
THETIS: AN ANSI C PROGRAMMING ENVIRONMENT
DESIGNED FOR INTRODUCTORY USE

Stephen N. Freund and Eric S. Roberts

Department of Computer Science

Stanford University

ABSTRACT
Commercially available compilers, particularly those used
for languages like ANSI C that have extensive commercial
applicability, are not well-suited to students in introductory

computer science courses because they assume a level of

sophistication that beginning students do not possess. To

alleviate this problem at Stanford, we have developed the

Thetis programming environment designed specifically for

student use. The system consists of a C interpreter and

associated user interface that provides students with simple

and easily understood editing, debugging, and visualization

capabilities. Reactions of students and instructors indicate

that Thetis fulfills the goals we set out to accomplish and

provides a significantly better learning environment for

students in CS l/CS2.

1. INTRODUCTION
When the Stanford Department of Computer Science decided

in 1991 to adopt ANSI C as the language of instruction for

its CS l/CS2 sequence, most of the affected constituencies

strongly supported the change. In particular, students saw

the C-based material as more relevant—an attitude shared by

many faculty members, both inside and outside the

department, who felt that the change would prepare students

more effectively for advanced work.

Ironically, the only people to express any significant

reservations about the decision to adopt C were one or two

of the lecturers who would be responsible for teaching the

introductory courses. There was little question in anyone’s

mind that Pascal was becoming increasingly obsolete and

needed to be replaced. Likewise, there was no doubt that

students needed to learn both C and C++ earlier in the

curriculum than they had in the past. The concerns were

focused instead on whether the added complexity imposed

by using C in the introductory course would make it harder

for students to master the more important issues of problem

solving and algorithmic design. The fear, as one lecturer

expressed it, was that “students would end up spending

more of their time debugging and less of their time

learning.”

Permission to copy without fee all or part of this material is granted
provided that the copies an? not made or disbibuted for direct
commercial advantage, the ACM copyright notice and the tiUe of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise or to republish, requires a fee and/or speeific permission.
SIGCSE ’96 2f96 Philadelphia, PA USA
Q1996 ACM 0-69791 -757-X/96/000250.5O

As we have reported elsewhere [Roberts93, Roberts95a],

the change to C has had a positive effect on the computer

science program and that we have in fact achieved most of

the benefits we anticipated. Even so, it is important to

note that the concerns were not without foundation. When

we evaluated the C-based course in a seminar on

undergraduate teaching after its initial year, we determined

that students were indeed spending a larger fraction of their

time trying to track down relatively obscure errors in their

code and that the student frustration level was often higher

as a result.

On further examination, however, we made an important

discovery: student frustration was less a function of the

language than of the programming environment. The

Pascal compiler we had abandoned was much easier to use

than the C compiler we adopted for the revised course,

particularly for beginning programmers. The Pascal

compiler detected more errors, provided clearer diagnostics,

and included an interactive debugger that was much better

suited to student use. It was these factors—not a change in

the syntax and structure of the programming language—that

made the difference.

After extensive consideration, we decided that the best

solution to the problem of inadequate tools was to develop

a programming environment specifically designed to address

the needs of introductory computer science students. That

project—since christened Thetis after the sea (C) nymph

from Greek mythology—was used on an experimental basis

in winter quarter of 1995 and then adopted for the entire

introductory course in the spring. This paper describes the

Thetis project and our experiences using it at Stanford.

2. SHORTCOMINGS OF EXISTING COMPILERS

The idea that weaknesses in the programming environment

complicate the learning process for beginning students is

not a new one; such shortcomings have been recognized in

earlier papers [Ruckert93, Schorsch95]. The underlying

problem is that most commercial compilers—particularly

for languages like C that cater to a large audience of

programmers—are designed for experts rather than novices.

As a result, most of these compilers are poorly suited to

student use.

In our experience, commercial compilers suffer from the

following problems when used in an introductory course:

“ The error messages generated by commercial compilers
are often uninformative and sometimes misleadittg. New
programmers tend to make certain mistakes more often than

others. For example, omitting a required semicolon or

300

right curly brace is a very common error in C programs.

Unfortunately, compilers sometimes respond to this error

by reporting a seemingly unrelated syntax error several lines

below the actual mistake. presumably because the parser

does not detect the problem until that point in the source

file. Expert programmers understand the problem and know

where to look; novices are completely baffled.

“ Commercial C compilers offer little or no run-time
checking that would help students identify bugs that are
otherwise extremely hard to find. Although misleading

error messages are a source of early confusion, the greatest

frustration for students comes from logic errors that the

system never detects. In C, the problem is especially

pernicious because compilers rarely generate code to detect

common run-time errors such as selecting an element

outside the bounds of an array or dereferencing an invalid

pointer. Even though such run-time checking would be

helpful to novices, experts are unwilling to pay the cost.

● Interactive debuggers typically require students to
understand advanced cotl cepts before they are ready to
assimilate them. Debugging is further complicated by the

fact that existing debuggers usually require a high level of

sophistication. The commercial C compiler we use at

Stanford, for example, displays string data as a hexadecimal

character pointer—a representation that makes sense only if

you understand how C represents string data internally. In

our course, we introduce strings as an abstract type very
early in the course, deferring the underlying representation

until close to the end. While this strategy makes good

pedagogical sense, the failure of the debugging tools to

present string data in an understandable way severely

restricts the utility of the debugger.

“ Commercial cotnpilers offer a bewildering set of options
and special features that are useless to the novice and
occasionally cause consistency problems. Because their

products must offer advanced programmers all the resources

available on the machine, commercial programming

environments typically have complex user interfaces that

overwhelm the beginner who has no use for the added power

and flexibility. To the student, these special features

represent additional complexity that limits understanding

and self-confidence. The problem becomes more severe if

the student inadvertently chooses incorrect or incompatible

options that prohibit successful execution of the program.

The main problem facing producers of commercial

language systems is that compiler technology makes it hard

to provide the kind of feedback that beginning users need.

By definition, a compiler generates machine instructions

that are later run as an independent process. Because the

compilation phase is separate from the execution phase. the

run-time system and debugger have limited access to the

information generated during compilation. By contrast, an

interpreter combines these operations into a single phase in

which the interpreter itself simulates the program

execution. Interpreters therefore incur a significant penalty

in execution efficiency that makes them inappropriate for
writing production code. Introductory students, however,

have no need to achieve maximum run-time efficiency and

would gladly sacrifice some execution speed for greater

simplicity and reduced debugging time.

3(

3. THE DECISION TO BUILD A C INTERPRETER

Although it was certainly possible to design a C interpreter

to address the shortcomings identified in lhe preceding

section, it was not Immediately clear that doing so made

practical sense. As serious as the shortcomings are, the

idea of writing a new C interpreter from scratch represents a

rather ambitious solution strategy. Building any software

system of this scale and complexity is a major project that

should not be undertaken lightly, particularly if other

avenues are available.

To make sure that we understood the dimensions of the

problem, we spent an entire quarter of Stanford’s CS298

course, “Seminar on teaching undergraduate computer

science,” evaluating the proposed interpreter project, both to

refine its goals and to assess its feasibility. In the end, we

decided to undertake the project for the following reasons:

● There tt’as no existing system that satisfied both out’

pedagogical goals and our hardware requirements. Even

though it is possible to buy commercial C interpreters,

such as CenterLine’s CodeCenter product [CenterLine95],

that offer many of the features we seek, those systems do

not run on the hardware available on campus, which is

primarily the Apple Macintosh. The introductory CS

courses at Stanford enroll over 1200 students per year,

making it infeasible to contemplate a change of platform.

“ (k-pedagogical approach depends on the use of libraries
that are most effective w’hetl well inte,erated w’itllin the.. .,
programming environment. Our success in teaching C

depends to a large extent on the use of the cslib libraries

[Roberts93, Roberts95a], which temporarily mask much of

C’s complexity until students are better prepared to

understand the underlying representation. To ensure that

students are not confused by conflicting models, it is

important for all components of the interpreter to take

account of the cslib definitions. Because cslib was

developed locally, commercial products would be unlikely

to support such integration.

● We wanted to explore several new ideas in the design of a

pedagogically based programming et?vironment. In the

process-of developing a preliminary design, we identified

several features that seemed useful as experiments. For

example, we were interested in exploring the relationship

between debugging and dynamic visualization. Exploring

this design space required that we develop a research tool

that we could extend and modify. Although much of this

research remains in the future, the prospect of undertaking

such research provided a strong incentive to implement the

interpreter.

● We had a team of students Mvho were interested iri taking

on the project. At Stanford, students-–even at the

undergraduate level—are more fully integrated into the

computer science teaching program than at many

institutions [Roberts95b]. The idea of building a C

interpreter for use in the introductory classes captured their

imaginations and enthusiasm more than any other project

idea in recent memory. Many students contributed ideas to

the project and sought to become more involved. More

importantly, there was a core of highly motivated,

extremely competent students who wanted to drive the

design and implementation. The existence of that group of

students meant that the project would “succeed” no matter

how usable the final system turned out to be; if nothing

else, the implementers would have gotten an enormous

amount of experience from doing the project that would

significantly enhance their own education.

4. AN OVERVIEW OF THETIS

. . . Thetis was a faithful mother to [Achilles],
aiding him in all difficulties and watching over
his interests from the first to the last.

—Edith Hamilton, Mythology

Thetis is a complete, integrated development environment

that “aids students in their difficulties and watches over their

interests” by providing a conceptually simple, yet powerful,

environment in which to learn programming. In many

respects, Thetis presents a conventional user interface: a

student creates source files in editor windows, indicates

what files make up the application by listing the contents

in a project window, and then controls the execution of the

program through a menu-driven interface similar to that

used by any Macintosh application. The major differences

are that Thetis

● Automatically incorporates the cslib and ANSI libraries,

so that students need not be concerned with them

● Offers significantly enhanced error detection

● Provides a convenient debugger/visualizer that operates at

a conceptual level appropriate to the students’ understanding

The sections that follow expand on the most important

new features Thetis provides.

Improved error reporting

In his discussion of the CAP utility for analyzing and

reporting errors in Pascal programs [Schorch95], Tom

Schorsch notes the difficulty students have comprehending

the syntactic error messages generated by many compilers.

His experiences with Pascal are similar to our own with

commercial C compilers: commercial environments simply

do not provide error messages understandable by novices.

The error messages reported by Thetis are designed to

give the user much better feedback than the usual terse

messages reported by compilers. For example, the lines

char c;

c = Ha,, ;

often generate errors like “type mismatch” or “assignment

makes integer from pointer without cast.” Neither message

is particularly useful to the introductory student. The first

gives no helpful information regarding the cause of the

problem, and the second phrases the error in terms a student

may not comprehend. Thetis provides a more suitable error

message for a beginning programmer: “cannot assign a

value of type string to a variable of type char. ” While

this example may appear trivial, enhancing all error

messages in a similar fashion, as we have done in Thetis,

makes it much easier for novices to understand and learn

from their mistakes.

Strengthened syntactic restrictions

One of the problems faced by instructors using C or C++

in an introductory course is that these languages regard as

legal certain syntactic constructs that are almost always

errors when written by students. The most common

example is using the assignment operator = in place of the

relational operator =, as illustrated by the following line:

if(i= O)...

In C, this statement is perfectly legal. The variable i is

assigned the value O, which is interpreted as FALSE. In

contrast, Thetis flags this line as an error by default,

because its effect is almost certainly not what the student

intended. Other examples of constructs likely to be

erroneous include using relational operators to compare

strings and failing to include function prototypes.

The arguments for enhanced syntactic checking in Thetis

are similar to those outlined for the syntactic restrictions of

Educational C [Ruckert93]. When such checking is

enabled—as it is for the introductory classes—students

make fewer errors and can concentrate on developing better

programming skills.

Run-time error detection

For introductory students, the most frustrating phase of

debugging is finding the logic errors that persist after all

syntactic errors have been corrected. C environments are

traditionally not very useful when such errors arise, offering

little feedback to help programmers find bugs in

misbehaving code. To reduce this burden, the Thetis

interpreter checks for the following run-time errors:

● Dividing by zero

● Using an uninitialized variable

● Dereferencing or freeing an invalid pointer

● Accessing an array out of its bounds

● Assigning an out-of-range value to an enumerated type

“ Exiting a non-void function without returning a value

● Calling a bad function pointer

● Passing invalid arguments to a function

Debugging and visualization tools

Previous experience has shown that debuggers do not have

the features needed to present a clear conceptual view of a

running program to novices [Birch95]. By contrast, Thetis

is designed to present information about the execution state

of a program in a way that is consistent with the novice

programmer’s level of understanding.

To minimize the learning curve for new programmers,

we have designed Thetis so that it builds on paradigms with

which students are already familiar. The following screen

diagram, for example, shows a Thetis editor window:

302

The window’s left margin contains a stop sign where the

user has placed a breakpoint with a simple click of the

mouse. The line about to be executed has an arrow in the

margin. Each of these icons is self-explanatory. Moreover,

because the programmer is not confronted with a baffling

array of more complicated options intended for advanced

use, we find that students are much more willing to use the

debugger than they have been in the past.

The debugger also includes a program visualizer modeled

after the Macintosh Finder interface, which is familiar to

Stanford students. The following diagram illustrates the

operation of the visualizer in Thet~:

Program Data

V 4 prbc4+ssLine II I
❑ word “verb * 1 “

❑ inl%.etmklw TRUE

❑ start 4

❑ i uninitialized

~ 3 PrmessMadlibsFile II I

El

Each function on the call stack has a folding arrow next to

it which can be turned down to view the variables in that

function. Double-clicking on a function opens a new

window with that function’s variables in it. This metaphor

extends to arrays and structures as well. The icons to the

left of variable names represent the types of the variables:

❑ for integers,!@ for strings, and so on.

Our experience indicates not only that students find the

visualizer easy to use, but also that its structure helps them

develop a solid conceptual model of how their programs

work. The scope of variables, parameter usage, and the

concept of a call stack are all presented in an accessible,

understandable way.

The Listener

Another debugging tool available to the programmer is the

Listener, which allows students to evaluate any expression

while the program runs. These expressions can include

variables from the program, and even function calls, as

illustrated in the following diagram:

In this example, the IsPalindrome function is tested on

several different input values. By using the Listener,

students can test functions and determine [he source of
errors without repeatedly restarting the program or writing

special code for running test cases. Providing the Listener

also reinforces the notion of stepwise refinement by

allowing students to verify that a newly written function

works correctly before continuing to write additional code,

5. EVALUATION OF THE THETIS PROJECT

The Thetis interpreter was written by a small group of

Stanford undergraduates (Stephen Freund, Andy

Montgomery, Brian Becker, and Perry Arnold) over the past

two years. The initial phase consisted of two components

developed in parallel during the fall and winter of 1993-94:

a preliminary parser/evaluator and a prototype

debuggerlvisualizer. These components were integrated

during the spring and summer to create the initial version of

the interpreter. The fall of 1994–95 was dedicated to testing

and refinement, using the participants in the seminar on

teaching and the staff of the introductory course as the user

community.

In winter quarter of 1994–95, we used Thetis on an

experimental basis with a group of approximately 30

students in Stanford’s large CS 106A course, which covers

the material in the ACM CS 1 curriculum [Austing78].

This experiment gave us an opportunity to refine the

system and fix any potentially damaging bugs before it

faced widespread use.

That first quarter went extremely well. Through an

informal survey, we found that most students enjoyed using

Thetis and felt that the most important advantage was the

run-time error checking on arrays and pointers, which saved

considerable debugging time. Given the success of the

initial experiment, we decided to use Thetis for the entire

CS 106A course (300 students) the following quarter. In

addition, we allowed students in CS 10613-Stanford’s

equivalent of CS2—to use either Thetis or ‘THINK C for

their assignments.

To measure student reaction to the tools, we conducted a

survey of students enrolled in CS 106A in the summer

quarter of 1995, when, unfortunately, enrollments were

relatively small. The results are as follows:

N=39 I Yes I No

III general, do you find Thetis easy 100.0% 0.070
to use? I I
Were YOUever confused about how 33.3qo 66.770

to do “something in Thetis? I I
Do you feel that Thetis has helped 71.8% 28.2qo

you understand pro~ramming ?

Do the error messages reported by 82.0% 18.070
Thetis help yx4find mistakes in
your programs easily?

From the reactions, it is clear that student response to

Thetis is positive. This same survey was also given to

students enrolled in CS 106X—Stanford’s accelerated

introductory course that combines the material from CS 1

and CS2 into a single quarter—who were programming in

THINK C. With this audience, the corresponding questions

revealed the following:

N=26 I Yes I No

In general, do yoLl jind THINK C 73.170 26.9%

easv to use? I I
Were you ever confused aboat how 69.2% 30.8%

to do something in THINK C? 1 I

Do you feel that THINK C has 73.1% ~6,970

helped you understand

]rogramm ing ?

Do the error messages reported by 19.2% 80.8%

THINK C help you find mistakes in

your programs easilv ?

Despite the fact that students in CS 106X typical] y have a

much stronger background in computing than their

counterparts in CS 106A, they reported having more trouble

using THINK C than those using Thetis in CSI 06A. The

most significant contrast concerns the usefulness of error

messages. Over 80 percent of Thetis users said the error

messages helped them find mistakes, while fewer than 20

percent said the same of THINK C.

When CS 106B students were given the choice between

environments, manv students OUted to use Thetis for their

programs despite ‘its slower &xecution speed. Often,

students who started an assignment with Thetis would

switch to THINK C to take advantage of the faster run

times when they were doing the final fine-tuning of their

programs. This practice constituted a valuable lesson in

software engineering. Students learned how to program

with portability in mind and also how to choose tools to fit

the immediate task at hand.

Another indication that Thetis has successfully reduced

the stress and frustration of students taking introductory

programming classes are the questions asked by students at

the helper cubicle in the main computing cluster. Students

using Thetis were generally able to find common

mistakes—such as not initializing a variable or accessing

an out-of-bounds array element-on their own and therefore

asked fewer questions. Thetis allows students to step over

these small, yet often confusing and painful hurdles and

concentrate on the main goal of learning how to program

Mehran Sahami, a lecturer at Stanford, evaluates class

performance on assignments by conducting a “pain poll.”

When students hand in an assignment, he asks the class

collectively how painful it was and how much time they

spent on it. When teaching with Thetis during the summer

quarter of 1995, he noted that people generally thought the

programs were less painful than usual. Perhaps more

significantly, the amount of time required to finish each

assignment dropped by one or two hours on the average.

The assignments were no easier than usual, but the better

support from the programming environment allowed people

to move beyond simple misunderstandings and bugs more

quickly,

The value of Thetis to the course staff is also auDarent.

Thetis allows section leaders to debug and grade p~~grams

more easily. It is also an excellent tool for presenting new

topics during office hours or discussion sections. Lecturers

use Thetis for demonstrations during class, supplementing

lecture notes with real programming examples. Although

we have no direct evidence to support the claim, our

collective impression is that new ideas sink in better when

lectures are augmented by demonstrations in Thetis.

6. CONCLUSIONS AND FUTURE PLANS

On the basis of our experien~e in the last year, we believe

that Thetis fulfills the goals we set out to accomplish and

that it provides a significantly better learning environment

for students in CS 1/CS2.

We are, however, continuing our Thetis development

work and expect to improve the system in several important

ways. Our primary technical challenges have been to

increase execution efficiency and reduce memory utilization.

The next version of Thetis, which will be released at

Stanford in the fall of 1995, runs approximately five times

faster and requires less than half the memory needed by the

implementation discussed in this paper. We believe these

improvements will allow students to take full advantage of

Thetis without becoming frustrated by its slower

performance.

We also intend to make the following enhancements to

Thetis over the next two years:

● Extend the text editor to provide automat]c formatting of

the sort found in structure-based editors [Goldenstein89]

● Develop an effective on-line help system

● Provide more syntactic, stylistic, and run-tilme checking

● Enhance the visualizer to support in-class demonstrations

● Port Thetis to other platforms

● Release the system for general use

7. REFERENCES

[Austing79] Richard Austing, Bruce Barnes, Della

Bonnette, Gerald Engel, and Gordon Stokes, “Curriculum

’78: Recommendations for the undergraduate program in

computer science,” Cot]ltlllftzicatio?ls of the ACM, March

1979.

[Birch95] Michael R. Birch, et al., “DYNALAB: A

dynamic computer science laboratory infrastructure featuring

program animation,” SIGCSE Bu[[etin, March, 1995,

[CenterLine95] CenterLine Corporation, CodeCenter User’s

Guide, Cambridge, MA, 1995.

[Goldenstein89] D. R. Goldenstein, “The impact of

structure editing on introductory computer science

education: The results so far,” SIGCSE Bulletin, September

1989.

[Hamilton42] Edith Hamilton, Mythology,Boston: Little,

Brown and Co., 1942.

[Roberts93] Eric S. Roberts, “Using C in CS 1: Evaluating

the Stanford experience,” SIGCSE Bulletin, March 1993.

[Roberts95a] Eric S. Roberts, T/ze Art and Science of C: A

Librarv-Based Ai]proach, Reading, MA: Addison-Wesley,

199.5.

[Roberts95b] Eric S. Roberts, John Lilly, and Bryan

Rollins, “Using undergraduates as teaching assistants in

introductory programming courses: An update on the

Stanford experience,” SIGCSE Ba[[etitl, March 1995.

[Ruckert93] Martin Ruckert and Richard Halpern,

“Educational C,” S[GCSE Bulletin, March 1993.

[Schorsch95] Tom Schorsch, “CAP: An automated self-

assessment tool to check Pascal programs for syntax, logic.

and style errors,” SIGCSE Bulletinj March 1995.

304

