year at
Stanford. We began to talk about the possibility of
developing efficient algorithms for various problems
on graphs.

As a measure of computational efficiency, we set-
tled on the worst-case time, as a function of the
input size, of an algorithm running on a sequential
random-access machine (an abstraction of a sequen-
tial general-purpose digital computer). We chose to
ignore constant factors in running time, so that our
measure could be independent of any machine
model and of the details of any algorithm implemen-
tation. An algorithm efficient by this measure tends
to be efficient in practice. This measure is also ana-
lytically tractable, which meant that we would be
able to actually derive interesting results about it.

Other approaches we considered have various
weaknesses. In the mid 1960s, Jack Edmonds
stressed the distinction between polynomial-time
and non-polynomial-time algorithms, and although
this distinction led in the early 1970s to the theory
of NP-completeness, which now plays a central role
in complexity theory, it is too weak to provide much
guidance for choosing algorithms in practice. On the
other hand, Knuth practiced a style of algorithm
analysis in which constant factors and even lower
order terms are estimated. Such detailed analysis,
however, was very hard to do for the sophisticated
algorithms we wanted to study, and sacrifices imple-
mentation independence. Another possibility would
have been to do average-case instead of worst-case
analysis, but for graph problems this is very hard
and perhaps unrealistic: Analytically tractable
average-case graph models do not seem to capture
important properties of the graphs that commonly
arise in practice.

Thus, the state of algorithm design in the late
1960s was not very satisfactory. The available ana-
lytical tools lay almost entirely unused; the typical
content of a paper on a combinatorial algorithm was
a description of the algorithm, a computer program,
some timings of the program on sample data, and
conclusions based on these timings. Since changes in
programming details can affect the running time of a
computer program by an order of magnitude, such
conclusions were not necessarily justified. John and
I hoped to help put the design of combinatorial algo-
rithms on a firmer footing by using worst-case run-
ning time as a guide in choosing algorithmic meth-
ods and data structures.

The focus of our activities became the problem of
testing the planarity of a graph. A graph is planar if
it can be drawn in the plane so that each vertex

/
FIGURE 1. A Planar Graph

becomes a point, each edge becomes a simple curve
joining the appropriate pair of vertices, and no
two edges touch except at a common vertex (see
Figure 1).

A beautiful theorem by Casimir Kuratowski states
that a graph is planar if and only if it does not con-
tain as a subgraph either the complete graph on five
vertices (Ks), or the complete bipartite graph on two
sets of three vertices (K3,3) (see Figure 2).

Unfortunately, Kuratowski's criterion does not
lead in any obvious way to a practical planarity test.
The known efficient ways to test planarity involve
actually trying to embed the graph in the plane.
Either the embedding process succeeds, in which
case the graph is planar, or the process fails, in
which case the graph is nonplanar. It is not neces-

K5

K3,3

FIGURE 2. The "Forbidden" Subgraphs of Kuratowski

206 Communications of the ACM March 1987 Volume 30 Number 3

Turing Award Lecture

sary to specify the geometry of an embedding; a
specification of its topology will do. For example, it
is enough to know the clockwise ordering around
each vertex of its incident edges.

Louis Auslander and Seymour Parter formulated a
planarity algorithm in 1961 called the path addition
method. The algorithm is easy to state recursively:
Find a simple cycle in the graph, and then remove
this cycle to break the rest of the graph into seg-
ments. (In a planar embedding, each segment must
lie either completely inside or completely outside
the embedded cycle; certain pairs of segments are
constrained to be on opposite sides of the cycle. See
Figure 3.) Test each segment together with the cycle
for planarity by applying the algorithm recursively.
If each segment passes this planarity test, determine
whether the segments can be assigned to the inside
and outside of the cycle in a way that satisfies all
the pairwise constraints. If so, the graph is planar.

As noted by A. Jay Goldstein in 1963, it is essen-
tial to make sure that the algorithm chooses a cycle
that produces two or more segments; if only one
segment is produced, the algorithm can loop forever.
Rob Shirey proposed a version of the algorithm in
1969 that runs in O(n 3) time on an n-vertex graph.
John and I worked to develop a faster version of this
algorithm.

A useful fact about planar graphs is that they are
sparse: Of the n(n - 1)/2 edges that an n-vertex
graph can contain, a planar graph can contain only
at most 3n - 6 of them (if n _> 3). Thus John and I
hoped (audaciously) to devise an O(n)-time planarity
test. Eventually, we succeeded.

The first step was to settle on an appropriate
graph representation, one that takes advantage of
sparsity. We used a very simple representation, con-
sisting of a list, for each vertex, of its incident edges.
For a possibly planar graph, such a representation is
O(n) in size.

The second step was to discover how to do a
necessary bit of preprocessing. The path addition
method requires that the graph be biconnected
(that is, have no vertices whose removal disconnects
the graph}. If a graph is not biconnected, it can be
divided into maximal biconnected subgraphs, or bi-
connected components. A graph is planar if and only
if all of its biconnected comPonents are planar. Thus
planarity can be tested by first dividing a graph into
its biconnected components and then testing each
component for planarity. We devised an algorithm
for finding the biconnected components of an
n-vertex, m-edge graph in O(n + m) time. This algo-
rithm uses depth-first search, a systematic way of
exploring a graph and visiting each vertex and edge.

We were now confronted with the planarity test

/
c c

c 1

/-
Segments I and 2 must be embedded on opposite sides of C,
as must segments 1 and 3, 1 and 4, 2 and 5, 3 and 5, and 4
and 5.

FIGURE 3. Division of the Graph in Figure 1 by Removal of Cycle C

itself. There were two main problems to be solved. If
the path addition method is formulated iteratively
instead of recursively, the method becomes one of
embedding an initial cycle and then adding one path
at a time to a growing planar embedding. Each path
is disjoint from earlier paths except at its end ver-
tices. There is in general more than one way to
embed a path, and embedding of later paths may
force changes in the embedding of earlier paths. We
needed a way to divide the graph into paths and a
way to keep track of the possible embeddings of
paths so far processed.

After carefully studying the properties of depth-
first search, we developed a way to generate paths in
O(n) time using depth-first search. Our initial
method for keeping track of alternative embeddings
used a complicated and ad hoc nested structure. For
this method to work correctly, paths had to be gen-
erated in a specific, dynamically determined order.
Fortunately, our path generation algorithm was flex-
ible enough to meet this requirement, and we ob-
tained a planarity algorithm that runs in O(n log n)
time.

Our attempts to reduce the running time of this
algorithm to O(n) failed, and we turned to a slightly
different approach, in which the first step is to gen-
erate all the paths, the second step is to construct a
graph representing their pairwise embedding con-
straints, and the third step is to color this constraint
graph with two colors, corresponding to the two pos-
sible ways to embed each path. The problem with

March 1987 Volume 30 Number 3 Communications of the ACM 207

Turing Award Lecture

this approach is that there can be a quadratic num-
ber of pairwise constraints. Obtaining a linear time
bound requires computing explicitly only enough
constraints so that their satisfaction guarantees that
all remaining constraints are satisfied as well. Work-
ing out this idea led to an O(n)-time planarity algo-
rithm, which became the subject of my Ph.D. dis-
sertation. This algorithm is not only theoretically
efficient, but fast in practice: My implementation,
written in Algol W and run on an IBM 360/67, tested
graphs with 900 vertices and 2694 edges in about
12 seconds. This was about 80 times faster than any
other claimed time bound I could find in the litera-
ture. The program is about 500 lines long, not count-
ing comments.

This is not the end of the story, however. In pre-
paring a description of the algorithm for journal pub-
lication, we discovered a way to avoid having to
construct and color a graph to represent pairwise
embedding constraints. We devised a data structure,
called a pile of twin stacks, that can represent all
possible embeddings of paths so far processed and is
easy to update to reflect the addition of new paths.
This led to a simpler algorithm, still with an O(n)
time bound. Don Woods, a student of mine, pro-
grammed the simpler algorithm, which tested graphs
with 7000 vertices in 8 seconds on an IBM 370/168.
The length of the program was about 250 lines of
Algol W, of which planarity testing required only
about 170, the rest being used to actually construct
a planar representation.

From this research we obtained not only a fast
planarity algorithm, but also an algorithmic tech-
nique (depth-first search) and a data structure (the
pile of twin stacks) useful in solving many other
problems. Depth-first search has been used in effi-
cient algorithms for a variety of graph problems; the
pile of twin stacks has been used to solve problems
in sorting and in recognizing codes for planar self-
intersecting curves.

Our algorithm is not the only way to test planarity
in O(n) time. Another approach, by Abraham Lem-
pel, Shimon Even, and Israel Cederbaum, is to build
an embedding by adding one vertex and its incident
edges at a time. A straightforward implementation of
this algorithm gives an O(n 2) time bound. When John
and I were doing our research, we saw no way to
improve this bound, but later work by Even and
myself and by Kelly Booth and George Lueker
yielded an O(n)-time version of this algorithm.
Again, the method combines depth-first search, in a
preprocessing step to determine the order of vertex
addition, with a complicated data structure, the
PQ-tree of Booth and Lueker, for keeping track of

possible embeddings. (This data structure itself has
several other applications.)

There is yet a third O(n)-time planarity algorithm.
I only recently discovered that a novel form of
search tree called a finger search tree, invented in
1977 by Leo Guibas, Mike Plass, Ed McCreight, and
Janet Roberts, can be used in the original planarity
algorithm that John and I developed to improve its
running time from O(n log n) to O(n). Deriving the
time bound requires the solution of a divide-and-
conquer recurrence. Finger search trees had no par-
ticularly compelling applications for several years
after they were invented, but now they do, in sort-
ing and computational geometry, as well as in graph
algorithms.

Ultimately, choosing the correct data structures is
crucial to the design of efficient algorithms. These
structures can be complicated, and it can take years
to distill a complicated data structure or algorithm
down to its essentials. But a good idea has a way of
eventually becoming simpler and of providing solu-
tions to problems other than those for which it was
intended. Just as in mathematics, there are rich and
deep connections among the apparently diverse
parts of computer science.

I want to shift the emphasis now from graph algo-
rithms to data structures by reflecting a little on
whether worst-case running time is an appropriate
measure of a data structure's efficiency. A graph al-
gorithm is generally run on a single graph at a time.
An operation on a data structure, however, does not
occur in isolation; it is one in a long sequence of
similar operations on the structure. What is impor-
tant in most applications is the time taken by the
entire sequence of operations rather than by any
single operation. (Exceptions occur in real-time
applications where it is important to minimize
the time of each individual operation.)

We can estimate the total time of a sequence of
operations by multiplying the worst-case time of an
operation by the number of operations. But this may
produce a bound that is so pessimistic as to be use-
less. If in this estimate we replace the worst-case
time of an operation by the average-case time of an
operation, we may obtain a tighter bound, but one
that is dependent on the accuracy of the probability
model. The trouble with both estimates is that they
do not capture the correlated effects that successive
operations can have on the data structure. A simple
example is found in the pile of twin stacks used in
planarity testing: A single operation among a se-
quence of n operations can take time proportional to
n, but the total time for n operations in a sequence is
always O(n). The appropriate measure in such a situ-

208 Communications of the ACM March 1987 Volume 30 Number 3

Turing Award Lecture

ation is the amortized time, defined to be the time of
an operation averaged over a worst-case sequence of
operations. 1 In the case of a pile of twin stacks, the
amortized time per operation is O(1).

A more complicated example of amortized effi-
ciency is found in a data structure for representing
disjoint sets under the operation of set union. In this
case, the worst-case time per operation is O(log n),
where n is the total size of all the sets, but the
amortized time per operation is for all practical pur-
poses constant but in theory grows very slowly with
n (the amortized time is a functional inverse of
Ackermann's function).

These two examples illustrate the use of amortiza-
tion to provide a tighter analysis of a known data
structure. But amortization has a more profound use.
In designing a data structure to reduce amortized
running time, we are led to a different approach
than if we were trying to reduce worst-case running
time. Instead of carefully crafting a structure with
exactly the right properties to guarantee a good
worst-case time bound, we can try to design sim-

subtree. Such a search takes time proportional to the
depth of the desired item. defined to be the number
of nodes examined during the search. The worst-
case search time is proportional to the depth of the
tree, defined to be the max imum node depth.

Other efficient operations on binary search trees
include inserting a new item and deleting an old one
(the tree grows or shrinks by a node, respectively).
Such trees provide a way of representing static or
dynamically changing sorted sets. Although in many
situations a hash table is the preferred representa-
tion, since it supports retrieval in O(1) time on the
average, a search tree is the data structure of choice
if the ordering among items is important. For exam-
ple, in a search tree it is possible in a single search to
find the largest item smaller than a given one, some-
thing that in a hash table requires examining all the
items. Search trees also support even more compli-
cated operations, such as retrieval of all items be-
tween a given pair of items (range retrieval) and
concatenation and splitting of lists.

ple, local restructuring operations that improve the
state of the structure if they are applied re,,peat,edly.
This approach can produce "self-adjusting or self- ~ ~
organizing' data structures that adapt to fit their ~. ~0 ~ ~H
usage and have an amortized efficiency close to opti- - - J v ~ _ j . . _ / ~
mum among a broad class of competing structures. F X_ f -'~ f " Y " ~ K

The splay tree, a self-adjusting form of binary k ~ - ~ A ~. j)E ~.~.) G ~ j ~
search tree that Danny Sleator and I developed, is ~ ~
one such data structure. In order to discuss it, I need ~ . j) c . ~ . j) o ~ j)
first to review some concepts and results about ~
search trees. A binary tree is either empty or con- I
sists of a node called the root and two node-disjoint
binary trees, called the left and right subtrees of the
root. The root of the left (right) subtree is the left
(right) child of the root of the tree. A binary search
tree is a binary tree containing the items from a
totally ordered set in its nodes, one item per node,
with the items arranged in symmetric order; that is,
all items in the left subtree are less than the item
in the root, and all items in the right subtree are
greater (see Figure 4).

A binary search tree supports fast retrieval of the
items in the set it represents. The retrieval algo-
rithm, based on binary search, is easy to state recur-
sively. If the tree is empty, stop: The desired item is
not present. Otherwise, if the root contains the de-
sired item, stop: The item has been found. Other-
wise, if the desired item is greater than the one in
the root, search the left subtree; if the desired item
is less than the one in the root, search the right

1 See R. E. Tarjan, Amortized computational complexity, SIAM J. Alg. Disc.
Math. 6, 2 (Apr. 1985}, 306-318, for a thorough discussion of this concept.

The items are ordered alphabetically.

FIGURE 4. A Binary Search Tree

An n-node binary tree has some node of depth at
least log2 n; thus, for any binary search tree the
worst-case retrieval time is at least a constant times
logn. One can guarantee an O(logn) worst-case re-
trieval time by using a balanced tree. Starting with
the discovery of height-balanced trees by Georgii
Adelson-Velskii and Evgenii Landis in 1962, many
kinds of balanced trees have been discovered, all
based on the same general idea. The tree is required
to satisfy a balance constraint, some local property
that guarantees a depth of O(logn). The balance con-
straint is restored after an update, such as an inser-
tion or deletion, by performance of a sequence of
local transformations on the tree. In the case of bi-
nary trees, each transformation is a rotation, which
takes constant time, changes the depths of certain

March 1987 Volume 30 Number 3 Communications of the ACM ~09

Turing Award Lecture

RIGHT ROTATION

• = LEFT

ROTATIONL. ~ //~k~

c

A B 8 C

The right rotation is at node x, and the inverse left rotation at
node y. The triangles denote arbitrary subtrees, possibly
empty. The tree shown can be part of a larger tree.

FIGURE 5. A Rotation in a Binary Search Tree

nodes, and preserves the symmetric order of the
items (see Figure 5).

Although of great theoretical interest, balanced
search trees have drawbacks in practice. Maintain-
ing the balance constraint requires extra space in
the nodes for storage of balance information and re-
quires complicated update algorithms with many
cases. If the items in the tree are accessed more or
less uniformly, it is simpler and more efficient in
practice not to balance the tree at all; a random
sequence of insertions will produce a tree of depth
O(logn). On the other hand, if the access distribution
is significantly skewed, then a balanced tree will not
minimize the total access time, even to within a
constant factor. To my knowledge, the only kind of
balanced tree extensively used in practice is the
B-tree of Rudolph Bayer and Ed McCreight, which
generally has many more than two children per
node and is suitable for storing very large sets of
data on secondary storage media such as disks.
B-trees are useful because the benefits of balancing
increase with the number of children per node and
with the corresponding decrease in max imum depth.
In practice, the max imum depth of a B-tree is a
small constant (three or four).

The invention of splay trees arose out of work I
did with two of my students, Sam Bent and Danny
Sleator, at Stanford in the late 1970s. I had returned
to Stanford as a faculty member after spending some
time at Cornell and Berkeley. Danny and I were
attempting to devise an efficient algorithm to com-
pute max imum flows in networks. We reduced this
problem to one of constructing a special kind of
search tree, in which each item has a positive
weight and the time it takes to retrieve an item
depends on its weight, heavier items being easier to
access than lighter ones. The hardest requirement to
meet was the capacity for performing drastic update

operations fast; each tree was to represent a list, and
we needed to allow for list splitting and concatena-
tion. Sam, Danny, and I, after much work, succeeded
in devising an appropriate generalization of balanced
search trees, called biased search trees, which be-
came the subject of Sam's Ph.D. thesis. Danny and I
combined biased search trees with other ideas to
obtain the efficient max imum flow algorithm we
had been seeking. This algorithm in turn was the
subject of Danny's Ph.D. thesis. The data structure
that forms the heart of this algorithm, called a dy-
namic tree, has a variety of other applications.

The trouble with biased search trees and with our
original version of dynamic trees is that they are
complicated. One reason for this is that we had tried
to design these structures to minimize the worst-
case time per operation. In this we were not entirely
successful; update operations on these structures
only have the desired efficiency in the amortized
sense. After Danny and I both moved to AT&T Bell
Laboratories at the end of 1980, he suggested the
possibility of simplifying dynamic trees by explicitly
seeking only amortized efficiency instead of worst-
case efficiency. This idea led naturally to the prob-
lem of designing a "self-adjusting" search tree that
would be as efficient as balanced trees but only in
the amortized sense. Having formulated this prob-
lem, it took us only a few weeks to come up with a
candidate data structure, although analyzing it took
us much longer (the analysis is still incomplete).

In a splay tree, each retrieval of an item is fol-
lowed by a restructuring of the tree, called a splay
operation. (Splay, as a verb, means "to spread out.")
A splay moves the retrieved node to the root of the
tree, approximately halves the depth of all nodes
accessed during the retrieval, and increases the
depth of any node in the tree by at most two. Thus,
a splay makes all nodes accessed during the retrieval
much easier to access later, while making other
nodes in the tree at worst a little harder to access.

The details of a splay operation are as follows (see
Figure 6): To splay at a node x, repeat the following
step until node x is the tree root.

Splay Step. Of the following three cases, apply the
appropriate one:

Zig case. If x is a child of the tree root, rotate at
x (this case is terminal).

Zig-zig case. If x is a left child and its parent is a
left child, or if both are right children, rotate at
the parent of x and then at x.

Zig-zag case. If x is a left child and its parent is a
right child, or vice versa, rotate at x and then
again at x.

As Figure 7 suggests, a sequence of costly retriev-
als in an originally very unbalanced splay tree will

210 Communications of the ACM March 1987 Volume 30 Number 3

Turing Award Lecture

zig

A O B C

yy• X

zig-z ig =

°

A B C O

z ig-zag

X

A B C D

B C

In the zig-zig and zig-zag cases, the tree shown can be part of a larger tree.

FIGURE 6. The Cases of a Splay Step

quickly drive it into a reasonably balanced state.
Indeed, the amortized retrieval t ime in an n-node
splay tree is O(logn). Splay trees have even more
striking theoretical properties. For an arbitrary but
sufficiently long sequence of retrievals, a splay tree
is as efficient to within a constant factor as an opti-
mum static binary search tree expressly constructed
to minimize the total retrieval time for the given
sequence. Splay trees perform as well in an amor-

,•,i
g

e f

FIGURE 7.

tized sense as biased search trees, which allowed
Danny and I to obtain a simplified version of dy-
namic trees, our original goal.

On the basis of these results, Danny and I conjec-
ture that splay trees are a universally opt imum form
of binary search tree in the following sense: Con-
sider a fixed set of n items and an arbitrary sequence
of m _> n retrievals of these items. Consider any
algorithm that performs these retrievals by starting

C

D
f i

d g
b (~) e g i

A Sequence of Two Costly Splays on an Initially Unbalanced Tree

March 1987 Volume 30 Number 3 Communications of the ACM 211

Turing Award Lecture

with an initial binary search tree, performing each
retrieval by searching from the root in the standard
way, and intermittently restructuring the tree by
performing rotations anywhere in it. The cost of the
algorithm is the sum of the depths of the retrieved
items (when they are retrieved) plus the total num-
ber of rotations. We conjecture that the total cost of
the splaying algorithm, starting with an arbitrarily
bad initial tree, is within a constant factor of the
minimum cost of any algorithm. Perhaps this conjec-
ture is too good to be true. One additional piece of
evidence supporting the conjecture is that accessing
all the items of a binary search tree in sequential
order using splaying takes only linear time.

In addition to their intriguing theoretical proper-
ties, splay trees have potential value in practice.
Splaying is easy to implement, and it makes tree
update operations such as insertion and deletion
simple as well. Preliminary experiments by Doug
Jones suggest that splay trees are competitive with
all other known data structures for the purpose of
implementing the event list in a discrete simulation
system. They may be useful in a variety of other
applications, although verifying this will require
much systematic and careful experimentation.

The development of splay trees suggests several
conclusions. Continued work on an already-solved
problem can lead to major simplifications and addi-
tional insights. Designing for amortized efficiency
can lead to simple, adaptive data structures that
are more efficient in practice than their worst-case-
efficient cousins. More generally, the efficiency
measure chosen suggests the approach to be
taken in tackling an algorithmic problem and guides
the development of a solution.

I want to make a few comments about what I
think the field of algorithm design needs. It is trite to
say that we could use a closer coupling between
theory and practice, but it is nevertheless true. The
world of practice provides a rich and diverse source
of problems for researchers to study. Researchers
can provide practitioners with not only practical al-
gorithms for specific problems, but broad approaches
and general techniques that can be useful in a vari-
ety of applications.

Two things would support better interaction be-
tween theory and practice. One is much more work
on experimental analysis of algorithms. Theoretical
analysis of algorithms rests on sound foundations.
This is not true of experimental analysis. We need a
disciplined, systematic, scientific approach. Experi-
mental analysis is in a way much harder than theo-
retical analysis because experimental analysis
requires the writing of actual programs, and it is
hard to avoid introducing bias through the coding
process or through the choice of sample data.

Another need is for a programming language or
notation that will simultaneously be easy to under-
stand by a human and efficient to execute on a ma-
chine. Conventional programming languages force
the specification of too much irrelevant detail,
whereas newer very-high-level languages pose a
challenging implementation task that requires much
more work on data structures, algorithmic methods,
and their selection.

There is now tremendous ferment within both the
theoretical and practical communities over the issue
of parallelism. To the theoretician, parallelism offers
a new model of computation and thereby changes
the ground rules of theoretical analysis. To the prac-
titioner, parallelism offers possibilities for obtaining
tremendous speedups in the solution of certain kinds
of problems. Parallel hardware will not make theo-
retical analysis unimportant, however. Indeed, as
the size of solvable problems increases, asymptotic
analysis becomes more, not less, important. New al-
gorithms will be developed that exploit parallelism,
but many of the ideas developed for sequential com-
putation will transfer to the parallel setting as well.
It is important to realize that not all problems are
amenable to parallel solution. Understanding the im-
pact of parallelism is a central goal of much of the
research in algorithm design today.

I do research in algorithm design not only because
it offers possibilities for affecting the real world of
computing, but because I love the work itself, the
rich and surprising connections among problems and
solutions it reveals, and the opportunity it provides
to share with creative, stimulating, and thoughtful
colleagues in the discovery of new ideas. I thank the
Association for Computing Machinery and the entire
computing community for this award, which recog-
nizes not only my own ideas, but those of the indi-
viduals with whom I have had the pleasure of work-
ing. They are too many to name here, but I want to
acknowledge all of them, and especially John Hop-
croft and Danny Sleator, for sharing their ideas and
efforts in this process of discovery.

CR Categories and Subject Descriptors: A.0 [General Literature]:
General--biographies~autobiographies; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems;
G.2.2 [Discrete Mathematics]: Graph Theory; K.2 [Computing Milieux]:
History of Computing--people

General Terms: Algorithms, Design, Performance, Theory
Additional Key Words and Phrases: John E. Hopcroft, Robert E.

Tarjan, Turing Award

Author's Present Addresses: Robert E. Tarjan, Computer Science Dept.,
Princeton University, Princeton, NJ 08544; and AT&T Bell Laboratories,
Murray Hill, NJ 07074.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

212 Communications of the ACM March 1987 Volume 30 Number 3

