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Abstract. The race condition checker rccjava uses a formal type sys-
tem to statically identify potential race conditions in concurrent Java
programs, but it requires programmer-supplied type annotations. This
paper describes a type inference algorithm for rccjava. Due to the in-
teraction of parameterized classes and dependent types, this type in-
ference problem is NP-complete. This complexity result motivates our
new approach to type inference, which is via reduction to propositional
satisfiability. This paper describes our type inference algorithm and its
performance on programs of up to 30,000 lines of code.

1 Introduction

A race condition occurs when two threads in a concurrent program manipu-
late a shared data structure simultaneously, without synchronization. Errors
caused by race conditions are notoriously hard to catch using testing because
they are scheduling dependent and difficult to reproduce. Typically, program-
mers attempt to avoid race conditions by adopting a programming discipline in
which shared variables are protected by locks.

In a previous paper [10], we described a static analysis tool called rccjava

that enforces this lock-based synchronization discipline. The analysis performed
by rccjava is formalized as a type system, and it incorporates features such
as dependent types (where the type of a field describes the lock protecting it)
and parameterized classes (where fields in different instances of a class can be
protected by different locks).

Our previous evaluation of rccjava indicates that it is effective for catching
race conditions. However, rccjava relies on programmer-inserted type annota-
tions that describe the locking discipline, such as which lock protects a particular
field. The need for these type annotations limits rccjava’s applicability to large,
legacy systems. Hence, to achieve practical static race detection for large pro-
grams, annotation inference techniques are necessary.

In previous work along these lines, we developed Houdini/rcc [11], a type in-
ference algorithm for rccjava that heuristically generates a large set of candidate
type annotations and then iteratively removes all invalid annotations. However,
this approach could not handle parameterized classes or methods, which limits
its ability to handle many of the synchronization idioms of real programs.

⋆ This work was supported in part by the National Science Foundation under Grants
CCR-0341179 and CCR-0341387.



In the presence of parameterized classes, the type inference problem for
rccjava is NP-complete, meaning that any type inference algorithm will have
an exponential worst-case behavior. This complexity result motivates our new
approach to type inference, which is via reduction to propositional satisfiability.
That is, given an unannotated (or partially-annotated) program, we translate
this program into a propositional formula that is satisfiable if and only if the
original program is typeable. Moreover, after computing a satisfying assignment
for the generated formula, we translate this assignment into appropriate annota-
tions for the program, yielding a valid, explicitly-typed program. This approach
works well in practice, and we report on its performance on programs of up to
30,000 lines of code.

Producing a small number of meaningful error messages for erroneous or
untypeable programs is often challenging. We tackle this aspect of type inference
by generating a weighted MAX-SAT problem [4] and producing error messages
for the unsatisfied clauses in the optimal solution. Our experience shows that
the resulting warnings often correspond to errors in the original program, such
as accessing a field without holding the appropriate lock.

We have implemented our algorithm in the Rcc/Sat tool for multithreaded
Java programs. Experiments on benchmark programs demonstrate that it is
effective at inferring valid type annotations for multithreaded code. The algo-
rithm’s precision is significantly improved by performing a number of standard
analyses, such as control-flow and escape analysis, prior to type checking.

The key contributions of this paper include:

– a type inference algorithm based on reduction to propositional satisfiability;
– a refinement of this approach to generate useful error messages via reduction

to weighted MAX-SAT; and
– experimental results that validate the effectiveness of this approach.

The annotations constructed by Rcc/Sat also provide valuable documentation
to the programmer; facilitate checking other properties such as atomicity [16,
15, 12]; and can help reduce state explosion in model checkers [24, 25, 14, 9].

2 Types Against Races

2.1 Type Checking

This section introduces rfj2, an idealized multithreaded subset of Java with a
type system that guarantees race freedom for well-typed programs. This type
system extends our previous work on the rccjava type system [10], for example
with parameterized methods. To clarify our presentation, rfj2 also simplifies
some aspects of rccjava. For example, it does not support inheritance. (Inher-
itance and other aspects of the full Java programming language are dealt with
in our implementation, described in Section 4.)

An rfj2 program (see Figure 1) is a sequence of class declarations together
with an initial expression. Each class declaration associates a class name with



P ::= defn∗ e (program)
defn ::= class cn〈ghost x∗〉 { field∗ meth∗ } (class declaration)
field ::= t fn guarded by l (field declaration)
meth ::= t mn〈ghost x∗〉(arg∗) requires s { e } (method declaration)

arg ::= t x (argument declaration)
c, t ::= cn〈l∗〉 (type)

l ::= x | α | l · θ (lock expression)
s ::= ∅ | {l} | s ∪ s | β | s · θ (lock set expression)
θ ::= [x1 := l1, . . . , xn := ln] (substitution)

e, f ::= x | null | new c(e∗) | e.fn | e.fn = e | e.mn〈l∗〉(e∗) (expressions)
| let x = e in e | synchronized x e | e.fork

α ∈ LockVar

β ∈ LockSetVar

x , y ∈ Var

cn ∈ ClassName

fn ∈ FieldName

mn ∈ MethodName

Fig. 1. The idealized language rfj2.

a body that consists of a sequence of field and method declarations. The self-
reference variable “this” is implicitly bound within the class body.

The rfj2 language includes type annotations that specify the locking dis-
cipline. For example, the type annotation guarded by x on a field declaration
states that the lock denoted by the variable x must be held whenever that field
is accessed (read or written). Similarly, the type annotation requires x1, . . . , xn

on a method declaration states that these locks are held on method entry; the
type system verifies that these locks are indeed held at each call-site of the
method, and checks that the method body is race-free given this assumption.

The language provides parameterized classes, to allow the fields of a class to
be protected by some lock external to the class. A parameterized class declaration

class cn〈ghost x1 . . . xn〉 { . . . }

introduces a binding for the ghost variables x1 . . . xn, which can be referred to
from type annotations within the class body. The type cn〈y1 . . . yn〉 refers to an
instantiated version of cn, where each xi in the body is replaced by yi. As an
example, the type Hashtable〈y1, y2〉 may denote a hashtable that is protected
by lock y1, where each element of the hashtable is protected by lock y2.

The rfj2 language also supports parameterized method declarations, such as

t m〈ghost x〉(cn〈x〉 y) requires x { . . . }

which defines a method m that is parameterized by lock x, and which takes an
argument of type cn〈x〉. A corresponding invocation e.m〈z〉(e′) must supply a
ghost argument z and an actual parameter e′ of type cn〈z〉.

Expressions include object allocation new c(e∗), which initializes a new ob-
ject’s fields with its argument values; field read and update; method invocation;



(a) Example Program Ref

class Lock〈〉 { }
class Ref〈ghost x〉 {

int y guarded by α1

boolean lessThan(Ref〈α2〉 o) requires β {
this.y < o.y ;

}
}

let lock = new Lock〈〉();
r1 = new Ref〈α3〉(1);
r2 = new Ref〈α4〉(2)

in synchronized (lock) {
r1.lessThan(r2);

}

(b) Constraints

α1 ∈ { this, x } decl. of y
α2 ∈ { this, x } decl. of lessThan
β ⊆ { this, x, o } decl. of lessThan

α3 ∈ { lock } first new expr.
α4 ∈ { lock, r1 } second new expr.

α1 ∈ β access to this.y
α1[this := o, x := α2] ∈ β access to o.y

β[this := r1, x := α3, o := r2] ⊆ {lock} requires for call
α2[this := r1, x := α3, o := r2] = α4 arg. type for call

(c) Conditional Assignment

Y (α1) = (b1?this : x) decl. of y
Y (α2) = (b2?this : x) decl. of lessThan
Y (β) = (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) decl. of lessThan

Y (α3) = lock first new expr.
Y (α4) = (b3?lock : r1) second new expr.

(d) Boolean Constraints

(b1?this : x) ∈ (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) access to this.y

(b1?o : (b2?this : x)) ∈ (b4?this : ∅) ∪ (b5?x : ∅) ∪ (b6?o : ∅) access to o.y
(b4?r1 : ∅) ∪ (b5?lock : ∅) ∪ (b6?r2 : ∅) ⊆ {lock} requires for call

(b2?r1 : lock) = (b3?lock : r1) arg. type for call

(e) Boolean Formula

[(b1 ∧ b4) ∨ (¬b1 ∧ b5)]
∧ [(b1 ∧ b6) ∨ (¬b1 ∧ ((b2 ∧ b4) ∨ (¬b2 ∧ b5)))]
∧ [¬b4 ∧ ¬b6]
∧ [(b2 ∧ ¬b3) ∨ (¬b2 ∧ b3)]

access to this.y
access to o.y

requires for call
arg. type for call

Fig. 2. Example program and type inference constraints.

and variable binding and reference. The expression synchronized x e is evalu-
ated in a manner similar to Java’s synchronized statement: the lock for object
x is acquired, the subexpression e is then evaluated, and finally the lock is re-
leased. The expression e.fork starts a new thread. Here, e should evaluate to
an object that includes a nullary method run. The fork operation spawns a new
thread that calls that run method.

The rfj2 type system leverages parameterized methods to reason about
thread-local data. (This approach replaces the escape by analysis embedded in
our earlier type system [10].) Specifically, the run method of each forked thread
takes a ghost parameter tl lock denoting a thread-local lock that is always held



by that thread:

t run〈ghost tl lock〉() requires tl lock { e }

Intuitively, the underlying run-time system creates and acquires this thread-local
lock when a new thread is created. This lock may be used to guard thread-local
data and may be passed as a ghost parameter to other methods that access
thread-local data. In a similar fashion, we also introduce an implicit, globally-
visible lock called main lock, which is held by the initial program thread and
can be used to protect data exclusively accessed by that thread.

2.2 Type Inference

Our previous evaluation of the race-free type system rccjava indicates that it
is effective for catching race conditions [10]. However, the need for programmer-
inserted annotations limits its applicability to large, legacy systems, which mo-
tivates the development of type inference techniques for race-free type systems.

In this paper we describe a novel type inference system for rfj2. We intro-
duce lock variables α and lockset variables β, collectively referred to as lock-
ing variables. Locking variables may be mentioned in type annotations, as in
guarded by α, requires β, or cn〈α1, α2〉. During type inference, each lock vari-
able α is resolved to some specific program variable in scope, and each lock set
variable β is resolved to some set of program variables in scope. As an exam-
ple, Figure 2(a) presents a simple reference cell implementation, written in rfj2

extended with primitive types and operations, that contains locking variables.
An rfj2 program is explicitly-typed if it contains no locking variables. The

type inference problem is, given a program with locking variables, to resolve these
locking variables so that the resulting explicitly-typed program is well-typed.

Parameterized classes introduce substitutions that complicate the type infer-
ence problem. We use the notation [x1 := l1, . . . , xn := ln] to denote a substi-
tution θ that replaces each program variable xi with the lock expression l i. To
illustrate the need for these substitutions, consider the class declaration:

class cn〈ghost x〉 { t fn guarded by l ; }

If a variable p has type cn〈y〉, then the field p.fn is protected by θ(l), where
the substitution θ ≡ [x := y] replaces the formal ghost parameter x by the
actual parameter y. The application of a substitution to most syntactic entities is
straightforward; however, the application of a substitution θ to a lock expression
l is delayed until any lock variables α in the lock expression are resolved. We
use the syntax l · θ to represent this delayed substitution. Similarly, if the lock
set expression s denote the set of locks in a method’s requires clause, then the
application of a substitution θ to s yields the delayed substitution s · θ. The
following examples illustrate substitutions on various syntactic entities. (Due to
space limitations, we do not present an exhaustive definition.)

θ(x) = l if θ ≡ [. . . , x := l, . . .]
θ(synchronized x e) = synchronized θ(x) θ(e)

θ(l) = l · θ
θ(s) = s · θ



Since the type rules reason about delayed substitutions, we include these de-
layed substitutions in the programming language syntax, but we require that
substitutions do not appear in source programs.

The type rules for rfj2 generate a collection of constraints that contain
delayed substitutions. These constraints include equality constraints between
lock expressions and containment constraints between lock set expressions:

C ::= s ⊆ s | l = l

The core of the type system is defined by the judgment:

P ; E; s ⊢ e : t & C̄

Here, the program P is included to provide access to class declarations; E is an
environment providing types for the free variables of the expression e; the lock
set s describes the locks held when executing e; t is the type inferred for e; and
C̄ is the generated set of constraints.

Most of the type rules are straightforward. The complete set of type judg-
ments and rules is contained in Appendix A. Here we briefly explain two of the
more crucial rules. The rule for synchronized x e checks e with an extended
lock set that includes x, since the lock x is held when evaluating e. The rule
for e.fn checks that e is a well-typed expression of some class type cn〈l1..n〉 and
that cn has a field fn of type t, guarded by lock l.

P ; E; s ⊢ x : t′ & C̄

P ; E; s ∪ {x} ⊢ e : t & C̄′

P ; E; s ⊢ synchronized x e : t & (C̄ ∪ C̄′)

P ; E; s ⊢ e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉 {. . . t fn guarded by l . . .} ∈ P

θ = [this := e, xj := lj
j∈1..n]

P ; E ⊢ θ(t) & C̄′

P ; E; s ⊢ e.fn : θ(t) & (C̄ ∪ C̄′ ∪ {θ(l) ∈ s})

Since the protecting lock expression l (and type t) may refer to the ghost
parameters x1..n and the implicitly-bound self-reference this, neither of which
are in scope at the field access, we introduce the substitution θ which substi-
tutes appropriate expressions for these variables. The constraint θ(l) ∈ s, an
abbreviation for {θ(l)} ⊆ s , ensures that the substituted lock expression is in
the current lock set. The type of the field dereference is computed by applying
the substitution θ to the field type t, which must yield a well-formed type.

The type system defines the top-level judgment P ⊢ C̄, where C̄ is the
generated set of constraints for the program P . Applying these type rules to the
example program Ref of Figure 2(a) yields the constraints shown in Figure 2(b).
(We ignore main lock in this example for simplicity).

We next address the question of when the generated constraints over the
locking variables are satisfiable. An assignment

A : (LockVar → Var) ∪ (LockSetVar → 2Var )

resolves lock and lock set variables to corresponding program variables and sets of
program variables, respectively. We extend assignments to lock expressions, lock



set expressions, and substitutions. In particular, since an assignment resolves all
locking variables, any delayed substitutions can be immediately performed.

A : l → Var

A(x) = x

A(l · θ) = A(θ)(A(l))

A : s → 2Var

A(∅) = ∅
A({l}) = {A(l)}

A(s1 ∪ s2) = A(s1) ∪ A(s2)
A(s · θ) = A(θ)(A(s))

A : θ → θ

A([x1 := l1, . . . , xn := ln]) =
[x1 := A(l1), . . . , xn := A(ln)]

We also extend assignments in a compatible manner to other syntactic units,
such as constraints, expressions, programs, etc.

An assignment A satisfies a constraint C (written A |= C) as follows:

A |= s1 ⊆ s2 iff A(s1) ⊆ A(s2)
A |= l1 = l2 iff A(l1) = A(l2)

If A |= C for all C ∈ C̄ then we say A is a solution for C̄, written A |= C̄. A set
of constraints C̄ is valid, written |= C̄, if every assignment is a solution for C̄.
For example, the constraints of Figure 2(b) for the program Ref are satisfied by
the assignment: α1 = α2 = x, α3 = α4 = lock, and β = {x}.

We say P is well-typed if P ⊢ C̄ and the constraints C̄ are satisfiable. If a
solution A for the constraints C̄ exists, the following theorem states that the
explicitly-typed program A(P ) is well-typed. (Proofs for the theorems in this
paper appear in an extended report [13].)

Theorem 1. If P ⊢ C̄ and A |= C̄ then A(P ) ⊢ A(C̄) and |= A(C̄).

For explicitly-typed programs, since the generated constraints C̄ do not con-
tain locking variables, checking the satisfiability of C̄ is straightforward. In the
more general case where P is not explicitly-typed, the type inference problem
involves searching for a solution A for the generated constraints C̄. Due to the
interaction between parameterized classes and dependent types, the type infer-
ence problem for rfj2 (and similarly for rccjava) is NP-complete. (The proof
is via a reduction from propositional satisfiability.)

Theorem 2. For an arbitrary program P , the problem of finding an assignment
A such that A(P ) is explicitly-typed and A(P ) ⊢ C̄ and |= C̄ is NP-complete.

Despite this worst-case complexity result, we demonstrate a technique in the
next section that has proven effective in practice.

3 Solving Constraint Systems

3.1 Generating Boolean Constraints

For each lock variable α mentioned in the program, the type rules introduce a
scope constraint α ∈ {x1, . . . , xn} that constrains α to be one of the variables
x1, . . . , xn in scope. A similar constraint β ⊆ {x1, . . . , xn} is introduced for



each lock set variable β. These scope constraints specify the possible choices for
each locking variable, and enable us to translate each constraint C over locking
variables into a Boolean constraint D that uses Boolean variables to encode the
possible choices for each locking variable. The notation b ?X : Y denotes X if
the Boolean variable b is true, and denotes Y otherwise.

D ::= S ⊆ S | L = L (Boolean constraints)
L ::= x | b ?L : L (conditional lock expressions)
S ::= ∅ | {L} | b ?S : S | S ∪ S (conditional lock set expressions)
b ∈ BoolVar (Boolean variables)

From the scope constraints, we generate a conditional assignment

Y : (LockVar → L) ∪ (LockSetVar → S)

that encodes the possible choices for each locking variable. For example, the
scope constraints α ∈ {x1, . . . , xn} and β ⊆ {y1, . . . , ym} yield:

Y (α) = b1?x1 : (b2?x2 : (. . . bn−1?xn−1 : xn) . . .)
Y (β) = (b′1?{y1} : ∅) ∪ · · · ∪ (b′m?{ym} : ∅)

where each Boolean variable bi and b′i is fresh.3

We extend the conditional assignment to translate each constraint C to a
Boolean constraint D = Y (C), and to translate lock expressions, lock set ex-
pressions, and substitutions, as follows. Since the conditional assignment (con-
ditionally) resolves locking variables, as part of this translation we immediately
apply any delayed substitutions, to yield a substitution-free Boolean constraint:

Y : C → D

Y (s1 ⊆ s2) = Y (s1) ⊆ Y (s2)
Y (l1 = l2) = Y (l1) = Y (l2)

Y : l → L

Y (x) = x

Y (l · θ) = Y (θ)(Y (l))

Y : s → S

Y (∅) = ∅
Y ({l}) = {Y (l)}

Y (s1 ∪ s2) = Y (s1) ∪ Y (s2)
Y (s · θ) = Y (θ)(Y (s))

Y ([x1 := l1, . . . , xn := ln]) =
[x1 := Y (l1), . . . , xn := Y (ln)]

Figure 2(c) and (d) show the conditional assignment and Boolean constraints
for the example program Ref.

A truth assignment B : BoolVar ⇀ Boolean assigns truth values to Boolean
variables. We extend truth assignments to L and S in a straightforward manner:

B : L → Var

B(x) = x

B(b ?L1 : L2) =

{

B(L1) if B(b)
B(L2) if ¬B(b)

B : S → 2Var

B(∅) = ∅
B({L}) = {B(L)}

B(b ?S1 : S2) =

{

B(S1) if B(b)
B(S2) if ¬B(b)

B(S1 ∪ S2) = B(S1) ∪ B(S2)

3 We could encode the choice for the first constraint as a decision tree with only log n

Boolean variables.



A truth assignment B satisfies a set of Boolean constraints D̄ if B |= D for each
D ∈ D̄, where:

B |= S1 ⊆ S2 iff B(S1) ⊆ B(S2)
B |= L1 = L2 iff B(L1) = B(L2)

For example, the Boolean constraints of Figure 2(d) are satisfied by the following
truth assignment: b1 = b2 = b4 = b6 = false and b3 = b5 = true.

The application of a truth assignment B to a conditional assignment Y yields
the (unconditional) assignment B(Y ), defined as B(Y )(x) = B(Y (x)).

The translation from constraints to Boolean constraints is semantics-preserving,
in the sense that if the generated Boolean constraints are satisfiable, then the
original constraints are also satisfiable.

Theorem 3. Suppose D̄ = Y (C̄) and let B be a truth assignment. Then B(Y ) |=
C̄ if and only if B |= D̄.

3.2 Solving Boolean Constraints

The final step is to find a truth assignment B satisfying the generated Boolean
constraints D̄. We accomplish this step by translating D̄ into a Boolean formula
F , which can then be solved by a standard propositional satisfiability solver such
as Chaff [21]. The Boolean formula syntax and this translation are as follows:

F ::= true | false | b | F ∨ F | F ∧ F | ¬F

[[·]] : D̄ → F

[[D̄]] = ∧D∈D̄[[D]]

[[·]] : D → F

[[x = x]] = true

[[x = y]] = false if x 6≡ y

[[L = (b?L1 : L2)]] = (b ∧ [[L = L1]])
∨(¬b ∧ [[L = L2]])

[[(b?L1 : L2) = L]] = [[L = (b?L1 : L2)]]
[[∅ ⊆ S]] = true

[[(S1 ∪ S2) ⊆ S]] = [[S1 ⊆ S]]
∧[[S2 ⊆ S]]

[[(b?S1 : S2) ⊆ S]] = (b ∧ [[S1 ⊆ S]])
∨(¬b ∧ [[S2 ⊆ S]])

[[{L} ⊆ ∅]] = false

[[{L} ⊆ (b?S1 : S2)]] = (b ∧ [[{L} ⊆ S1]])
∨(¬b ∧ [[{L} ⊆ S2]])

[[{L} ⊆ (S1 ∪ S2)]] = [[{L} ⊆ S1]]
∨[[{L} ⊆ S2]]

[[{L1} ⊆ {L2}]] = [[L1 = L2]]

Figure 2(e) presents the formulas for the four constraints from our example
program. This translation is semantics preserving with respect to the standard
notion of satisfiability B |= F for Boolean formulas.

Theorem 4. If F = [[D̄]] then for all B, B |= F if and only if B |= D̄.

In summary, our type inference algorithm proceeds as follows: Given a pro-
gram P with locking variables, we generate from P a collection of constraints
C̄ over the locking variables; we extract a conditional assignment Y from C̄

and generate Boolean constraints D̄ = Y (C̄); and we generate a corresponding
Boolean formula F = [[D̄]]. We use a propositional satisfiability solver to de-
termine a truth assignment B for F , in which case we also have that B |= D̄



by Theorem 4 and (B(Y )) |= C̄ by Theorem 3, and therefore the explicitly-
typed program (B(Y ))(P ) is well-typed. Conversely, if the generated formula F

is unsatisfiable, then there is no assignment A such that A(P ) is well-typed.

4 Implementation

We have implemented our inference algorithm in the Rcc/Sat checker, which
supports the full Java programming language (although it does not currently
detect race conditions on array accesses). Rcc/Sat takes as input an unannotated
or partially-annotated program, where any typing annotations are provided in
comments starting with “#”, as in /*# guarded by y */.

Rcc/Sat first adds a predetermined number of ghost parameters to all classes
and methods lacking user-specified parameters. Next, for each unguarded field,
Rcc/Sat adds the annotation guarded by α, where α is fresh. Rcc/Sat also uses
fresh locking variables to add any missing requires annotations and class and
method instantiation parameters. Rcc/Sat then performs our type inference al-
gorithm. If the generated constraints are satisfiable, then the satisfying assign-
ment is used to generate an explicitly-typed version of the program. Section 4.2
outlines how we generate meaningful error messages when they are not.

4.1 Java Features

We handle additional features of the Java programming language as follows.
Scope constraints. Rcc/Sat permits lock expressions to be any final object

references, including: (1) this; (2) ghost parameters; (3) final variables, static
fields, and parameters; and (4) well-typed expressions of the form e.f , where e

is a constant expression and f is a final field. This set may be infinite, and we
heuristically limit it to expressions with at most two field accesses.

Inheritance, subtyping, and interfaces. Given the declaration
class C〈ghost a1,...,an〉 extends D〈ghost b1,...,bk〉 { ... }

we consider the type instantiation C〈l1..n〉 to be an immediate subtype of D〈m1..k〉
provided mi ≡ bi[aj := lj

j∈1..n] for all i ∈ 1..k. The subtyping relation is the re-
flexive and transitive closure of this rule. The signature of an overriding method
must match that of the overridden form, after applying the type parameter sub-
stitutions induced by the inheritance hierarchy. Interfaces are handled similarly.

Inner classes. Non-static inner classes may access the type parameters from
the enclosing class and may declare their own parameters. Thus, the complete
type for such a class is Outer〈l1..n〉.Inner〈m1..k〉.

Static fields, methods, and inner classes. Static members may not refer
to the enclosing class’ type parameters since static members are not associated
with a specific instantiation of the class.

Thread objects. To allow Thread objects to store thread-local data in their
fields, Rcc/Sat adds an implicit final field tl lock to each Thread class. This
field is analogous to (and replaces) the ghost parameter on the run method in
rfj2. It may guard other fields and is assumed to be held when run is invoked.



Escape mechanisms. We provide escapes from the rfj2 type system
through a “no warn” annotation that suppresses the generation of constraints
for a line of code. Also, since ghost parameters are erased at run time, the ghost
parameters in typecasts of the form (C〈a〉)x are not checked dynamically.

4.2 Reporting Errors

We introduce two important improvements that enable the tool to pinpoint likely
errors in the program when the generated constraints are unsatisfiable.

First, we change the algorithm to check each field declaration in a program
separately, thereby enabling us to distinguish fields with potential races from
those that are race-free. To check a single field, we generate the constraints as
before, except that we only add field access constraints for accesses to the field
of interest. The analysis is compositional in this manner because the presence
or absence of races on one field is independence of races on other fields.

There is a possibility that the same locking variable will be assigned different
values when checking different fields. If this occurs, we can compose the results
of the separate checks together by introducing additional type parameters and
renaming locking variables as necessary. For example, if a type instantiation C〈α〉
of class C〈ghost x〉 becomes C〈l1〉 when checking one field of C and C〈l2〉 when
checking another, we can change the class declaration to C〈ghost x1, x2〉, and
instantiate it as C〈l1,l2〉 at the conflicting location.

Second, when there are race conditions on a field, it is often desirable to infer
the most likely lock protecting it and then generate errors for locations where
that lock is not held. For example, the following program is not well-typed:

1: class C〈ghost y〉 {
2: int c guarded by α;

3: void f1() requires y { c = 1; }
4: void f2() requires y { c = 2; }
5: void f3() requires this { c = 3; }
6: }

Our tool produces the following diagnostic message at the likely error site:

C.java:5: Lock ’y’ not held on access to ’c’. Locks held: { this }.

To pinpoint likely error locations in this way, we express type inference as an
optimization problem instead of a satisfiability problem. First, we add weights
to some of the generated constraints, as follows. A constraint C with weight w

is written as the weighted constraint W = C|w.

α ∈ {y, this, no lock} Scope constraint for c

α ∈ {y, this} |2 Requirement that c is guarded by a valid lock
α ∈ {y, no lock} |1 Access constraint for c from f1

α ∈ {y, no lock} |1 Access constraint for c from f2

α ∈ {this, no lock} |1 Access constraint for c from f3

These five constraints refer to no lock, a lock name used in the checker to indi-
cate that no reasonable guarding lock can be found for a field. Given constraints
C̄ and weighted constraints W̄ , we compute the optimal assignment A such that:



1. A |= C for all C ∈ C̄, and

2. the sum
∑

{w | C|w ∈ W̄ ∧ A |= C} is maximized.

Note that we do not require all constraints in W̄ be satisfied by A. For the
constraints above, A is the assignment α = y, with a value of 4. We then generate
error messages for all constraints in W̄ that are not satisfied by A. The constraint
α ∈ {this, no lock} |1 is not satisfied by the optimal assignment A, yielding
the above error message. Conversely, if the optimal assignment A did not satisfy
the constraint α ∈ {y, this} |2, then we would generate the error message:

C.java:2: No consistent guarding lock for field ’c’.

We have found that the heuristic of weighting declaration constraints 2–4 times
more than field access constraints works well in practice.

We solve the constraint optimization problem for W̄ and C̄ by translating
the constraints into a weighted MAX-SAT problem and solving it with the PBS
tool [4]. The translation is similar to the case without weights. PBS and similar
tools can find optimal assignments for formulas including up to 50–100 weighted
clauses. Optimizing over a larger number of weighted clauses is currently compu-
tationally intractable. Thus, we still check one field at a time and only optimize
over constraints generated by field accesses, placing all constraints for requires
clauses and type equality in C̄. If C̄ is not satisfiable, we forego the optimiza-
tion step and instead generate error messages for constraints in the smallest
unsatisfiable core of C̄, which we find with Chaff [21].

4.3 Improving Precision

Rcc/Sat implements a somewhat more expressive type system than that de-
scribed in Section 2 to handle the synchronization patterns of large programs
more effectively. In particular:

– Unreachable code is not type checked.
– Read-shared fields do not need guarding locks. A read-shared field is a field

that is initialized while local to its creating thread, and subsequently shared
in read-only mode among multiple threads.

– A field’s protecting lock need not be held for accesses occurring when only a
single thread exists or when the object has not escaped its creating thread.

Programs typically relax the core lock-based synchronization discipline along
these lines. The checker currently uses quite basic implementations of rapid type
analysis [5], escape analysis [6], and control-flow analysis for this step. Using
more precise analyses would further improve our type inference algorithm.

5 Evaluation

We applied Rcc/Sat to benchmark programs including elevator, a discrete
event simulator [28]; tsp, a Traveling Salesman Problem solver [28]; sor, a sci-
entific computing program [28]; the mtrt ray-tracing program and jbb business



Time/ Fields
Program Size Time Field Number of Formula Size Manual read- race- no

(LOC) (s) (s) Constraints vars clauses Annot. Total shared free guard

elevator 529 5.0 0.22 215 1,449 3,831 0 23 17 6 0
tsp 723 6.9 0.19 233 2,090 7,151 3 37 21 16 3
sor 687 4.5 0.15 130 562 1,205 1 29 22 7 0
raytracer 1,982 21.0 0.27 801 9,436 29,841 2 77 45 28 4
moldyn 1,408 12.6 0.12 904 4,011 10,036 3 107 57 44 6
montecarlo 3,674 20.7 0.19 1,097 9,003 25,974 1 110 68 42 0
mtrt 11,315 138.8 1.5 5,636 38,025 123,046 6 181 112 69 4
jbb 30,519 2,773.5 3.52 11,698 146,390 549,667 40 787 472 295 20

Table 1. Summary of test program performance.

objects simulator benchmarks [23]; and the moldyn, montecarlo, and raytracer

benchmarks [20]. We ran these experiments on a 3.06GHz Pentium 4 processor
with 2GB of memory, with Rcc/Sat configured to insert one ghost parameter on
classes, interfaces, and instance methods and two parameters on static methods.

Table 1 shows, for each benchmark, the size in lines of code, the overall
time for type inference, and the average type inference time per field. It also
shows the size of the constraint problem generated, in number of constraints
and the number of variables and clauses in the resulting Boolean formula, after
conversion to CNF. The preliminary analyses described in Section 4.3 typically
consumed less than 2% of the run time on the larger benchmarks.

The “Manual Annotations” column reflects the number of annotations man-
ually inserted to guide the analysis. We added these few annotations to suppress
warnings only in situations where immediately identifiable local properties en-
sured correctness. The manual annotations were inserted, for example, to delin-
eate single-threaded parts of the program after joining all spawned threads; to
explicitly instantiate classes in two places where the scope constraint generation
heuristics did not consider the appropriate locks; and to identify thread-local
object references not found by our escape analysis. In jbb, we also added anno-
tations to suppress spurious race-condition warnings on roughly 25 fields with
benign races. These fields were designed to be write-protected [12], meaning that
a lock guarded write accesses, but read accesses were not synchronized. This
idiom is unsafe if misused but permits synchronization-free accessor methods.

The last four columns show the total number of fields in the program, as well
as their breakdown into read-shared fields, race-free fields, and fields for which
no guarding lock was inferred. The analyses described in Section 4.3 reduced the
number of fields without valid guards by 20%–75%, a significant percentage.

Rcc/Sat identified three fields in the tsp benchmark on which there are
intentional races. On raytracer, Rcc/Sat identified a previously known race on
a checksum field and reported spurious warnings on three fields. It also identified
a known race on a counter in mtrt. The remaining warnings were spurious and
could be eliminated by additional annotations or, in some cases, by improving
the precision of the additional analyses of Section 4.3.

Overall, these results are quite promising. Manually inserting a small number
of annotations enables Rcc/Sat to verify that the vast majority (92%–100%) of



fields are race-free. These results show a substantial improvement over previous
type inference algorithms for race-free type systems, such as Houdini/rcc.

6 Related Work

Boyapati and Rinard have defined a race-free type system with a notion of object
ownership [7]. They include special owners to indicate thread-local data, thereby
allowing a single class declaration to be used for both thread-local instances and
shared instances, which motivated some of our refinements in rfj2. They present
an intraprocedural algorithm to infer ownership parameters for class instanti-
ations within a method. This simpler intraprocedural context yields equality
constraints over lock variables, which can be efficiently solved using union-find.
We believe it may be possible to extend our interprocedural type inference al-
gorithm to accommodate ownership types. Grossman has developed a race-free
type system for Cyclone, a statically safe variant of C [18]. Cyclone has a number
of additional features, such as existential quantification and singleton types, and
it remains to be seen how our techniques would apply in this setting.

The requires annotations used in our type system essentially constrain the
effects that the method may produce. Thus, we are performing a form of effect
reconstruction [27, 26], but our dependent types are not amenable to traditional
effect reconstruction techniques. Similarly, the constraints of our type system
do not exhibit the monotonicity properties that facilitate the polynomial time
solvers used in other constraint-based analyses (see, for example, Aiken’s sur-
vey [2]). Cardelli [8] was among the first to explore type checking for dependent
types. Our dependent types are comparatively limited in expressive power, but
the resulting type checking and type inference problems are decidable.

Eraser [22] is a tool for detecting race conditions in unannotated programs dy-
namically (though it may fail to detect certain errors because of insufficient test
coverage). Agarwal and Stoller [1] present a dynamic type inference technique
for the type system of Boyapati and Rinard. Their technique extracts locking
information from a program trace and then performs a static analysis involving
unique pointer analysis [3] and intraprocedural ownership inference [7] to con-
struct annotations. These dynamic analyses complement our static approach,
and it may be possible to leverage their results to facilitate type inference.

A common and significant problem with many type-inference techniques is
the inability to construct meaningful error messages when inference fails (see,
for example, [29, 30, 19]). An interesting contribution of our approach is that we
view type inference as an optimization problem over a set of constraints that
attempts to produce the most reasonable error messages for a program.

7 Conclusions

This paper contributes a new type inference algorithm for race-free type systems,
which is based on reduction to propositional satisfiability. Our experimental re-
sults demonstrate that this approach works well in practice on benchmarks of up



to 30,000 lines of code. Extending and evaluating this approach on significantly
larger benchmarks remains an issue for future work. We also demonstrate exten-
sions to facilitate reliable error reporting. We believe the resulting annotations
and race-free guarantee provided by our type inference system have a wide range
of applications in the analysis, validation, and verification of multithreaded pro-
grams. In particular, they provide valuable documentation to the programmer,
they facilitate checking other program properties such as atomicity, and they
can help reduce state explosion in model checkers.

Acknowledgments: We thank Peter Applegate for implementing parts of Rcc/Sat.
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A Type System

This appendix provides a complete definition of rfj2. We first informally define
a number of predicates. (See [17] for their precise definition.)

Predicate Meaning

ClassOnce(P ) no class is declared twice in P

FieldsOnce(P ) no class contains two fields with the same name
MethodsOncePerClass(P ) no method name appears more than once per class



A typing environment is defined as: E ::= ∅ | E , t x | E , ghost x

P ⊢ C̄

ClassOnce(P ) FieldsOnce(P )
MethodsOncePerClass(P )

P = defn
1..n e

P ⊢ defni & C̄i ∀i ∈ 1..n

P ; ghost main lock; {main lock} ⊢ e : t & C̄

P ⊢ C̄1..n ∪ C̄

P ⊢ defn & C̄

gargi = ghost xi ∀i ∈ 1..n

E = garg
1..n, cn〈x1..n〉 this

P ; E ⊢ fieldi & C̄i ∀i ∈ 1..j

P ; E ⊢ methi & C̄′
i ∀i ∈ 1..k

C̄ = C̄1..j ∪ C̄′
1..k

P ⊢ class cn〈ghost x1..n〉
{ field

1..j meth1..k} & C̄

P ; E ⊢ wf & C̄

P ; ∅ ⊢ wf & ∅

P ; E ⊢ t & C̄

x 6∈ dom(E)

P ; E, t x ⊢ wf & C̄

P ; E ⊢ wf & C̄

x 6∈ dom(E)

P ; E, ghost x ⊢ wf & C̄

P ; E ⊢ t & C̄

P ; E ⊢ wf & C̄

class cn〈ghost x i∈1..n
i

〉 . . . ∈ P

C̄′ = C̄ ∪ {li ∈ dom(E) i∈1..n}

P ; E ⊢ cn〈l1..n〉 & C̄′

P ; E ⊢ field & C̄

P ; E ⊢ t & C̄

C̄′ = C̄ ∪ {l ∈ dom(E)}

P ; E ⊢ t fn guarded by l & C̄′

P ; E ⊢ meth & C̄

gargi = ghost xi ∀i ∈ 1..n

E′ = E, garg
1..n, arg

1..d

P ; E′; s ⊢ e : t & C̄

C̄′ = C̄ ∪ {s ⊆ dom(E′)}
s is either {y1, . . . , yk} or β

P ; E ⊢ t mn〈ghost x1..n〉(arg
1..d) requires s { e } & C̄′

P ; E; s ⊢ e : t & C̄

P ; E ⊢ c & C̄

P ; E; s ⊢ null : c & C̄

P ; E ⊢ wf & C̄

E = E1, t x , E2

P ; E; s ⊢ x : t & C̄

P ; E; s ⊢ e : cn〈l1..n〉 & C̄

P ; E ⊢ cn〈l′
1..n〉 & C̄′

C̄′′ = C̄ ∪ C̄′ ∪ {li = l′i
i∈1..n}

P ; E; s ⊢ e : cn〈l′
1..n〉 & C̄′′

y is fresh
θ = [xj := lj

j∈1..n, this := y]
P ; E, cn〈l1..n〉 y; s ⊢ ei : θ(ti) & C̄i ∀i ∈ 1..k

class cn〈ghost x1..n〉 { field
1..k meth1..m } ∈ P

fieldi = ti fni guarded by l′i ∀i ∈ 1..k

P ; E ⊢ cn〈l1..n〉 & C̄′

C̄′′ = C̄1..k ∪ C̄′ ∪ {li ∈ dom(E) i∈1..n}

P ; E; s ⊢ new cn〈l1..n〉(e1..k) : cn〈l1..n〉 & C̄′′

P ; E; s ⊢ e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉
{. . . t fn guarded by l . . .} ∈ P

θ = [this := e, xj := lj
j∈1..n]

P ; E ⊢ θ(t) & C̄′

P ; E; s ⊢ e.fn : θ(t) & (C̄ ∪ C̄′ ∪ {θ(l) ∈ s})

P ; E; s ⊢ e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉
{. . . t fn guarded by l . . .} ∈ P

θ = [this := e, xj := lj
j∈1..n]

P ; E ⊢ e′ : θ(t) & C̄′

P ; E; s ⊢ e.fn = e′ : θ(t) & (C̄ ∪ C̄′ ∪ {θ(l) ∈ s})

P ; E; s ⊢ e1 : t1 & C̄1

P ; E, t x; s ⊢ e2 : t2 & C̄2

θ = [x := e1]
P ; E ⊢ θ(t2) & C̄3

C = (C̄1 ∪ C̄2 ∪ C̄3)

P ; E; s ⊢ let x = e1 in e2 : θ(t2) & C

P ; E; s ⊢ e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉 {. . . t mn〈ghost y1..k〉(tj z
j∈1..d

j
) requires s′ { e′ } . . .} ∈ P

θ = [this := e, xi := li
i∈1..n, yi := l ′i

i∈1..k, zi := ei
i∈1..d]

P ; E; s ⊢ ej : θ(tj) & C̄j ∀j ∈ 1..d

P ; E ⊢ θ(t) & C̄′

C̄′′ = C̄ ∪ C̄1..d ∪ C̄′ ∪ {θ(s′) ⊆ s}

P ; E; s ⊢ e.mn〈l ′
1..k〉(e1..d) : θ(t) & C̄′′

P ; E; s ⊢ x : t′ & C̄

P ; E; s ∪ {x} ⊢ e : t & C̄′

P ; E; s ⊢ synchronized x e : t & (C̄ ∪ C̄′)

P ; E; s ⊢ e : cn〈l1..n〉 & C̄

class cn〈ghost x1..n〉 {. . . meth . . .} ∈ P

meth = t′ run〈ghost tl lock〉() requires tl lock { e′ }

P ; E; s ⊢ e.fork : t & C̄


