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TURING AWARD LECTURE 

ALGORITHM DESIGN 

The quest for efficiency in computational methods yields not only fast 
algorithms, but also insights that lead to elegant, simple, and general 
problem-solving methods. 

ROBERT E. TARJAN 

I was surprised and delighted to learn of my selec- 
tion as corecipient of the 1986 Turing Award. My 
delight turned to discomfort, however, when I began 
to think of the responsibility that comes with this 
great honor: to speak to the computing community 
on some topic of my own choosing. Many of my 
friends suggested that I preach a sermon of some 
sort, but as I am not the preaching kind, I decided 
just to share with you some thoughts about the 
work I do and its relevance to the real world of 
computing. 

Most of my research deals with the design and 
analysis of efficient computer algorithms. The goal 
in this field is to devise problem-solving methods 
that are as fast and use as little storage as possible. 
The efficiency of an algorithm is measured not by 
programming it and running it on an actual com- 
puter, but by performing a mathematical analysis 
that gives bounds on its potential use of time and 
space. A theoretical analysis of this kind has one 
obvious strength: It is independent of the program- 
ming of the algorithm, the language in which the 
program is written, and the specific computer on 
which the program is run. This means that conclu- 
sions derived from such an analysis tend to be of 
broad applicability. Furthermore, a theoretically effi- 
cient algorithm is generally efficient in practice 
(though of course not always). 

But there is a more profound dimension to the 
design of efficient algorithms. Designing for theoreti- 
cal efficiency requires a concentration on the impor- 
tant aspects of a problem, so as to avoid redundant 
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computations and to design data structures that ex- 
actly represent the information needed to solve the 
problem. If this approach is successful, the result is 
not only an efficient algorithm, but a collection of 
insights and methods extracted from the design 
process that can be transferred to other problems. 
Since the problems considered by theoreticians are 
generally abstractions of real-world problems, it is 
these insights and general methods that are of most 
value to practitioners, since they provide tools that 
can be used to build solutions to real-world problems. 

Ishall  illustrate algorithm design by relating the 
historical contexts of two particular algorithms. One 
is a graph algorithm, for testing the planarity of a 
graph that I developed with John Hopcroft. The 
other is a data structure, a self-adjusting form of 
search tree that I devised with Danny Sleator. 

I graduated from CalTech in June 1969 with a B.S. 
in mathematics, determined to pursue a Ph.D., but 
undecided about whether  it should be in mathemat- 
ics or computer science. I finally decided in favor of 
computer science and enrolled as a graduate student 
at Stanford in the fall. I thought that as a computer 
scientist I could use my mathematical skills to solve 
problems of more immediate practical interest than 
the problems posed in pure mathematics. I hoped to 
do research in artificial intelligence, since I wished 
to understand the way reasoning, or at least mathe- 
matical reasoning, works. But my course adviser at 
Stanford was Don Knnth, and I think he had other 
plans for my future: His first advice to me was to 
read Volume 1 of his book, The Art of Computer 
Programming. 

By June 1970 1 had successfully passed my Ph.D. 
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qualifying examinations, and I began to cast around 
for a thesis topic. During that month John Hopcroft 
arrived from Cornell to begin a sabbatical year at 
Stanford. We began to talk about the possibility of 
developing efficient algorithms for various problems 
on graphs. 

As a measure of computational efficiency, we set- 
tled on the worst-case time, as a function of the 
input size, of an algorithm running on a sequential 
random-access machine (an abstraction of a sequen- 
tial general-purpose digital computer). We chose to 
ignore constant factors in running time, so that our 
measure could be independent of any machine 
model and of the details of any algorithm implemen- 
tation. An algorithm efficient by this measure tends 
to be efficient in practice. This measure is also ana- 
lytically tractable, which meant that we would be 
able to actually derive interesting results about it. 

Other approaches we considered have various 
weaknesses. In the mid 1960s, Jack Edmonds 
stressed the distinction between polynomial-time 
and non-polynomial-time algorithms, and although 
this distinction led in the early 1970s to the theory 
of NP-completeness, which now plays a central role 
in complexity theory, it is too weak to provide much 
guidance for choosing algorithms in practice. On the 
other hand, Knuth practiced a style of algorithm 
analysis in which constant factors and even lower 
order terms are estimated. Such detailed analysis, 
however, was very hard to do for the sophisticated 
algorithms we wanted to study, and sacrifices imple- 
mentation independence. Another possibility would 
have been to do average-case instead of worst-case 
analysis, but for graph problems this is very hard 
and perhaps unrealistic: Analytically tractable 
average-case graph models do not seem to capture 
important properties of the graphs that commonly 
arise in practice. 

Thus, the state of algorithm design in the late 
1960s was not very satisfactory. The available ana- 
lytical tools lay almost entirely unused; the typical 
content of a paper on a combinatorial algorithm was 
a description of the algorithm, a computer program, 
some timings of the program on sample data, and 
conclusions based on these timings. Since changes in 
programming details can affect the running time of a 
computer program by an order of magnitude, such 
conclusions were not necessarily justified. John and 
I hoped to help put the design of combinatorial algo- 
rithms on a firmer footing by using worst-case run- 
ning time as a guide in choosing algorithmic meth- 
ods and data structures. 

The focus of our activities became the problem of 
testing the planarity of a graph. A graph is planar if 
it can be drawn in the plane so that each vertex 

/ 
FIGURE 1. A Planar Graph 

becomes a point, each edge becomes a simple curve 
joining the appropriate pair of vertices, and no 
two edges touch except at a common vertex (see 
Figure 1). 

A beautiful theorem by Casimir Kuratowski states 
that a graph is planar if and only if it does not con- 
tain as a subgraph either the complete graph on five 
vertices (Ks), or the complete bipartite graph on two 
sets of three vertices (K3,3) (see Figure 2). 

Unfortunately, Kuratowski's criterion does not 
lead in any obvious way to a practical planarity test. 
The known efficient ways to test planarity involve 
actually trying to embed the graph in the plane. 
Either the embedding process succeeds, in which 
case the graph is planar, or the process fails, in 
which case the graph is nonplanar. It is not neces- 

K5 

K3,3 

FIGURE 2. The "Forbidden" Subgraphs of Kuratowski 
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sary to specify the geometry of an embedding; a 
specification of its topology will do. For example, it 
is enough to know the clockwise ordering around 
each vertex of its incident edges. 

Louis Auslander and Seymour Parter formulated a 
planarity algorithm in 1961 called the path addition 
method. The algorithm is easy to state recursively: 
Find a simple cycle in the graph, and then remove 
this cycle to break the rest of the graph into seg- 
ments. (In a planar embedding, each segment must 
lie either completely inside or completely outside 
the embedded cycle; certain pairs of segments are 
constrained to be on opposite sides of the cycle. See 
Figure 3.) Test each segment together with the cycle 
for planarity by applying the algorithm recursively. 
If each segment passes this planarity test, determine 
whether the segments can be assigned to the inside 
and outside of the cycle in a way that satisfies all 
the pairwise constraints. If so, the graph is planar. 

As noted by A. Jay Goldstein in 1963, it is essen- 
tial to make sure that the algorithm chooses a cycle 
that produces two or more segments; if only one 
segment is produced, the algorithm can loop forever. 
Rob Shirey proposed a version of the algorithm in 
1969 that runs in O(n 3) time on an n-vertex graph. 
John and I worked to develop a faster version of this 
algorithm. 

A useful fact about planar graphs is that they are 
sparse: Of the n(n - 1)/2 edges that an n-vertex 
graph can contain, a planar graph can contain only 
at most 3n - 6 of them (if n _> 3). Thus John and I 
hoped (audaciously) to devise an O(n)-time planarity 
test. Eventually, we succeeded. 

The first step was to settle on an appropriate 
graph representation, one that takes advantage of 
sparsity. We used a very simple representation, con- 
sisting of a list, for each vertex, of its incident edges. 
For a possibly planar graph, such a representation is 
O(n) in size. 

The second step was to discover how to do a 
necessary bit of preprocessing. The path addition 
method requires that the graph be biconnected 
(that is, have no vertices whose removal disconnects 
the graph}. If a graph is not biconnected, it can be 
divided into maximal biconnected subgraphs, or bi- 
connected components. A graph is planar if and only 
if all of its biconnected comPonents are planar. Thus 
planarity can be tested by first dividing a graph into 
its biconnected components and then testing each 
component for planarity. We devised an algorithm 
for finding the biconnected components of an 
n-vertex, m-edge graph in O(n + m) time. This algo- 
rithm uses depth-first search, a systematic way of 
exploring a graph and visiting each vertex and edge. 

We were now confronted with the planarity test 

/ 
c c 

c 1 

/- 
Segments I and 2 must be embedded on opposite sides of C, 
as must segments 1 and 3, 1 and 4, 2 and 5, 3 and 5, and 4 
and 5. 

FIGURE 3. Division of the Graph in Figure 1 by Removal of Cycle C 

itself. There were two main problems to be solved. If 
the path addition method is formulated iteratively 
instead of recursively, the method becomes one of 
embedding an initial cycle and then adding one path 
at a time to a growing planar embedding. Each path 
is disjoint from earlier paths except at its end ver- 
tices. There is in general more than one way to 
embed a path, and embedding of later paths may 
force changes in the embedding of earlier paths. We 
needed a way to divide the graph into paths and a 
way to keep track of the possible embeddings of 
paths so far processed. 

After carefully studying the properties of depth- 
first search, we developed a way to generate paths in 
O(n) time using depth-first search. Our initial 
method for keeping track of alternative embeddings 
used a complicated and ad hoc nested structure. For 
this method to work correctly, paths had to be gen- 
erated in a specific, dynamically determined order. 
Fortunately, our path generation algorithm was flex- 
ible enough to meet this requirement, and we ob- 
tained a planarity algorithm that runs in O(n log n) 
time. 

Our attempts to reduce the running time of this 
algorithm to O(n) failed, and we turned to a slightly 
different approach, in which the first step is to gen- 
erate all the paths, the second step is to construct a 
graph representing their pairwise embedding con- 
straints, and the third step is to color this constraint 
graph with two colors, corresponding to the two pos- 
sible ways to embed each path. The problem with 
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this approach is that there can be a quadratic num- 
ber of pairwise constraints. Obtaining a linear time 
bound requires computing explicitly only enough 
constraints so that their satisfaction guarantees that 
all remaining constraints are satisfied as well. Work- 
ing out this idea led to an O(n)-time planarity algo- 
rithm, which became the subject of my Ph.D. dis- 
sertation. This algorithm is not only theoretically 
efficient, but fast in practice: My implementation, 
written in Algol W and run on an IBM 360/67, tested 
graphs with 900 vertices and 2694 edges in about 
12 seconds. This was about 80 times faster than any 
other claimed time bound I could find in the litera- 
ture. The program is about 500 lines long, not count- 
ing comments. 

This is not the end of the story, however. In pre- 
paring a description of the algorithm for journal pub- 
lication, we discovered a way to avoid having to 
construct and color a graph to represent pairwise 
embedding constraints. We devised a data structure, 
called a pile of twin stacks, that can represent all 
possible embeddings of paths so far processed and is 
easy to update to reflect the addition of new paths. 
This led to a simpler algorithm, still with an O(n) 
time bound. Don Woods, a student of mine, pro- 
grammed the simpler algorithm, which tested graphs 
with 7000 vertices in 8 seconds on an IBM 370/168. 
The length of the program was about 250 lines of 
Algol W, of which planarity testing required only 
about 170, the rest being used to actually construct 
a planar representation. 

From this research we obtained not only a fast 
planarity algorithm, but also an algorithmic tech- 
nique (depth-first search) and a data structure (the 
pile of twin stacks) useful in solving many other 
problems. Depth-first search has been used in effi- 
cient algorithms for a variety of graph problems; the 
pile of twin stacks has been used to solve problems 
in sorting and in recognizing codes for planar self- 
intersecting curves. 

Our algorithm is not the only way to test planarity 
in O(n) time. Another approach, by Abraham Lem- 
pel, Shimon Even, and Israel Cederbaum, is to build 
an embedding by adding one vertex and its incident 
edges at a time. A straightforward implementation of 
this algorithm gives an O(n 2) time bound. When John 
and I were doing our research, we saw no way to 
improve this bound, but later work by Even and 
myself and by Kelly Booth and George Lueker 
yielded an O(n)-time version of this algorithm. 
Again, the method combines depth-first search, in a 
preprocessing step to determine the order of vertex 
addition, with a complicated data structure, the 
PQ-tree of Booth and Lueker, for keeping track of 

possible embeddings. (This data structure itself has 
several other applications.) 

There is yet a third O(n)-time planarity algorithm. 
I only recently discovered that a novel form of 
search tree called a finger search tree, invented in 
1977 by Leo Guibas, Mike Plass, Ed McCreight, and 
Janet Roberts, can be used in the original planarity 
algorithm that John and I developed to improve its 
running time from O(n log n) to O(n). Deriving the 
time bound requires the solution of a divide-and- 
conquer recurrence. Finger search trees had no par- 
ticularly compelling applications for several years 
after they were invented, but now they do, in sort- 
ing and computational geometry, as well as in graph 
algorithms. 

Ultimately, choosing the correct data structures is 
crucial to the design of efficient algorithms. These 
structures can be complicated, and it can take years 
to distill a complicated data structure or algorithm 
down to its essentials. But a good idea has a way of 
eventually becoming simpler and of providing solu- 
tions to problems other than those for which it was 
intended. Just as in mathematics, there are rich and 
deep connections among the apparently diverse 
parts of computer science. 

I want to shift the emphasis now from graph algo- 
rithms to data structures by reflecting a little on 
whether worst-case running time is an appropriate 
measure of a data structure's efficiency. A graph al- 
gorithm is generally run on a single graph at a time. 
An operation on a data structure, however, does not 
occur in isolation; it is one in a long sequence of 
similar operations on the structure. What is impor- 
tant in most applications is the time taken by the 
entire sequence of operations rather than by any 
single operation. (Exceptions occur in real-time 
applications where it is important to minimize 
the time of each individual operation.) 

We can estimate the total time of a sequence of 
operations by multiplying the worst-case time of an 
operation by the number of operations. But this may 
produce a bound that is so pessimistic as to be use- 
less. If in this estimate we replace the worst-case 
time of an operation by the average-case time of an 
operation, we may obtain a tighter bound, but one 
that is dependent on the accuracy of the probability 
model. The trouble with both estimates is that they 
do not capture the correlated effects that successive 
operations can have on the data structure. A simple 
example is found in the pile of twin stacks used in 
planarity testing: A single operation among a se- 
quence of n operations can take time proportional to 
n, but the total time for n operations in a sequence is 
always O(n). The appropriate measure in such a situ- 

208 Communications of the ACM March 1987 Volume 30 Number 3 



Turing Award Lecture 

ation is the amortized time, defined to be the time of 
an operation averaged over a worst-case sequence of 
operations. 1 In the case of a pile of twin stacks, the 
amortized time per operation is O(1). 

A more complicated example of amortized effi- 
ciency is found in a data structure for representing 
disjoint sets under the operation of set union. In this 
case, the worst-case time per operation is O(log n), 
where n is the total size of all the sets, but the 
amortized time per operation is for all practical pur- 
poses constant but in theory grows very slowly with 
n (the amortized time is a functional inverse of 
Ackermann's  function). 

These two examples illustrate the use of amortiza- 
tion to provide a tighter analysis of a known data 
structure. But amortization has a more profound use. 
In designing a data structure to reduce amortized 
running time, we are led to a different approach 
than if we were trying to reduce worst-case running 
time. Instead of carefully crafting a structure with 
exactly the right properties to guarantee a good 
worst-case time bound, we can try to design sim- 

subtree. Such a search takes time proportional to the 
depth of the desired item. defined to be the number  
of nodes examined during the search. The worst- 
case search time is proportional to the depth of the 
tree, defined to be the max imum node depth. 

Other efficient operations on binary search trees 
include inserting a new item and deleting an old one 
(the tree grows or shrinks by a node, respectively). 
Such trees provide a way of representing static or 
dynamically changing sorted sets. Although in many 
situations a hash table is the preferred representa- 
tion, since it supports retrieval in O(1) time on the 
average, a search tree is the data structure of choice 
if the ordering among items is important. For exam- 
ple, in a search tree it is possible in a single search to 
find the largest item smaller than a given one, some- 
thing that in a hash table requires examining all the 
items. Search trees also support even more compli- 
cated operations, such as retrieval of all items be- 
tween a given pair of items (range retrieval) and 
concatenation and splitting of lists. 

ple, local restructuring operations that improve the 
state of the structure if they are applied re,,peat,edly. 
This approach can produce "self-adjusting or self- ~ ~ 
organizing' data structures that adapt to fit their ~. ~0  ~ ~H 
usage and have an amortized efficiency close to opti- - -  J v ~ _  j . . _ / ~  
mum among a broad class of competing structures. F X_ f -'~ f " Y "  ~ K 

The splay tree, a self-adjusting form of binary k ~ - ~  A ~. j )E ~.~.) G ~ j ~  
search tree that Danny Sleator and I developed, is ~ ~ 
one such data structure. In order to discuss it, I need ~ . j ) c  . ~ . j ) o  ~ j )  
first to review some concepts and results about ~ 
search trees. A binary tree is either empty or con- I 
sists of a node called the root and two node-disjoint 
binary trees, called the left and right subtrees of the 
root. The root of the left (right) subtree is the left 
(right) child of the root of the tree. A binary search 
tree is a binary tree containing the items from a 
totally ordered set in its nodes, one item per node, 
with the items arranged in symmetric order; that is, 
all items in the left subtree are less than the item 
in the root, and all items in the right subtree are 
greater (see Figure 4). 

A binary search tree supports fast retrieval of the 
items in the set it represents. The retrieval algo- 
rithm, based on binary search, is easy to state recur- 
sively. If the tree is empty, stop: The desired item is 
not present. Otherwise, if the root contains the de- 
sired item, stop: The item has been found. Other- 
wise, if the desired item is greater than the one in 
the root, search the left subtree; if the desired item 
is less than the one in the root, search the right 

1 See R. E. Tarjan, Amortized computational complexity, SIAM J. Alg. Disc. 
Math. 6, 2 (Apr. 1985}, 306-318, for a thorough discussion of this concept. 

The items are ordered alphabetically. 

FIGURE 4. A Binary Search Tree 

An n-node binary tree has some node of depth at 
least log2 n; thus, for any binary search tree the 
worst-case retrieval time is at least a constant times 
logn. One can guarantee an O(logn) worst-case re- 
trieval time by using a balanced tree. Starting with 
the discovery of height-balanced trees by Georgii 
Adelson-Velskii and Evgenii Landis in 1962, many 
kinds of balanced trees have been discovered, all 
based on the same general idea. The tree is required 
to satisfy a balance constraint, some local property 
that guarantees a depth of O(logn). The balance con- 
straint is restored after an update, such as an inser- 
tion or deletion, by performance of a sequence of 
local transformations on the tree. In the case of bi- 
nary trees, each transformation is a rotation, which 
takes constant time, changes the depths of certain 
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The right rotation is at node x, and the inverse left rotation at 
node y. The triangles denote arbitrary subtrees, possibly 
empty. The tree shown can be part of a larger tree. 

FIGURE 5. A Rotation in a Binary Search Tree 

nodes, and preserves the symmetric order of the 
items (see Figure 5). 

Although of great theoretical interest, balanced 
search trees have drawbacks in practice. Maintain- 
ing the balance constraint requires extra space in 
the nodes for storage of balance information and re- 
quires complicated update algorithms with many 
cases. If the items in the tree are accessed more or 
less uniformly, it is simpler and more efficient in 
practice not to balance the tree at all; a random 
sequence of insertions will produce a tree of depth 
O(logn). On the other hand, if the access distribution 
is significantly skewed, then a balanced tree will not 
minimize the total access time, even to within a 
constant factor. To my knowledge, the only kind of 
balanced tree extensively used in practice is the 
B-tree of Rudolph Bayer and Ed McCreight, which 
generally has many  more than two children per 
node and is suitable for storing very large sets of 
data on secondary storage media such as disks. 
B-trees are useful because the benefits of balancing 
increase with the number  of children per node and 
with the corresponding decrease in max imum depth. 
In practice, the max imum depth of a B-tree is a 
small constant (three or four). 

The invention of splay trees arose out of work I 
did with two of my students, Sam Bent and Danny 
Sleator, at Stanford in the late 1970s. I had returned 
to Stanford as a faculty member  after spending some 
time at Cornell and Berkeley. Danny and I were 
attempting to devise an efficient algorithm to com- 
pute max imum flows in networks. We reduced this 
problem to one of constructing a special kind of 
search tree, in which each item has a positive 
weight and the time it takes to retrieve an item 
depends on its weight, heavier items being easier to 
access than lighter ones. The hardest requirement to 
meet was the capacity for performing drastic update 

operations fast; each tree was to represent a list, and 
we needed to allow for list splitting and concatena- 
tion. Sam, Danny, and I, after much work, succeeded 
in devising an appropriate generalization of balanced 
search trees, called biased search trees, which be- 
came the subject of Sam's Ph.D. thesis. Danny and I 
combined biased search trees with other ideas to 
obtain the efficient max imum flow algorithm we 
had been seeking. This algorithm in turn was the 
subject of Danny's Ph.D. thesis. The data structure 
that forms the heart of this algorithm, called a dy- 
namic tree, has a variety of other applications. 

The trouble with biased search trees and with our 
original version of dynamic trees is that they are 
complicated. One reason for this is that we had tried 
to design these structures to minimize the worst- 
case time per operation. In this we were not entirely 
successful; update operations on these structures 
only have the desired efficiency in the amortized 
sense. After Danny and I both moved to AT&T Bell 
Laboratories at the end of 1980, he suggested the 
possibility of simplifying dynamic trees by explicitly 
seeking only amortized efficiency instead of worst- 
case efficiency. This idea led naturally to the prob- 
lem of designing a "self-adjusting" search tree that 
would be as efficient as balanced trees but only in 
the amortized sense. Having formulated this prob- 
lem, it took us only a few weeks to come up with a 
candidate data structure, although analyzing it took 
us much longer (the analysis is still incomplete). 

In a splay tree, each retrieval of an item is fol- 
lowed by a restructuring of the tree, called a splay 
operation. (Splay, as a verb, means "to spread out.") 
A splay moves the retrieved node to the root of the 
tree, approximately halves the depth of all nodes 
accessed during the retrieval, and increases the 
depth of any node in the tree by at most two. Thus, 
a splay makes all nodes accessed during the retrieval 
much easier to access later, while making other 
nodes in the tree at worst a little harder to access. 

The details of a splay operation are as follows (see 
Figure 6): To splay at a node x, repeat the following 
step until node x is the tree root. 

Splay Step. Of the following three cases, apply the 
appropriate one: 

Zig case. If x is a child of the tree root, rotate at 
x (this case is terminal). 

Zig-zig case. If x is a left child and its parent is a 
left child, or if both are right children, rotate at 
the parent of x and then at x. 

Zig-zag case. If x is a left child and its parent is a 
right child, or vice versa, rotate at x and then 
again at x. 

As Figure 7 suggests, a sequence of costly retriev- 
als in an originally very unbalanced splay tree will 
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In the zig-zig and zig-zag cases, the tree shown can be part of a larger tree. 

FIGURE 6. The Cases of a Splay Step 

quickly drive it into a reasonably balanced state. 
Indeed, the amortized retrieval t ime in an n-node 
splay tree is O(logn). Splay trees have even more 
striking theoretical properties. For an arbitrary but 
sufficiently long sequence of retrievals, a splay tree 
is as efficient to within a constant factor as an opti- 
mum static binary search tree expressly constructed 
to minimize the total retrieval time for the given 
sequence. Splay trees perform as well in an amor- 
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FIGURE 7. 

tized sense as biased search trees, which allowed 
Danny and I to obtain a simplified version of dy- 
namic trees, our original goal. 

On the basis of these results, Danny and I conjec- 
ture that splay trees are a universally opt imum form 
of binary search tree in the following sense: Con- 
sider a fixed set of n items and an arbitrary sequence 
of m _> n retrievals of these items. Consider any 
algorithm that performs these retrievals by starting 
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A Sequence of Two Costly Splays on an Initially Unbalanced Tree 

March 1987 Volume 30 Number 3 Communications of the ACM 211 



Turing Award Lecture 

with an initial binary search tree, performing each 
retrieval by searching from the root in the standard 
way, and intermittently restructuring the tree by 
performing rotations anywhere in it. The cost of the 
algorithm is the sum of the depths of the retrieved 
items (when they are retrieved) plus the total num- 
ber of rotations. We conjecture that the total cost of 
the splaying algorithm, starting with an arbitrarily 
bad initial tree, is within a constant factor of the 
minimum cost of any algorithm. Perhaps this conjec- 
ture is too good to be true. One additional piece of 
evidence supporting the conjecture is that accessing 
all the items of a binary search tree in sequential 
order using splaying takes only linear time. 

In addition to their intriguing theoretical proper- 
ties, splay trees have potential value in practice. 
Splaying is easy to implement, and it makes tree 
update operations such as insertion and deletion 
simple as well. Preliminary experiments by Doug 
Jones suggest that splay trees are competitive with 
all other known data structures for the purpose of 
implementing the event list in a discrete simulation 
system. They may be useful in a variety of other 
applications, although verifying this will require 
much systematic and careful experimentation. 

The development of splay trees suggests several 
conclusions. Continued work on an already-solved 
problem can lead to major simplifications and addi- 
tional insights. Designing for amortized efficiency 
can lead to simple, adaptive data structures that 
are more efficient in practice than their worst-case- 
efficient cousins. More generally, the efficiency 
measure chosen suggests the approach to be 
taken in tackling an algorithmic problem and guides 
the development of a solution. 

I want to make a few comments about what I 
think the field of algorithm design needs. It is trite to 
say that we could use a closer coupling between 
theory and practice, but it is nevertheless true. The 
world of practice provides a rich and diverse source 
of problems for researchers to study. Researchers 
can provide practitioners with not only practical al- 
gorithms for specific problems, but broad approaches 
and general techniques that can be useful in a vari- 
ety of applications. 

Two things would support better interaction be- 
tween theory and practice. One is much more work 
on experimental analysis of algorithms. Theoretical 
analysis of algorithms rests on sound foundations. 
This is not true of experimental analysis. We need a 
disciplined, systematic, scientific approach. Experi- 
mental analysis is in a way much harder than theo- 
retical analysis because experimental analysis 
requires the writing of actual programs, and it is 
hard to avoid introducing bias through the coding 
process or through the choice of sample data. 

Another need is for a programming language or 
notation that will simultaneously be easy to under- 
stand by a human and efficient to execute on a ma- 
chine. Conventional programming languages force 
the specification of too much irrelevant detail, 
whereas newer very-high-level languages pose a 
challenging implementation task that requires much 
more work on data structures, algorithmic methods, 
and their selection. 

There is now tremendous ferment within both the 
theoretical and practical communities over the issue 
of parallelism. To the theoretician, parallelism offers 
a new model of computation and thereby changes 
the ground rules of theoretical analysis. To the prac- 
titioner, parallelism offers possibilities for obtaining 
tremendous speedups in the solution of certain kinds 
of problems. Parallel hardware will not make theo- 
retical analysis unimportant, however. Indeed, as 
the size of solvable problems increases, asymptotic 
analysis becomes more, not less, important. New al- 
gorithms will be developed that exploit parallelism, 
but many of the ideas developed for sequential com- 
putation will transfer to the parallel setting as well. 
It is important to realize that not all problems are 
amenable to parallel solution. Understanding the im- 
pact of parallelism is a central goal of much of the 
research in algorithm design today. 

I do research in algorithm design not only because 
it offers possibilities for affecting the real world of 
computing, but because I love the work itself, the 
rich and surprising connections among problems and 
solutions it reveals, and the opportunity it provides 
to share with creative, stimulating, and thoughtful 
colleagues in the discovery of new ideas. I thank the 
Association for Computing Machinery and the entire 
computing community for this award, which recog- 
nizes not only my own ideas, but those of the indi- 
viduals with whom I have had the pleasure of work- 
ing. They are too many to name here, but I want to 
acknowledge all of them, and especially John Hop- 
croft and Danny Sleator, for sharing their ideas and 
efforts in this process of discovery. 
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