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In the standard Java implementation, a Java language program is compiled to Java bytecode.
This bytecode may be sent across the network to another site, where it is then executed by the
Java Virtual Machine. Since bytecode may be written by hand, or corrupted during network
transmission, the Java Virtual Machine contains a bytecode verifier that performs a number of
consistency checks before code is run. These checks include type correctness and, as illus-
trated by previous attacks on the Java Virtual Machine, are critical for system security. In
order to analyze existing bytecode verifiers and to understand the properties that should be
verified, we develop a precise specification of statically correct Java bytecode, in the form of a
type system. Our focus in this article is a subset of the bytecode language dealing with object
creation and initialization. For this subset, we prove, that, for every Java bytecode program
that satisfies our typing constraints, every object is initialized before it is used. The type
system is easily combined with a previous system developed by Stata and Abadi for bytecode
subroutines. Our analysis of subroutines and object initialization reveals a previously unpub-
lished bug in the Sun JDK bytecode verifier.
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1. INTRODUCTION

The Java programming language is a statically typed general-purpose
programming language with an implementation architecture that is de-
signed to facilitate transmission of compiled code across a network. In the
standard implementation, a Java language program is compiled to a Java
bytecode program, and this program is then interpreted by the Java Virtual
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Machine. While many previous programming languages have been imple-
mented using a bytecode interpreter, the Java architecture differs in that
programs are commonly transmitted between users across a network in
compiled form.

Since bytecode programs may be written by hand, or corrupted during
network transmission, the Java Virtual Machine contains a bytecode veri-
fier that performs a number of consistency checks before code is executed.
Figure 1 shows the point at which the verifier checks a program during the
compilation, transmission, and execution process. After a class file contain-
ing Java bytecodes is loaded by the Java Virtual Machine, it must pass
through the bytecode verifier before being linked into the execution envi-
ronment and interpreted. This protects the receiver from certain security
risks and various forms of attack.

The verifier checks to make sure every opcode is valid, that all jumps
lead to legal instructions, that methods have structurally correct signa-
tures, and that type constraints are satisfied. Conservative static analysis
techniques are used to check these conditions. The need for conservative
analysis stems from the undecidability of the halting problem, as well as
efficiency considerations. As a result, many programs that would never
execute an erroneous instruction are rejected. However, any bytecode
program generated by a conventional compiler is accepted. Since most
bytecode programs are the result of compilation, there is very little benefit
in developing complex analysis techniques to recognize patterns that could
be considered legal but do not occur in compiler output.

The intermediate bytecode language, which we refer to as JVML, is a
typed, machine-independent form with some low-level instructions that
reflect specific high-level Java source language constructs. For example,
classes are a basic notion in JVML, and there is a form of “local subroutine”
call and return designed to allow efficient implementation of the source
language try-finally construct. While some amount of type information
is included in JVML to make type checking possible, there are some

Fig. 1. The Java Virtual Machine.
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high-level properties of Java source code that are not easy to detect in the
resulting bytecode program. One example is the last-called first-returned
property of the local subroutines. While this property will hold for every
JVML program generated by compiling Java source, some effort is required
to confirm this property in bytecode programs [Stata and Abadi 1999].

Another example is the initialization of objects before use. While it is
clear from the Java source language statement

A x 5 new A( ^parameters&);

that the A class constructor will be called before any methods can be
invoked through the object reference x , this is not obvious from a simple
scan of the resulting JVML program. One reason is that many bytecode
instructions may be needed to evaluate the parameters for the call to the
constructor. In a bytecode program, these instructions will be executed
after space has been allocated for the object and before the object is
initialized. Another reason, discussed in more detail in Section 2, is that
the structure of the Java Virtual Machine requires copying pointers to
uninitialized objects. Therefore, some form of aliasing analysis is needed to
make sure that an object is initialized before it is used.

Several published attacks on various implementations of the Java Vir-
tual Machine illustrate the importance of the bytecode verifier for system
security. To cite one specific example, a bug in an early version of Sun’s
bytecode verifier allowed applets to create certain system objects which
they should not have been able to create, such as class loaders [Dean et al.
1997]. The problem was caused by an error in how constructors were
verified and resulted in the ability to potentially compromise the security of
the entire system. Clearly, problems like this give rise to the need for a
correct and formal specification of the bytecode verifier. However, for a
variety of reasons, there is no established formal specification; the primary
specification is an informal English description that is occasionally at odds
with current verifier implementations.

Building on a prior study of the bytecodes for local subroutine call and
return [Stata and Abadi 1999], this article develops a specification of
statically correct bytecode for a fragment of JVML that includes object
creation (allocation of memory) and initialization. This specification has the
form of a type system, although there are several technical ways in which a
type system for low-level code with jumps and type-varying use of stack
locations (or registers) differs from conventional type systems for high-level
languages. We prove soundness of the type system by a traditional method
using operational semantics. It follows from the soundness theorem that
any bytecode program that passes the static checks will initialize every
object before it is used. We have examined a broad range of alternatives for
specifying type systems capable of identifying that kind of error. In some
cases, we found it possible to simplify our specification by being more or
less conservative than current verifiers. However, we generally resisted the
temptation to do so, since we hoped to gain some understanding of the
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strength and limitations of existing verifier implementations. One of these
trade-offs is discussed in Section 6.

In addition to proving soundness for the simple language, we have
structured the main lemmas and proofs so that they apply to any additional
bytecode instructions that satisfy certain general conditions. This makes it
relatively straightforward to combine our analysis with the prior work of
Abadi and Stata, showing type soundness for bytecode programs that
combine object creation with subroutines. In analyzing the interaction
between object creation and subroutines, we have identified a previously
unpublished bug in the Sun implementation of the bytecode verifier. This
bug allows a program to use an object before it has been initialized; details
appear in Section 7. Our type-based framework also made it possible to
evaluate various ways to fix this error and prove correctness for a modified
system.

Section 2 describes the problem of object initialization in more detail, and
Section 3 presents JVMLi, the language which we formally study in this
article. The operational semantics and type system for this language are
presented in Section 4. Some sound extensions to our type system, includ-
ing subroutines, are discussed in Section 6, and Section 7 describes how
this work relates to Sun’s implementation. Section 8 discusses some other
projects dealing with bytecode verification, and Section 9 gives directions
for future work and concludes.

2. OBJECT INITIALIZATION

As in many other object-oriented languages, the Java implementation
creates new objects in two steps. The first step is to allocate space for the
object. This usually requires some environment-specific operation to obtain
an appropriate region of memory. In the second step, user-defined code is
executed to initialize the object. In Java, the initialization code is provided
by a constructor defined in the class of the object. Only after both of these
steps are completed can a method be invoked on an object.

In the Java source language, allocation and initialization are combined
into a single statement, as illustrated in the following code fragment:

Point p 5 new Point(3);
p.Print ¼;

The first line indicates that a new Point object should be created and calls
the Point constructor to initialize this object. The second line invokes a
method on this object and, therefore, can be allowed only if the object has
been initialized. Since every Java object is created by a statement like the
one in the first line here, it does not seem difficult to prevent Java source
language programs from invoking methods on objects that have not been
initialized. While there are a few subtle situations to consider, such as
when a constructor throws an exception, the issue is essentially clear.
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It is much more difficult to recognize initialization-before-use in byte-
code. This can be seen by looking at the five lines of bytecode that are
produced by compiling the preceding two lines of source code:

1: new #1 ^Class Point &
2: dup
3: iconst_3
4: invokespecial #4 ^Method Point(int) &
5: invokevirtual #5 ^Method void Print ¼&

The most striking difference is that memory allocation (line 1) is separated
from the constructor invocation (line 4) by two lines of code. The first
intervening line, dup , duplicates the pointer to the uninitialized object. The
reason for this instruction is that a pointer to the object must be passed to
the constructor. As a convention of the stack-based virtual machine archi-
tecture, parameters to a function are popped off the stack before the
function returns. Therefore, if the address were not duplicated, there would
be no way for the code creating the object to access it after it is initialized.
The second line, iconst_3 , pushes the constructor argument 3 onto the
stack. If p were used again after line 5 of the bytecode program, another
dup would have been needed prior to line 5.

Depending on the number and type of constructor arguments, many
different instruction sequences may appear between object allocation and
initialization. For example, suppose that several new objects are passed as
arguments to a constructor. In this case, it is necessary to create each of
the argument objects and initialize them before passing them to the
constructor. In general, the code fragment between allocation and initial-
ization may involve substantial computation, including allocation of new
objects, duplication of object pointers, and jumps to or branches from other
locations in the code.

Since pointers may be duplicated, some form of aliasing analysis must be
used. More specifically, when a constructor is called, there may be several
pointers to the object that is initialized as a result, as well as pointers to
other uninitialized objects. In order to verify code that uses pointers to
initialized objects, it is therefore necessary to keep track of which pointers
are aliases (name the same object). Some hint for this is given by the
following bytecode sequence:

1: new #1 ^Class Point &
2: new #1 ^Class Point &
3: dup
4: iconst_3
5: invokespecial #4 ^Method Point(int) &
6: invokevirtual #5 ^Method void Print ¼&

When line 5 is reached during execution, there will be references to two
different uninitialized Point objects. If the bytecode verifier is to check
object initialization statically, it must be able to determine which refer-
ences point to the object that is initialized at line 5 and which point to the
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remaining uninitialized object. Otherwise, the verifier would either prevent
use of an initialized object or allow use of an uninitialized one. The
bytecode program above is valid and accepted by verifiers using the static
analysis described below.

Sun’s Java Virtual Machine Specification [Lindholm and Yellin 1996]
describes the alias analysis used by the Sun JDK verifier. For each line of
the bytecode program, some status information is recorded for every local
variable and stack location. When a location points to an object that is
known not to be initialized in all executions reaching this statement, the
status will include not only the property uninitialized, but also the line
number on which the uninitialized object would have been created. As
references are duplicated on the stack and stored in local variables, the
analysis also duplicates these line numbers, and all references having the
same line number are assumed to refer to the same object.

When an object is initialized, all pointers that refer to objects created at
the same line number are set to initialized. In other words, all references to
uninitialized objects of a certain type are partitioned into equivalence
classes according to what is statically known about each reference, and all
references that point to uninitialized objects created on the same line are
assumed to be aliases. This is a very simple and highly conservative form of
aliasing analysis; far more sophisticated methods might be considered.
However, the approach can be implemented efficiently, and it is sufficiently
accurate to accept bytecode produced by standard compilers.

Our specification of statically correct Java bytecode in Section 4 uses the
same form of aliasing analysis as the Sun JDK verifier. Since our approach
is type-based, the status information associated with each reference is
recorded as part of its type.

One limitation of aliasing analysis based on line numbers is that no
verifiable program can ever be able to reference two objects allocated on the
same line, without first initializing at least one of them. If this situation
were to occur, references to two different objects belonging to the same
equivalence class would exist. Unfortunately, there was an oversight in this
regard in the development of the Sun verifier, which allowed such a case to
exist (as of version 1.1.4). As discussed in Section 7, aliasing based on line
numbers makes it problematic for a subroutine to return an uninitialized
object. Sun corrected this bug in the verifier after we reported the problem
to them.

3. JVMLi

This section describes the JVMLi language, an idealized subset of JVML
including basic constructs and object initialization. Although this language
is much smaller than JVML and simplified in certain ways, it is sufficient
to study object initialization and formulate a sound type system encom-
passing the static analysis described above. The run-time environment for
JVMLi consists only of a program counter, an operand stack, and a finite
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set of local variables. A JVMLi program will be a sequence of instructions
drawn from the following list:

instruction <5 push 0 u inc u pop

uif L
ustore x u load x
unew s u init s u use s

u halt

where x is a local variable name; s is an object type; and L is an address of
another instruction in the program. Informally, these instructions have the
following effects:

push 0: pushes integer 0 onto the stack.
inc: adds 1 to the value on the top of the stack, if that value is

an integer.
pop: removes the top element from the stack, provided that the

stack is not empty.
if L: if the top element on the stack is not 0, execution jumps to

instruction L. Otherwise, execution steps to the next
sequential instruction. The top element on the stack must be
an integer.

store x: removes a value from the top of the stack and stores it into
local variable x.

load x: loads the value from local variable x and places it on the top
of the stack.

halt: terminates program execution.
new s: allocates a new, uninitialized object of type s and places it

on the stack.
init s: initializes the object on top of the operand stack, which must

be a previously uninitialized object obtained by a call to new
s. This instruction represents calling the constructor of an
object. In this model, we assume that constructors always
properly initialize their argument and return. However, as
described in Section 6, there are several additional
properties which must be checked to verify that constructors
do in fact behave correctly.

use s: performs an operation on an initialized object of type s. The
use instruction is an abstraction of several operations in
JVML, including method invocation (invokevirtual ) and
accessing an instance field (putfield/getfield ).

Errors occur when these instructions are executed with the machine in
an invalid state. For example, a pop instruction cannot be executed if the
stack is empty. The exact conditions required to execute each instruction
are specified in the operational semantics presented in Section 4.3. Al-
though dup does not appear in JVMLi for simplicity, aliasing may arise by
storing and loading object references from the local variables.
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4. OPERATIONAL AND STATIC SEMANTICS

4.1 Notation

This section briefly reviews the framework developed by Stata and Abadi
[1999] for studying JVML. We begin with a set of instruction addresses
ADDR. Although we shall write elements of this set as positive integers, we
will distinguish elements of ADDR from integers. A program P is formally
represented by a partial function from addresses to instructions, where
Dom(P) is the set of addresses in program P, and P[i] is the instruction at
index i in program P. Dom(P) will always include address 1 and is usually
a range {1, . . ., n} for some n.

Equality on partial maps is defined as

f 5 g iff Dom~ f ! 5 Dom~ g! ` @y [ Dom~ f !. f@ y# 5 g@ y#.

Update and substitution operations are also defined as follows for any
partial map f:

~ f @ x ° v#!@ y# 5 H v
f @ y#

if x 5 y
otherwise

~@b/a# f !@ y# 5 @b/a#~ f @ y#! 5 H b
f @ y#

if f @ y# 5 a
otherwise

where y [ Dom( f ), and a, b, and v are in the codomain of f.
For sequences, we write e for the empty sequence and write v z s to place

v on the front of sequence s. A sequence of one element, v z e, will
sometimes be abbreviated to v. Appending one sequence to another is
written as s1 • s2. This operation can be defined by the two equations e •
s 5 s and (v z s1) • s2 5 v z (s1 • s2). One final operation on sequences is
substitution:

~@b/a#e! 5 e

@b/a#~v z s! 5 ~@b/a#v! z ~@b/a#s! 5 Hb z ~@b/a#s!

v z ~@b/a#s!

if v 5 a
otherwise

where a, b, and v are of the same kind as what is being stored in sequence s.

4.2 Values and Types

The types include integers and object types. For objects, there is a set T of
possible object types. These types include all class names to which a
program may refer. In addition, there is a set T̂ of types for uninitialized
objects. The contents of this set depends on T:

ŝ i [ T̂ iff s [ T ` i [ ADDR

Object Initialization in the Java Bytecode Language • 1203

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.



The type ŝ i is used for an object of type s allocated on line i of a program,
that it has been initialized. Using this notation, JVMLi types are generated
by the grammar

t <5 INT u s u ŝ i u TOP

where s [ T and ŝ i [ T̂. The type INT will be used for integers. We
discuss the addition of other basic types in Section 6. The type TOP is the
supertype of all types, with any value of any type also having type TOP.
This type will represent unusable values in our static analysis. In general,
a type metavariable t may refer to any type, including INT, TOP, any object
type s [ T, or uninitialized-object type ŝ i [ T̂. In the case that a type
metavariable is known to refer to some uninitialized object type, we will
write it as t̂, for example.

Each object type and uninitialized object type t has a corresponding
infinite set of values, At, different from values of any other type. In our
model, we only need to know one piece of information for each object,
namely, whether or not it has been initialized. Therefore, drawing unini-
tialized and initialized object “references” from different sets is sufficient
for our purposes, and we do not need to model an object store. As we will
see below, this representation has some impact on how object initialization
is modeled in our operational semantics. Values of the form â or b̂ will refer
to values known to be of some uninitialized object type.

The basic type rules for values are

v is a value

v;TOP

n is an integer

n;INT

a [ At, t [ T ø T̂

a;t
.

We also extend values and types to sequences:

e;e

a;t s;a

a z s;t z a

s1;a1 s2;a2

s1 • s2;a1 • a2

4.3 Operational Semantics

The bytecode interpreter for JVMLi is modeled using the standard frame-
work of operational semantics. Each instruction is characterized by a
transformation of machine states, where a machine state is a tuple ^pc, f,
s& with the following meaning:

—pc is a program counter indicating the address of the instruction about to
be executed.

—f is a total map from a set VAR of local variables to the values stored in
the local variables in the current state. The set VAR is a finite set of local
variable names, which are drawn from the set of integers.

—s is a stack of values representing the operand stack for the current state
in execution.
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The machine begins execution in state ^1, f0, e& where f0 may map the local
variables to any values. In this state, (1) the first instruction in the
program is about to be executed, (2) the operand stack is empty, and (3) the
local variables may contain any values. If method invocation were included
in our model, the local variables would be initialized to contain the
parameter values.

Each bytecode instruction has one or more rules in the operational
semantics. These rules use the judgment form

P £ ^pc, f, s& 3 ^pc9, f9, s9&

to indicate that a program P in state ^pc, f, s& can move to state ^pc9, f9,
s9& in one step. The complete one-step operational semantics for JVMLi is
shown in Figure 2. In that figure, n is any integer; v is any value; L and j
are any addresses; and x is any local variable. These rules, with the
exception of those added to study object initialization, are discussed in
detail in Stata and Abadi [1999]. The rules have been designed so that a
step cannot be made from an illegal state. For example, it is not possible to
execute a pop instruction when there is an empty stack or to load a value
from a variable not in VAR.

The rules for allocating and initializing objects need to generate object
values not in use by the program. The only values in use are those which
appear on the operand stack or in the local variables. Therefore, the notion

Fig. 2. JVMLi operational semantics.
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of being unused is defined by

a [y s
@y [ VAR. f@ y# Þ a

Unused~a, f, s!
~unused!

When a new object is created, a currently unused value of an uninitial-
ized object type is placed on the stack. The type of that value is determined
by the object type named in the instruction and the line number of the
instruction. When the value for an uninitialized object is initialized by an
init s instruction, all occurrences of that value are replaced by a new
value corresponding to an initialized object. In some sense, initialization
may be thought of as a substitution of a new, initialized object for an
uninitialized object. The new value is also required to be unused, allowing
the program to distinguish between different objects of the same type after
they have been initialized. The use instruction generates a run-time error
when it is applied to an uninitialized object reference.

4.4 Static Semantics

A program P is well typed if there exist F and S such that

F, S £ P,

where F is a partial map from ADDR to functions mapping local variables
to types, and S is a partial map from ADDR to stack types such that Si is
the type of the operand stack at location i of the program. Following Stata
and Abadi [1999], application of the partial map F to address i [ ADDR is
written as Fi instead of F[i]. Thus, Fi[ y] is the type of local variable y at
line i of a program.

The Java Virtual Machine Specification [Lindholm and Yellin 1996]
describes the verifier as both computing the type information stored in F
and S and checking it. However, we assume that the information given in F
and S has already been computed prior to the type-checking stage. This
simplifies matters, since it separates synthesis from checking and prevents
the type synthesis from complicating the static semantics.

The judgment which allows us to conclude that a program P is well typed
by F and S is

F1 5 FTOP

S1 5 e

@i [ Dom~P! z F, S, i £ P

F, S £ P
~wt prog!

where FTOP is a function mapping all variables in VAR to TOP. The first
two lines of (wt prog) set the initial conditions for program execution to the
types of the values stored in the variables and on the stack in the initial
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state. The third line requires that each instruction in the program is well
typed according to the local judgments presented in Figure 3. Most of these
rules are relatively straightforward.

The (new) rule in Figure 3 requires that the type of the object allocated
by the new instruction is left on top of the stack. Note that this rule is
applicable only if the uninitialized object type about to be placed on top of
the type stack does not appear anywhere in Fi or Si. This restriction is
crucial to ensure that we do not create a situation in which a running
program may have two different values mapping to the same statically
computed uninitialized object type.

Fig. 3. JVMLi static semantics.
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The rule for (use) requires an initialized object type on top of the stack.
The (init) rule is the key to the static analysis method described in Section
2. The rule specifies that all occurrences of the type on the top of the stack
are replaced by an initialized type. This will change the types of all
references to the object that is being initialized, since all those references
will be in the same static equivalence class and, therefore, have the same
type.

Figure 4 shows a JVMLi program and the type information demonstrat-
ing that it is a well-typed program according to the rules in this section.

5. SOUNDNESS

This section outlines the soundness proof for JVMLi. The main soundness
theorem states that no well-typed program will cause a run-time type error.
This is proved using a one-step soundness theorem. One-step soundness
means that any valid transition from a well-formed state leads to another
well-formed state. The four factors indicating whether or not a state is well
formed are described in more detail below.

THEOREM 1 (ONE-STEP SOUNDNESS). Given P, F, and S such that F, S £

P,

@pc, f, s, pc9, f9, s9.
P £ ^pc, f, s& 3 ^pc9, f9, s9&

` s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

f s9;Spc9

` @y [ VAR. f9@ y#;Fpc9@ y#

` ConsistentInit~Fpc9 , Spc9 , f9, s9!

` pc9 [ Dom~P!

The first condition that a well-formed state must satisfy is that the
values on the operand stack must have the types expected by the static
type rules, written s;Spc. Likewise, the line @y [ VAR. f[ y];Fpc[ y]

Fig. 4. A JVMLi program and its static type information.
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requires that the local variable contents match the types in F. In addition,
the program counter must always be in the domain of the program, written
pc [ Dom(P). This can be assumed on the left-hand side of the implication,
since the operational semantics guarantees that transitions can be made
only if P[ pc] is defined. If the program counter were not in the domain of
the program, no step could be taken.

The final requirement for a state to be well formed is that it has the
ConsistentInit property. Informally, this property means that the machine
cannot access two different uninitialized objects created on the same line of
code. As mentioned in Section 2, this invariant is critical for the soundness
of the static analysis. The ConsistentInit property requires a unique corre-
spondence between uninitialized object types and run-time values.

Figure 5 presents the formal definition of ConsistentInit. In that figure,
Fi is a map from local variables to types, and Si is a stack type. The
judgment (cons init) is satisfied only if every uninitialized object type t̂ has
some value b̂ that Corresponds to it. The first line of rule (corr) guarantees
that every occurrence of t̂ in the static types of the local variables is
matched by b̂ in the run-time state. The second line of that rule uses an
auxiliary judgment to assert the same property about the stack type and
operand stack. The stack correspondence is defined inductively to match
the way in which most instructions manipulate the stack. Given this
invariant, we are able to assume, that, when an init instruction is
executed, all stack slots and local variables affected by the type substitu-
tion in rule (init) applied to that instruction contain the object that is being
initialized.

The proof of Theorem 1 is by case analysis on all possible instructions at
P[ pc] and appears in Appendix A. Theorem 1 can be used to prove

Fig. 5. The ConsistentInit judgment.
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inductively that a program beginning in a valid initial state will always be
in a well-formed state, regardless of how many steps are made.

A complementary theorem is that a step can always be made from a
well-formed state, unless the program has reached a halt instruction. This
progress theorem can be stated as follows:

THEOREM 2 (PROGRESS). Given P, F, and S such that F, S £ P,

@pc, f, s.
s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

` pc [ Dom~P!

` P@ pc# Þ halt

f ?pc9, f9, s9zP £ ^pc, f, s& 3 ^pc9, f9, s9&

By combining Theorem 1 with Theorem 2, we may prove that a program
will never get stuck unless it reaches a halt instruction. When it does
reach a halt instruction, the stack will have the correct type. Showing that
the program ends with a valid stack is important because the return value
for a program, or method in the full JVML, is returned as the top value on
the stack. The main soundness theorem states these properties:

THEOREM 3 (SOUNDNESS). Given P, F, and S such that F, S £ P,

@pc, f0 , f, s.
P £ ^1, f0 , e& 3 * ^pc, f, s&

` ¬?pc9, f9, s9. P £ ^pc, f, s& 3 ^pc9, f9, s9&

f P@ pc# 5 halt

` s;Spc

If a program executing in our machine model attempts to perform an
operation leading to a type error, such as using an uninitialized object, it
would get stuck, since those operations are not defined by our operational
semantics. By proving that well-typed programs only get stuck when a
halt instruction is reached, we know that well-typed programs will not
attempt to perform any illegal operations. Thus, this theorem implies that
our static analysis is correct by showing that no erroneous programs are
accepted. In particular, no accepted program uses an uninitialized object.

One technical point of interest is the asymmetry of the checks in rule
(corr). That rule requires that all locations sharing type t̂ contain the same
value b̂, but it does not require that all occurrences of b̂ map to the type t̂
in the static type information. We do not need to check the other direction
because the rule is used only in the hypothesis of rule (cons init), where the
condition on the existential quantification of b̂ requires that b̂; t̂. There-
fore, b̂ [ A t̂, and the only types which we may assign to b̂ are t̂ and TOP.
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This allows us to assume, that, as long as the stack and local variables
are well typed when rule (cons init) is used, any occurrences of b̂ are
matched by either t̂ or TOP. Thus, with the exception of occurrences of
TOP, the correspondence between b̂ and t̂ holds in both directions. The
situation for TOP introduces a special case in the proofs but does not affect
soundness, and the asymmetric checks are sufficient to prove the sound-
ness of the system. If we were to change our model so that object values
could potentially have more than one uninitialized object type, e.g., all
uninitialized object references are drawn from a single set, then we would
need to check both directions for the correspondence and explicitly deal
with the special case for TOP in the (corr) rule.

6. EXTENSIONS

We have studied extensions to the JVMLi framework described in the
previous sections. First, there are additional static checks which must be
performed on constructors in order to guarantee that they do properly
initialize objects. Section 6.1 presents JVMLc, an extension of JVMLi
modeling constructors. Another extension, JVMLs, combining object initial-
ization and subroutines, is described in Section 6.2. Section 6.3 shows how
any of these languages may be easily extended with other basic operations
and primitive types. The combination of these features yields a sound type
system covering the most complex pieces of the JVML language.

6.1 JVMLc

The typing rules in Section 4 are adequate to check code which creates,
initializes, and uses objects assuming that calls to init s do in fact
properly initialize objects. However, since initialization is performed by
user-defined constructors, the verifier must check that these constructors
do correctly initialize objects when called. This section studies verification
of JVML constructors using JVMLc, an extension of JVMLi. JVMLc pro-
grams are sequences of instructions containing any instructions from
JVMLi plus one new instruction, super s. This instruction represents
calling a constructor of the parent class of class s (or a different constructor
of the class s).

The rules for checking constructors are defined in Lindholm and Yellin
[1996] and can be summarized by three basic points:

(1) When a constructor is invoked, local variable 0 contains a reference to
the object that is being initialized.

(2) A constructor must apply either a different constructor of the same
class or a constructor from the parent class to the object that is being
initialized before the constructor exits.

(3) The only deviation from the second requirement is for constructors of
class Object . Since, by the Java language definition, Object is the
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only class without a superclass, constructors for Object need not call
any other constructor. This one special case has not been modeled by
our rules but would be trivial to add.

Note that these rules do not imply that constructors will always return. For
example, they do not prevent nontermination due to an infinite loop within
a constructor. A more interesting case is when two constructors from the
same class call each other recursively and, therefore, never fully construct
an object passed to them. While programs potentially exhibiting this
behavior could be detected by interprocedural analysis, this type of analysis
falls outside of the bounds of the current verifier, which was designed to
check only one method at a time.

For simplicity, the rest of this section assumes that we are describing a
constructor for object type w, for some w in T. To model the initial state of a
constructor invocation for class w, a JVMLc program begins in a state in
which local variable 0 contains an uninitialized reference, the argument of
the constructor. Prior to halting, the program must call super w on that
object reference. This instruction represents a call to the superclass con-
structor or a different constructor the current class.

We will use ŵ0 as the type of the object stored in local variable 0 at the
start of execution. The value in local variable 0 must be drawn from the set
A ŵ0. We now assume ADDR includes 0, although 0 will not be in the
domain of any program. Also, the machine state in the operational seman-
tics is augmented with a fourth element, z, which indicates whether or not
a superclass constructor has been called on the object that is being
initialized. The rules for all instructions other than super do not affect z
and are derived directly from the rules in Figure 2. For example, the rule
for inc is

P@ pc# 5 inc

P £c ^pc, f, n z s, z& 3 ^pc 1 1, f, ~n 1 1! z s, z&

For super , the operational semantics rule is

P@ pc# 5 super s

â [ A ŝ0

a [ As, Unused~a, f, s!

P £c ^pc, f, â z s, z& 3 ^pc 1 1, @a/â# f, @a/â#s, true&

As stated in Theorem 4 below, the initial state for execution of a
constructor for w is ^1, f0[0 ° âw], e, false& where âw [ A ŵ0.

The typing rule for super is very similar to the rule for init and is
shown below with the judgment for determining whether a program is a
valid constructor for objects of type w. All the other typing rules are the
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same as in Figure 3.

P@i# 5 super s

Fi11 5 @s/ŝ0#Fi

Si 5 ŝ0 z a

Si11 5 @s/ŝ0#a

i 1 1 [ Dom~P!

F, S, i £ P ~super!

F1 5 FTOP@0 ° ŵ0#

S1 5 e

Z1 5 false
w [ T

@i [ Dom~P!. F, S, i £ P
@i [ Dom~P!. Z, i £ P constructs w

F, S £ P constructs w ~wt constructor!

The (wt constructor) rule is analogous to (wt prog) from Section 4. However,
this rule places an additional restriction on the structure of well-typed
programs. The judgment

Z, i £ P constructs w

is a local judgment which gives Zi the value true or false depending on
whether or not all possible execution sequences reaching instruction i
would have called super w or not. The local judgments are defined in
Figure 6. As seen by those rules, one can only conclude that a program is a
valid constructor for w if every path to each halt instruction has called
super w. These judgments also reject any programs which call super for a
class other than w. The existence of unreachable code may cause more than
one value of Z to conform to the rules in Figure 6. To make Z unique for
any given program, we assume, that, for program P, there is a unique
canonical form ZP. Thus, ZP,i will be a unique value for instruction i.

The main soundness theorem for constructors includes a guarantee that
constructors do call super on the uninitialized object stored local variable 0
at the beginning of execution:

THEOREM 4 (CONSTRUCTOR SOUNDNESS). Given P, F, S, w, and âw such
that F, S £ P constructs w and âw;ŵ0:

@pc, f0 , f, s, z.
P £c ^1, f0@0 ° âw#, e, false& 3 * ^pc, f, s, z&

` ¬?pc9, f9, s9, z9. P £c ^pc, f, s, z& 3 ^pc9, f9, s9, z9&

f P@ pc# 5 halt

` z 5 true
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The main difference between the proof of Theorem 4 and the proof of
Theorem 3 is that the corresponding one-step soundness theorem requires
an additional invariant. The invariant states, that, when program P is in
state ^pc, f, s, z&, we have z 5 ZP,pc. The proof of this theorem appears in
Appendix B.1.

This analysis for constructors is combined with the analysis of normal
methods in a more complete JVML model currently being developed.

6.2 JVMLs

The JVML bytecodes for subroutines have also been added to JVMLi and
are presented in another extended language, JVMLs. While this section
will not go into all the details of subroutines, detailed discussions of
bytecode subroutines can be found in several other works [Hagiya and
Tozawa 1998; Lindholm and Yellin 1996; O’Callahan 1999; Sarta and Abadi
1999]. Subroutines are used to compile the finally clauses of exception
handlers in the Java language. Subroutines share the same activation
record as the method which uses them, and they can be called from
different locations in the same method, enabling all locations where fi-
nally code must be executed to jump to a single subroutine containing that
code. The flexibility of this mechanism makes bytecode verification difficult
for two main reasons:

(1) Subroutines are polymorphic over local variables which they do not use.
(2) Subroutines may call other subroutines, as long as a last-in first-out

ordering is preserved. In other words, the most recently called subrou-
tine must be the first one to return.

The second condition is a slight simplification of the rules for subroutines
defined in Lindholm and Yellin [1996], which do allow a subroutine to

Fig. 6. Rules checking that a superclass constructor will always be called prior to reaching a
halt instruction.
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return more than one level up in the implicit subroutine call stack in
certain cases, but does match the definitions presented in Sarti and Abadi
[1999]. A comparison between our rules and the Sun rules appears in
Section 7.

JVMLs programs contain the same set of instructions as JVMLi programs
and the following:

jsr L: jumps to instruction L, and pushes the return address onto the
stack. The return address is the instruction immediately after
the jsr instruction.

ret x: jumps to the instruction address stored in local variable x.

The operational semantics and typing rules for these instructions are
shown in Figures 7 and 8. These rules are based on the rules used by Stata
and Abadi [1999]. The type (ret-from L) is introduced to indicate the
type of an address to which subroutine L may return. The meaning of
RP,i 5 {L} in (ret) is defined in their article and basically means that
instruction i is an instruction belonging to the subroutine starting at
address L. All other rules are the same as those for JVMLi.

The main issue concerning initialization which must be addressed in the
typing rules for jsr and ret is the preservation of the ConsistentInit
invariant. A type loophole could be created by allowing a subroutine and
the caller of that subroutine to exchange references to uninitialized objects
in certain situations. An example of this behavior is described in Section 7.

When subroutines are used to compile finally blocks by a Java com-
piler, uninitialized object references will never be passed into or out of a
subroutine. The Java language prevents a program from splitting alloca-
tion and initialization of an object between code inside and outside of a
finally clause, since both are part of the same Java operation, as
described in Section 2. Either both steps occur outside of the subroutine, or
both steps occur inside the subroutine. We restrict programs not to have
uninitialized objects accessible when calling or returning from a subrou-
tine. For (ret), the following two lines are added. These prevent the
subroutine from allocating a new object without initializing it:

@y [ Dom~Fi!. Fi@ y# [y T̂

@y [ Dom~Si!. Si@ y# [y T̂

The same lines are added to (jsr). The discussion of the interaction between
subroutines and uninitialized objects in the Java Virtual Machine specifi-

Fig. 7. Operations semantics for jsr and ret .
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cation is vague and inconsistent with current implementations, but the
rules we have developed seem to fit the general strategy described in the
specification.

This solution is certainly not the only way to prevent subroutines and
object initialization from causing problems. For example, slightly less
restrictive rules could be added to (jsr):

@y [ Dom~FL!. FL@ y# [y T̂

@y [ Dom~Si!. Si@ y# [y T̂

These conditions still allow uninitialized objects to be present when a
subroutine is called, but those objects cannot be touched, since they are
stored in local variables which are not accessed in the body of the subrou-
tine. This would allow the typing rules to accept more programs, but these
programs are not likely to be created by reasonable Java compilers.

The main soundness theorem, Theorem 3, has been proved for JVMLs,
and for JVMLc with subroutines, by combining the proof of JVMLi sound-
ness with the work of Stata and Abadi. These proofs appear in Appendix
B.2.

Fig. 8. Type rules for jsr and ret .
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6.3 Other Basic Types and Instructions

Of the 200 bytecode instructions in JVML, all but approximately 40 are
variants of simple operations for different basic types. For example, there
are four add instructions corresponding to addition on values of type INT,
FLOAT, LONG, and DOUBLE. These instructions and other basic types
can be added to JVMLi, or any of the extended languages, easily. These
instructions do not complicate any of the soundness proofs, since they only
operate on basic types and do not interfere with object initialization or
subroutine analysis. An example showing how these simple instructions
can be added to our framework appears in the Appendix.

The only tricky case is that LONG and DOUBLE values take up two local
variables or two stack slots, since they are stored as two-word values.
Although this requires an additional check in the rules for load and store
to prevent the program from accessing a partially overwritten two-word
value, it does not pose any serious difficulty.

With these additions, and the methods described in the previous subsec-
tions, the JVMLi framework can be extended to cover the whole bytecode
language, except for a full object system, exceptions, arrays, and concur-
rency. Considering objects and classes requires the addition of an object
heap and a method call stack, as well as a typing environment containing
class declarations. We are currently developing an extended system cover-
ing all these topics except concurrency. To add concurrency would require
incorporating the Java Virtual Machine shared-memory model, which has
been studied elsewhere in Knapp et al. [1998].

7. THE SUN VERIFIER

This section describes the relationship between the rules we have devel-
oped for object initialization and subroutines and the rules implicitly used
to verify programs in Sun’s implementation. We first describe a mistake we
have found in Sun’s rules and then compare their corrected rules with our
rules for JVMLs.

7.1 The Sun JDK 1.1.4 Verifier

As a direct result of the insight gained by carrying out the soundness proof
for JVMLs, a previously unpublished bug was discovered in Sun’s JDK
1.1.4 implementation of the bytecode verifier (the current verifier at the
time we discovered the problem). A simple program exhibiting the incorrect
behavior is shown in Figure 9. Line 8 of the program uses an uninitialized
object, but this code is accepted by this specific implementation of the
verifier. Basically, the program is able to allocate two different uninitial-
ized objects on the same line of code without initializing either one,
violating the ConsistentInit invariant. The program accomplishes this by
allocating space for the first new object inside the subroutine and then
storing the reference to that object in a local variable over which the
subroutine is polymorphic before calling it again. After initializing only one
of the objects, it can use either one.
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The bug can be attributed to the verifier not placing any restrictions on
the presence of uninitialized objects at calls to jsr L or ret x. The checks
made by Sun’s verifier are analogous to the (jsr) and (ret) rule in Figure 8
as they originally appeared in Stata and Abadi [1999], without the addi-
tions described in the previous section. Removing these lines allows subrou-
tines to return uninitialized objects to the caller and to store uninitialized
values across subroutine calls, which clearly leads to problems.

Although this bug does not immediately create any security loopholes in
the Sun Java Virtual Machine, it does demonstrate the need for a more
formal specification of the verifier. It also shows that even a fairly abstract
model of the bytecode language is extremely useful at examining the
complex relationships among different parts of the language, such as
initialization and subroutines. In fact, the bug was uncovered by simply
constructing test programs reflecting tricky cases in the soundness proof.

7.2 The Corrected Sun Verifier

After learning about this bug, the Sun development team has taken steps
to repair their verifier implementation. While they did not use the exact
rules we have presented in this article, they have changed their implemen-
tation to close the potential type loophole. This section briefly describes the
difference between their approach and ours. The Sun implementation may
be summarized as follows (personal communication, Sheng Liang, Nov.
1997):

—Uninitialized objects may appear anywhere in the local variables or on
the operand stack at jsr L or ret x instructions, but they cannot be used
after the instruction has executed. In other words, their static type is
made TOP in the postinstruction state. This difference does not affect the
ability of either Sun’s rules or our rules to accept code created for valid
Java language programs.

Fig. 9. A program that uses an uninitialized object, but is accepted by Sun’s verifier.
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—The static types assigned to uninitialized objects passed into construc-
tors, i.e., any value whose type is of the form ŝ0 in our framework, are
treated differently from other uninitialized object types in the Sun
verifier. Values with these types may still be used after being present at
a call to or an exit from a subroutine. Also, the superclass constructor
may be called anywhere, including inside a subroutine.

Treating the uninitialized object types for constructor arguments differ-
ently than other uninitialized types allows the verifier to accept programs
where a subroutine must be called prior to invoking the superclass con-
structor. This is demonstrated by Figure 10. That figure shows a construc-
tor for class C, as well as a rough translation of it into JVMLc with
subroutines (we ignore the code required for the exception handler).

The bytecode translation of the constructor will be rejected by our
analysis because control jumps to a subroutine when a local variable
contains the uninitialized object passed into the constructor. It is accepted
by the Sun verifier due to the special treatment of the type of the
uninitialized object passed into the constructor. However, the Java lan-
guage specification requires that the superclass constructor be called prior
to the start of any code protected by an exception handler. Therefore, the
Java program in Figure 10 is not valid. The added flexibility of the
development team’s method is not required to verify valid Java programs,
but it does make the analysis much more difficult. In fact, several pub-
lished attacks, including the one described in Section 1, may be attributed
to errors in this part of the verifier. Other verifiers, such as the Microsoft
verifier, currently reject the bytecode translation of this class.

In summary, the differences in the two verification techniques would
only become apparent in handwritten bytecode programs using uninitial-
ized object types in unusual ways, and both systems are sufficient to type
check translations of valid Java programs. Since our method, while slightly
more restrictive, makes both verification and our soundness proofs much
simpler, we believe our method is reasonable.

Fig. 10. A constructor which will always call a subroutine before invoking the superclass
constructor, and its translation into JVMLc with subroutines (ignoring the exception handler).
Note that this is not a valid Java program.
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8. RELATED WORK

There are several other projects currently examining bytecode verification
and the creation of correct bytecode verifiers. This section describes some of
these projects, as well as related work in contexts other than Java. There
have also been many studies of the Java language type system [Drossopou-
lou et al. 1999; Nipkow and von Oheimb 1998; Syme 1997], but we will
emphasize bytecode-level projects. Although the other studies are certainly
useful, and closely related to this work in some respects, they do not
address the way in which the bytecode language is used and the special
structures in JVML.

In addition to the framework developed by Stata and Abadi [1999] and
used in this article, there are other strategies being developed to describe
the JVML type system and bytecode verification formally. The most closely
related work is Qian [1998], which presents a static type system for a
larger fragment of JVML than is presented here. While that system uses
the same general approach as we do, we have attempted to present a
simpler type system by abstracting away some of the unnecessary details
left in Qian’s framework, such as different forms of name resolution in the
constant pool and varying instruction lengths. Also, our model of subrou-
tines, based on the work of Stata and Abadi, is very different. The rules for
object initialization used in the original version of Qian’s paper were
similar to Sun’s faulty rules, and they incorrectly accepted the program in
Figure 9. After announcing our discovery of Sun’s bug, a revised version of
Qian’s paper containing rules more similar to our rules was released.

Hagiya and Tozawa [1998] present a type system for the fragment of
JVML concerning subroutines. We are currently examining ways in which
ideas from that type system may be used to eliminate some of the
simplifications to the subroutine mechanism in the work of Stata and
Abadi. Several recent projects have departed from Sun’s original specifica-
tion and have developed significantly different static semantics for JVML
subroutines. O’Callahan [1999] presents a system based on ideas from the
TAL type system of Morrisett et al. [1998]. Other work has borrowed ideas
from the type system of Haskell [Jones 1998; Yelland 1999].

Another approach using concurrent constraint programming was also
proposed [Saraswat 1997]. This approach is based on transforming a JVML
program into a concurrent constraint program. While this approach must
also deal with the difficulties in analyzing subroutines and object initializa-
tion statically, it remains to be seen whether it will yield a better frame-
work for studying JVML, and whether the results can be easily translated
into a verifier specification.

Other avenues toward a formal description of the verifier, including
model checking [Posegga and Vogt 1998] and data flow analysis techniques
[Goldberg 1998], are also currently being pursued.

A completely different approach was taken by Cohen [1997], who devel-
oped a formal execution model for JVML which does not require bytecode
verification. Instead, safety checks are built into the interpreter. Although
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these run-time checks make the performance of his defensive-JVM too slow
to use in practice, this method is useful for studying JVML execution and
understanding the checks required to safely execute a program.

The Kimera project has developed a more experimental method to
determine the correctness of existing bytecode verifiers [Sirer et al. 1997].
After implementing a verifier from scratch, programs with randomly in-
serted errors were fed into that verifier, as well as several commercially
produced verifiers. Any differences among implementations meant a poten-
tial flaw. While this approach is fairly good at tracking down certain
classes of implementation mistakes and is effective from a software engi-
neering perspective, it does not lead to the same concise, formal model like
some of the other approaches, including the approach presented in this
article. It also may not find JVML specification errors or more complex
bugs, such as the one described in Section 7.

Other recent work has studied type systems for low-level languages other
than JVML. These studies include the TIL intermediate languages for ML
[Tarditi et al. 1996], and the more recent work on typed assembly language
[Morrisett et al. 1998]. The studies touch on some of the same issues as this
study, and the type system for typed assembly language does contain a
distinction between types for initialized and uninitialized values. However,
these languages do not contain some of the constructs found in JVML, and
they do not require aspects of the static analysis required for JVML, such
as the alias analysis required for object initialization.

9. CONCLUSIONS AND FUTURE WORK

Given the need to guarantee type safety for mobile Java code, developing
correct type checking and analysis techniques for JVML is crucial. How-
ever, there is no existing specification which fully captures how Java
bytecodes must be type checked. We have built on the previous work of
Stata and Abadi to develop such a specification by formulating a sound type
system for a fairly complex subset of JVML which covers both subroutines
and object initialization. This is one step toward developing a sound type
system for the whole bytecode language. Once this type system for JVML is
complete, we can describe a formal specification of the verifier and better
understand what safety and security guarantees can be made by it.

Although our model is still rather abstract, it has already proved effec-
tive as a foundation for examining both JVML and existing bytecode
verifiers. Even without a complete object model or notion of an object heap,
we have been able to study initialization and the interaction between it and
subroutines.

The work described in this article opens several promising directions.
One major task, which we are currently undertaking, is to extend the
specification and correctness proof to the entire JVML, including the
method call stack and a full object system. The methods described in
Section 6 allow most variants of simple instructions to be added in a
standard, straightforward way, and we are also examining methods to
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factor JVML into a complete, yet minimal, set of instructions. In addition,
the Java object system has been studied and discussed in other contexts
[Arnold and Gosling 1996; Drossopoulou et al. 1999; Qian 1998; Syme
1997], and these previous results can be used as a basis for objects in our
JVML model. We are in the process of finishing a soundness proof for a
language encompassing the JVML elements presented in this article plus
objects, interfaces, classes, arrays, and exceptions. Other issues that have
not been addressed to date are concurrency and dynamic loading, both of
which are key concepts in the Java Virtual Machine.

We also believe it will be feasible to generate an implementation of a
bytecode verifier from a specification proven to be correct. This specifica-
tion could be expressed in the kind of typing rules we use here, or some
variant of this notation.

Finally, we expect in the long run, that it will be useful to incorporate
additional properties into the static analysis of Java programs. If Java is to
become a popular and satisfactory general-purpose programming language,
then, for efficiency reasons alone, it will be necessary to replace some of the
current run-time tests by conservative static analysis, perhaps reverting to
run-time tests when static analysis fails. For example, we may be able to
eliminate some run-time checks for array bounds and pointer casts. Other
safety properties, such as the use of certain locking conventions in a
concurrent JVML model, could also be added to our static analysis.

APPENDIX A. JVMLi SOUNDNESS

This appendix presents the soundness proof for the JVMLi type system.
Appendix A.1 proves some useful lemmas used in Appendices A.2, A.3, and
A.4, which contain the proofs of Theorems 1, 2, and 3. Appendix B extends
these proofs to show the soundness of the JVMLc and JVMLs type systems.

A.1 Preliminary Lemmas

We begin with two lemmas that conclude the correspondence between
specific values and types based, first, on the contents of the top of the stack,
and, second, on the contents of a specific local variable.

LEMMA 1.

@Fi , Si , f, s, t̂, b̂.

t̂ [ T̂

` ConsistentInit~Fi , t̂ z Si , f, b̂ z s!

f Corresponds~Fi , t̂ z Si , f, b̂ z s, b̂, t̂!

PROOF. Assume that all the hypotheses are satisfied for some Fi, Si, f,
s, t̂, and b̂. Since ConsistentInit(Fi, t̂ z Si, f, b̂, s), there is some ĉ such
that Corresponds(Fi, t̂ z Si, f, b̂ z s, ĉ, t̂). StackCorresponds( t̂ z Si, b̂ z s,
ĉ, t̂) must be true to have concluded Corresponds(Fi, t̂ z Si, f, b̂ z s, ĉ, t̂),
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and the only way by which we could have concluded this is using rule (sc 1).
Therefore b̂ 5 ĉ, and Corresponds(Fi, t̂ z Si, f, b̂ z s, b̂, t̂). e

LEMMA 2.

@Fi , Si , f, s, x.

Fi@ x# [ T̂
` ConsistentInit~Fi , Si , f, s!

f Corresponds~Fi , Si , f, s, f @ x#, Fi@ x#!

PROOF. Assume that all the hypotheses are satisfied for some Fi, Si, f,
s, and b̂. Since ConsistentInit(Fi, Si, f, s), there is some ĉ such that
Corresponds(Fi, Si, f, s, ĉ, Fi[ x]). We know that ĉ 5 f[ x], or else we could
not have derived the above correspondence. e

The next three lemmas show that Corresponds and ConsistentInit are
preserved when values are popped off the stack. We first show that
Corresponds is preserved for a single pop.

LEMMA 3.

@Fi , Si , f, s, v, t, b̂, t̂.

Corresponds~Fi , t z Si , f, v z s, b̂, t̂!

f Corresponds~Fi , Si , f, s, b̂, t̂!

PROOF. Assume that the hypothesis is satisfied. Since we assumed
Corresponds(Fi, t z Si, f, v z s, b̂, t̂), we know that

@x [ Dom~Fi!. Fi@ x# 5 t̂ f f @ x# 5 b̂. (1)

Also, StackCorresponds(t z Si, v z s, b̂, t̂). If this is true, we must be able
to conclude it by either (sc 1) or (sc 2). In both cases, StackCorresponds(Si,
s, b̂, t̂) must be true. From this and (1), Corresponds(Fi, Si, f, s, b̂, t̂)
follows from rule (corr). e

Using this lemma, we may prove the same property for ConsistentInit.

LEMMA 4.

@Fi , Si , f, s, v, t.
ConsistentInit~Fi , t z Si , f, v z s!

f ConsistentInit~Fi , Si , f, s!

PROOF. Assume that the hypothesis is satisfied for some choice of Fi,
Si, f, s, v, t. For any t̂, choose b̂ such that Corresponds(Fi, t z Si, f, v z s,
b̂, t̂). Such a b̂ exists by our assumption that ConsistentInit(Fi, t z Si, f,
v z s). For this choice of b̂ and t̂, Corresponds(Fi, Si, f, s, b̂, t̂)
follows from Lemma 3. Since a b̂ may be chosen for every t̂ in this way,
ConsistentInit(Fi, Si, f, s) follows. e
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The previous lemma may be generalized to popping any number values
off the stack, as shown below.

LEMMA 5.

@Fi , a1 , a2 , f, s1 , s2 .
s1;a1

` ConsistentInit~Fi , a1 • a2 , f, s1 • s2!

f ConsistentInit~Fi , a2 , f, s2!

PROOF. The proof is by induction on the length of a1. e

In a fashion similar to the previous three lemmas, we also prove that
pushing any number of values does not affect Corresponds or ConsistentInit,
as long as the new values are not uninitialized objects. As before, we start with
Corresponds:

LEMMA 6.

@Fi , Si , f, s, v, t, b̂, t̂.
t Þ t̂

` Corresponds~Fi , Si , f, s, b̂, t̂!

f Corresponds~Fi , t z Si , f, v z s, b̂, t̂!

PROOF. Assume that the hypotheses are satisfied. Since we assumed
Corresponds(Fi, Si, f, s, b̂, t̂), the following implication holds:

@x [ Dom~Fi!. Fi@ x# 5 t̂ f f @ x# 5 b̂ (2)

Also, StackCorresponds(Si, s, b̂, t̂) must be true. Given that t Þ t̂, it is
clear that StackCorresponds(t z Si, v z s, b̂, t̂) follows from rule (sc 2).
Using this and (2), Corresponds(Fi, t z Si, f, v z s, b̂, t̂) follows by (corr). e

LEMMA 7.

@Fi , Si , f, s, v, t.

t [y T̂
` ConsistentInit~Fi , Si , f, s!

f ConsistentInit~Fi , t z Si , f, v z s!

PROOF. Assume the hypotheses are satisfied. For any t̂ [ T̂, choose b̂
such that we have Corresponds(Fi, Si, f, s, b̂, t̂). Such a b̂ exists by our
assumption that ConsistentInit(Fi, Si, f, s). Also, for this choice of b̂ and t̂,
we prove Corresponds(Fi, t z Si, f, v z s, b̂, t̂) using Lemma 6. Since t [y T̂,
we know that t Þ t̂. All other conditions of Lemma 6 are satisfied, implying
Corresponds(Fi, t z Si, f, v z s, b̂, t̂). Since a b̂ can be chosen in this way
for all t̂, we conclude ConsistentInit(Fi, t z Si, f, v z s) by (cons init). e
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LEMMA 8.

@Fi , a1 , a2 , f, s1 , s2 .
s1;a1

` @y [ Dom~a1!. a1@ y# [y T̂
` ConsistentInit~Fi , a2 , f, s2!

f ConsistentInit~Fi , a1 • a2 , f, s1 • s2!

PROOF. The proof is by induction on the length of a1. e

The next lemma shows that a value known to correspond to a certain
uninitialized object type may be stored in a local variable without breaking
the correspondence.

LEMMA 9.

@Fi , Si , f, s, b̂, t̂, x.

Corresponds~Fi , Si , f, s, b̂, t̂!

f Corresponds~Fi@ x ° t̂#, Si , f @ x ° b̂#, s, b̂, t̂!

PROOF. Assuming Corresponds(Fi, Si, f, s, b̂, t̂), we know that

StackCorresponds~Si , s, b̂, t̂!.

In order to use (corr) to prove the conclusion of this lemma, we must also
show that @y [ Dom(Fi[ x ° t̂]),

~Fi@ x ° t̂#!@ y# 5 t̂ f ~ f@ x ° b̂#!@ y# 5 b̂. (3)

There are two cases to consider for each y:

Case 1: x Þ y. In this case, (Fi[ x ° t̂])[ y] 5 Fi[ y]. Likewise, ( f[ x °
b̂])[ y] 5 f[ y]. Since Corresponds(Fi, Si, f, s, b̂, t̂) is true, line (3) must be
true for this choice of y.

Case 2: x 5 y. In this case, (Fi[ x ° t̂])[ y] 5 t̂ and ( f[ x ° b̂])[ y] 5 b̂.
Thus, (3) holds when x 5 y.

Thus, the conditions for (corr) are satisfied, and we may conclude that the
lemma holds. e

Similarly, a value known not to be an uninitialized object of a certain
type may be stored in a local variable without breaking any known
correspondence, as shown below.

Object Initialization in the Java Bytecode Language • 1225

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 6, November 1999.



LEMMA 10.

@Fi , Si , f, s, v, t, b̂, t̂, x.
t Þ t̂

` Corresponds~Fi , Si , f, s, b̂, t̂!

f Corresponds~Fi@ x ° t#, Si , f @ x ° v#, s, b̂, t̂!

PROOF. Assume that the hypotheses are satisfied. Since we assumed
Corresponds(Fi, Si, f, s, b̂, t̂), we know that

StackCorresponds~Si , s, b̂, t̂!.

In order to use (corr) to prove the conclusion of this lemma, we must also
show, for all y [ Dom(Fi[ x ° t]), that

~Fi@ x ° t#!@ y# 5 t̂ f ~ f @ x ° v#!@ y# 5 b̂. (4)

There are two cases to consider for each y:

Case 1: x Þ y. In this case, (Fi[ x ° t])[ y] 5 Fi[ y]. Likewise, ( f[ x °
v])[ y] 5 f[ y]. Since Corresponds(Fi, Si, f, s, b̂, t̂) is true, line (4) must be
true for this choice of y.

Case 2: x 5 y. In this case, (Fi[ x ° t])[ y] Þ t̂, and (4) is satisfied
when x 5 y.

Thus, the conditions for (corr) are satisfied, and we may conclude that the
lemma holds. e

The next two lemmas in this section are concerned with substitution. The
first shows that substitution of an initialized object type for an uninitial-
ized object type, and an initialized object for the corresponding uninitial-
ized object, preserves the stack type. Also, the correspondence between the
uninitialized object type and value on the stack is preserved by the
substitution.

LEMMA 11.

@Si , s, a;s, â;ŝ.
s;Si

` StackCorresponds~Si , s, â, ŝ!

` s Þ ŝ

` ŝ [ T̂
f @a/â#s;@s/ŝ#Si

` StackCorresponds~@s/ŝ#Si , @a/â#s, â, ŝ!
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PROOF. Assume that all the hypotheses are satisfied. We prove the
conclusions by induction on the derivation of StackCorresponds(Si, s, â,
ŝ). There is one base case and two inductive cases to consider, depending
on which judgment is used in the final step of the derivation:

Case 1: (sc 0). If this is the case, s 5 e and Si 5 e. The conclusions
follow trivially.

Case 2: (sc 1). In this case, s 5 â z s9 and Si 5 ŝ z S9i for some s9 and
S9i. We begin by showing that [a/â](â z s9);[s/ŝ](ŝ z S9i). Since s9;S9i and
StackCorresponds(S9i, s9, â, ŝ), we may conclude that

@a/â#s9;@s/ŝ#S9i (5)

and

StackCorresponds~@s/ŝ#S9i , @a/â#s9, â, ŝ! (6)

by the inductive hypothesis. It is also clear that the following two equations
hold:

@a/â#â 5 a (7)

@s/ŝ#ŝ 5 s (8)

These allow us to conclude that [a/â]â;[s/ŝ]ŝ. Combining this fact and
line (5), we know that ([a/â]â) z ([a/â]s9);([s/ŝ]ŝ) z ([s/ŝ]S9i), and
[a/â](â z s9);[s/ŝ](ŝ z S9i) follows. Thus, the first clause of the conclusion
is satisfied.

StackCorresponds(s z [s/ŝ]S9i, a z [a/â]s9, â, ŝ) follows by (sc 2) and (6),
plus the fact that s Þ ŝ. Using Eqs. (7) and (8) above, this correspondence
can be rewritten as StackCorresponds([s/ŝ](ŝ z S9i), [a/â](â z s9), â, ŝ)
using the distributive nature of substitution over sequences.

Case 3: (sc 2). In this case, s 5 v z s9 and Si 5 t z S9i for some s9 and S9i
where t Þ ŝ. Since s;Si, we know that v;t. We proceed as in the previous
case to conclude that [a/â]s9;[s/ŝ]S9i and StackCorresponds([s/ŝ]S9i,
[a/â]s9, â, ŝ) by the inductive hypothesis. There are two cases for v:

(1) v Þ â: Since we also know that t Þ ŝ, we may conclude that
[a/â]v;[s/ŝ]t and ([a/â]v) z ([a/â]s9);([s/ŝ]t) z ([s/ŝ]S9i) are true.
The previous type assignment may be rewritten as [a/â](v z s9);[s/
ŝ](ŝ z Si). In addition, StackCorresponds(([s/ŝ]t) z ([s/ŝ]S9i), ([a/
â]v) z ([a/â]s9), â, ŝ) follows from rule (sc 2), since [s/ŝ]t Þ ŝ. This
may be rewritten as StackCorresponds([s/ŝ](t z S9i), [a/â](v z s9), â,
ŝ), and the second clause of the conclusion follows.
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(2) v 5 â: In this case, t must be TOP, since the only valid types for â are
TOP and ŝ. The latter is ruled out because we used (sc 2) as the final
step in the proof of StackCorresponds(t z S9i, v z s9, â, ŝ). Since any
value has type TOP and [s/ŝ]TOP 5 TOP, we may conclude that
[a/â]v;[s/ŝ]t is true. The assertion [a/â]s;[s/ŝ]Si follows directly
from this, as above. StackCorresponds(([s/ŝ]t) z ([s/ŝ]S9i), ([a/â]v) z

([a/â]s9), â, ŝ) follows from rule (sc 2), since [s/ŝ]t Þ ŝ, and StackCor-
responds([s/ŝ](t z S9i), [a/â](v z s9), â, ŝ) is true. e

The next lemma is analogous to the previous for a specific local variable
y. In other words, replacing an uninitialized object value and the corre-
sponding types with an initialized object value and initialized object type
does not affect the correspondence or whether the local variable y has the
correct type.

LEMMA 12.

@Fi , a;s, â;ŝ, y.
y [ Dom~Fi!

` f @ y#;Fi@ y#

` Fi@ y# 5 ŝ f f @ y# 5 â
` s Þ ŝ

f ~@a/â# f !@ y#;~@s/ŝ#Fi!@ y#

` ~@s/ŝ#Fi!@ y# 5 ŝ f ~@a/â# f !@ y# 5 â

PROOF. Assume that the hypotheses are satisfied. There are two cases
for Fi[ y]:

Case 1: Fi[ y] 5 ŝ. Thus, f[ y] 5 â. Also, we know that [a/â]( f[ y]) 5 a
and [s/ŝ](Fi[ y]) 5 s. Since a;s by our assumptions, the first clause of the
conclusion is true. Since s Þ ŝ, the second clause is also true.

Case 2: Fi[ y] Þ ŝ. First, we know that ([s/ŝ]Fi)[ y] 5 Fi[ y]. In
addition, one of the assumptions of the implication is that f[ y];Fi[ y]. In
this case, there are two possibilities for f[ y]:

(1) f[ y] Þ â: In this case, [a/â]( f[ y]) 5 f[ y], and since Fi[ y] Þ ŝ, the
conclusions are satisfied.

(2) f[ y] 5 â: In this case, Fi[ y] 5 TOP, since the only valid types for â are
ŝ and TOP. Since a;TOP is also true, [a/â]( f[ y]);TOP, making the
first clause of the conclusion true. Since ŝ Þ TOP, the second clause of
the conclusion also follows. e
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The next lemma shows that initializing an object of one uninitialized
object type does not affect the correspondence between other uninitialized
object types and values.

LEMMA 13.

@Si , s, a;s, â;ŝ, b̂; t̂.
s;Si

` StackCorresponds~Si , s, b̂, t̂!

` t̂ Þ s

` t̂ Þ ŝ

f StackCorresponds~@s/ŝ#Si , @a/â#s, b̂, t̂!

PROOF. We show that StackCorresponds([s/ŝ]Si, [a/â]s, b̂, t̂) is true by
induction on the proof of StackCorresponds(Si, s, b̂, t̂). There is one base
case and two inductive cases to consider, depending on which judgment is
used in the final step of the proof:

Case 1: (sc 0). If this is the case, s 5 e and Si 5 e, and the conclusion
follows easily.

Case 2: (sc 1). Assume Si 5 t̂ z S9i and s 5 b̂ z s9 where StackCorre-
sponds([s/ŝ]S9i, [a/â]s9, b̂, t̂) is true by the inductive hypothesis. Stack-
Corresponds( t̂ z [s/ŝ]S9i, b̂ z [a/â]s9, b̂, t̂) follows by rule (sc 1), and since
t̂ Þ ŝ and b̂ Þ â, we may rewrite this as StackCorresponds([s/ŝ]Si, [a/â]s,
b̂, t̂).

Case 3: (sc 2). Assume Si 5 t z S9i and s 5 v z s9 where v;t and t̂ Þ t.
By the inductive hypothesis, StackCorresponds([s/ŝ]S9i, [a/â]s9, b̂, t̂) is
true. Also, [s/ŝ]t Þ t̂, since s Þ t̂ and t̂ Þ t. Therefore, by rule (sc 2),
StackCorresponds(([s/ŝ]t) z ([s/ŝ]S9i), ([a/â]v) z ([a/â]s9), b̂, t̂) is true.
This can be rewritten as StackCorresponds([s/ŝ]Si, [a/â]s, b̂, t̂). e

A.2 One-Step Soundness

In order to prove Theorem 1, we prove that each of the four invariants is
preserved by a program step. For each invariant, we first state a general
property of instruction behavior, based on the operational and static
semantics, that guarantees the invariant will not be violated by any
instruction exhibiting the property. These properties will allow us to reason
about which instructions preserve the global invariants in the common
case easily. For example, the following property describes behavior
easily proved to guarantee that the stack is well typed after the
instruction is executed.
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Definition 1. For some instruction I, I preserves StackType if

@P, F, S, pc, f, s, pc9, f9, s9.
F, S £ P
` P £ ^pc, f, s& 3 ^pc9, f9, s9&

` s;Spc

` P@ pc# 5 I
f ?s1;a1 , s2;a2 , s3;a3.

s 5 s1 • s2

` s9 5 s3 • s2

` Spc 5 a1 • a2

` Spc9 5 a3 • a2

Intuitively, this property splits the stack into a segment popped by the
instruction, a segment pushed by the instruction, and a part that stays the
same. Each of these three parts are well typed by the corresponding pieces
of type information from S. The conclusion of the implication may be
simplified to s;Spc ` s9;Spc9 by taking s2 and a2 to be e. However, the way
we have presented it enables us to separate the elements pushed and
popped from the stack from the part of the stack untouched by the common
stack operations.

LEMMA 14. The following instructions have this property: inc , pop , push
0, store x, load x, new s, use s, and if L.

PROOF. Two representative cases are shown. In each case, assume we
have P, F, S, pc, f, s, pc9, f9, and s9 which satisfy all the hypotheses:

Case 1: inc . By the operational semantics, pc9 5 pc 1 1, s 5 n z s0,
and s9 5 (n 1 1) z s0 for some s0. By (inc), Spc 5 Spc9 5 INT z a for some
a. Choose s1 5 n, s2 5 s0, s3 5 n 1 1, and a1 5 INT, a2 5 a, a3 5 INT.
Clearly, s1;a1 and s3;a3, since n and n 1 1 are integers. By the
assumption that s;Spc, we may conclude that n z s0;INT z a and s0;a,
meaning s2;a2.

Case 2: if L. By the operational semantics, pc9 [ { pc 1 1, L}. Also,
s 5 n z s0 for some integer n and stack s0. In addition, by (if), Spc 5 INT z
Spc9. Choose s1 5 n, s2 5 s0, s3 5 e, a1 5 INT, a2 5 Spc9, and a3 5 e. We
know that s1;a1, since n : INT. By the assumption that s;Spc, we conclude
that n z s0 : INT z Spc9 and s0;Spc9, meaning that s2;a2. The type judgment
e;e implies that s3;a3. e

With this lemma, we may now prove part of Theorem 1, grouping all
instructions shown to exhibit the property presented in Definition 1 into a
single case.
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LEMMA 15. Given P, F, and S such that F, S £ P,

@pc, f, s, pc9, f9, s9.
P £ ^pc, f, s& 3 ^pc9, f9, s9&

` s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

f s9;Spc9

PROOF. Assume that the hypotheses are satisfied. We proceed by exam-
ining the possible instructions at P[ pc], noting that P[ pc] Þ halt , since a
transition is made from the current state:

Case 1: P[ pc] Preserves StackType. By Lemma 14, we may choose
s2, s3, a2, and a3 such that s9 5 s3 • s2, Spc9 5 a3 • a2, s3;a3, and s2;a2.
Thus, s9;Spc9.

Case 2: P[ pc] 5 load x. By the operational semantics, we know that
s9 5 f[ x] z s. By rule (load) and the fact that pc9 5 pc 1 1, we also know
that Spc9 5 Fpc[ x] z Spc must be true. Given the assumption that @y [
VAR. f[ y];Fpc[ y], we know that f[ x];Fpc[ x]. In addition, since s;Spc, it
follows that f[ x] z s;Fpc[ x] z Spc, allowing us to conclude that s9;Spc9.

Case 3: P[ pc] 5 init s. To prove this case, we first show that
StackCorresponds(a, s0, â, ŝ j). We then dispatch the hypotheses of Lemma
11 to conclude that s9;Spc9. By the operational semantics, pc9 5 pc 1 1,
s 5 â z s0, and s9 5 [a/â]s0 for some s0, â, and a [ As. By rule (init),
Spc 5 ŝ j z a and Spc9 5 [s/ŝ j]a are true. To prove s9;Spc9, we first note
that s;Spc and ConsistentInit(Fpc, Spc, f, s) imply that Corresponds(Fpc,
Spc, f, s, â, ŝ j) by Lemma 1. This means that StackCorresponds(Spc, s, â,
ŝ j), and in order to have proved this,

StackCorresponds~a, s0, â, ŝ j! (9)

must be true. We now turn our attention to the hypotheses of Lemma 11.
The types s and ŝ j must be different because the first is an initialized
object type, and the second is an uninitialized object type. Also, s0;a, a;s,
and â;ŝ j. These conditions, in addition to (9), are sufficient to conclude
s9;Spc9 using Lemma 11. e

Definition 2 captures a behavior of all instructions known not to alter the
local variables.
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Definition 2. For some instruction I, I preserves VariableType if

@P, F, S, pc, f, s, pc9, f9, s9.
F, S £ P
` P £ ^pc, f, s& 3 ^pc9, f9, s9&

` P@ pc# 5 I
f f9 5 f

` Fpc9 5 Fpc

LEMMA 16. The following instructions have this property: inc , pop , push
0, load x, new s, use s, and if L.

PROOF. Two representative cases are shown. In each case, assume that
we have P, F, S, pc, f, s, pc9, f9, and s9 which satisfy all the hypotheses:

Case 1: inc . By the operational semantics, pc9 5 pc 1 1 and f9 5 f. By
(inc), Fpc 5 Fpc11. From these pieces of information, it is clear that Fpc 5
Fpc9 is also true.

Case 2: if L. By the operational semantics, pc9 [ { pc 1 1, L}. Also,
f9 5 f. In addition, by (if) it follows that Fpc 5 Fpc11 5 FL. Given the
possible values for pc9, we can conclude that Fpc 5 Fpc9. e

LEMMA 17. Given P, F, and S such that F, S £ P,

@pc, f, s, pc9, f9, s9.
P £ ^pc, f, s& 3 ^pc9, f9, s9&

` s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

f @y [ VAR. f9@ y#;Fpc9@ y#

PROOF. Assume that the hypotheses are satisfied. We proceed by exam-
ining the possible instructions at P[ pc]. Note, that, as before, P[ pc] Þ
halt:

Case 1: P[ pc] Preserves VariableType. By Lemma 16, f9 5 f and Fpc9 5
Fpc, and we assumed @y [ VAR. f[ y];Fpc[ y]. By substitution using the
two equalities, @y [ VAR. f9[ y];Fpc9[ y].

Case 2: P[ pc] 5 store x. From the operational and static semantics,
we know that pc9 5 pc 1 1, f9 5 f[ x ° v], and Fpc9 5 Fpc[ x ° t] where
s 5 v z s9 and Spc 5 t z Spc9. There are two cases to consider to prove that
f9[ y];Fpc9[ y] for all y [ VAR:

(1) y Þ x: In this case, f9[ y] 5 f[ y] and Fpc9[ y] 5 Fpc[ y]. From the
hypotheses of the implication, f9[ y];Fpc9[ y] is true.

(2) y 5 x: f9[ x] 5 v and Fpc9[ x] 5 t. Since s;Spc, we know that v;t.
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Therefore, f9[ x];Fpc9[ x].

Thus, @y [ VAR. f9[ y];Fpc9[ y].

Case 3: P[ pc] 5 init s. In this case, we know that pc9 5 pc 1 1, and
the static and operational semantics imply that f9 5 [a/â] f and Fpc9 5
[s/ŝ j]Fpc where s 5 â z s0 and Spc 5 ŝ j z a. Also, ŝ j [ T̂ and s [ T.
In addition, Corresponds(Fpc, Spc, f, s, â, ŝ j) follows from Lemma 1,
meaning that Fpc[ y] 5 ŝ j implies f[ y] 5 â for all y [ VAR. Since we are
not considering subroutines yet, y [ VAR implies that y [ Dom(Fi). Using
these facts, Lemma 12 may be applied to conclude ([a/â] f )[y];([s/ŝj]F[pc])[y]
for all y [ VAR, and the conclusion is satisfied. We discuss how this lemma is
affected by subroutines and variable polymorphism in Appendix B.2. e

Definition 3 is more complex than the previous properties. The intuition
captured is that an instruction will not touch the local variables, but it may
pop off any number of values from the stack and push any number of new
values, as long as the new ones are not uninitialized objects. While there
are many parts to the conclusion in the implication of this property, the
truth of each one of these may be obtained by a simple examination of the
JVMLi semantics.

Definition 3. For some instruction I, I preserves ConsistentInit if

@P, F, S, pc, f, s, pc9, f9, s9.
F, S £ P
` P £ ^pc, f, s& 3 ^pc9, f9, s9&

` s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

` P@ pc# 5 I
f ' s1;a1 , s2;a2 , s3;a3 .

s 5 s1 • s2

` s9 5 s3 • s2

` Spc 5 a1 • a2

` Spc9 5 a3 • a2

` @y [ Dom~a3! z a3@ y# [y T̂
` f9 5 f
` Fpc9 5 Fpc

To simplify the presentation of this definition, we allow elements of a
sequence to be accessed as array elements. Therefore, consider a3[ y] to
refer to the element yth from the left in sequence a3.

LEMMA 18. The following instructions have this property: inc , pop , push
0, use s, if L.
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PROOF. Two representative cases are shown. In each case, assume that
we have P, F, S, pc, f, s, pc9, f9, and s9 which satisfy all the hypotheses:

Case 1: inc . By the operational semantics, we know that pc9 5 pc 1 1,
f 5 f9, s 5 n z s0, and s9 5 (n 1 1) z s0 for some s0. By (inc), Spc 5 Spc9

5 INT z a for some a, and Fpc 5 Fpc9. Choose s1 5 n, s2 5 s0, s3 5 n 1 1,
a1 5 INT, a2 5 a, and a3 5 INT. Clearly, s1;a1 and s3;a3, since n and n 1
1 are integers. By the assumption that s;Spc, we may conclude that n z
s0;INT z a and s0;a, meaning s2;a2. Finally, INT [y T̂, implying that @y [
Dom(a3) z a3[ y] [y T̂.

Case 2: if L. By the operational semantics, pc9 [ { pc 1 1, L} and f 5
f9. Also, s 5 n z s0 for some integer n and stack s0. In addition, (if) implies
that Spc 5 INT z Spc9 and Fpc 5 Fpc9. Choose s1 5 n, s2 5 s0, s3 5 e, a1 5
INT, a2 5 Spc9, and a3 5 e. We know that s1;a1, since n;INT. By the
assumption that s;Spc, we conclude that n z s0;INT z Spc9 and s0;Spc9

meaning that s2;a2. The type judgment e;e implies that s3;a3. Finally,
a3 5 e, so there is no uninitialized object type in a3. e

Not all instructions exhibit this property, because some introduce new
uninitialized objects or operate on elements not on the top of the stack,
such as the new and init instructions, respectively.

We now show that ConsistentInit is preserved by all instructions.

LEMMA 19. Given P, F, and S such that F, S £ P,

@pc, f, s, pc9, f9, s9.
P £ ^pc, f, s& 3 ^pc9, f9, s9&

` s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

f ConsistentInit~Fpc9 , Spc9 , f9, s9!

PROOF. Assume that we have P, F, S, pc, f, s, pc9, f9, and s9 which
satisfy all the hypotheses. We proceed by case analysis on P[ pc], where the
first case will contain all instructions that satisfy the property in Definition
3. We know that P[ pc] is not a halt instruction.

Case 1: P[ pc] Preserves ConsistentInit. By Lemma 18, we may choose
s1;a1, s2;a2, and s3;a3 such that all the conditions listed in Definition 3
are satisfied. Note that this ensures s 5 s1 • s2 and Spc 5 a1 • a2. Since
ConsistentInit(Fpc, Spc, f, s), Lemma 5 proves that ConsistentInit(Fpc, a2,
f, s2). Since we also know s3;a3 and no uninitialized types appear in a3,
Lemma 8 may be applied to prove that ConsistentInit(Fpc, a3 • a2, f, s3 •
s2). Also, since Fpc9 5 Fpc and f9 5 f, ConsistentInit(Fpc9, Spc9, f9, s9) is
true.

Case 2: P[ pc] 5 new s. By the operational semantics, s9 5 â z s, and
we know that Spc9 5 ŝpc z Spc by rule (init) and the fact that pc9 5 pc 1 1.
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This means that â;ŝpc. For each t̂ [ T̂, we must choose a b̂; t̂ such that
Corresponds(Fpc9, Spc9, f9, s9, b̂, t̂) to conclude that the lemma is true.
There are two cases to consider for each t̂:

(1) t̂ 5 ŝpc: Choose b̂ 5 â. Given that ŝpc [y Spc is true by the static
semantics, it is obvious that StackCorresponds(Spc, s, â, ŝpc) is true,
since it may be proved using only rules (sc 0) and (sc 2). Applying rule
(sc 1), we also know that

StackCorresponds~Spc9 , s9, â, ŝpc! (10)

will be true. We also know from the static semantics that Fpc9 5 Fpc is
true. In addition, we know that

@y [ Dom~Fpc! z Fpc@ y# Þ ŝpc .

Thus, we know the following is true:

@y [ Dom~Fpc9! z Fpc9@ y# 5 ŝpc f f9@ y# 5 â (11)

Lines (10) and (11) imply that Corresponds(Fpc9, Spc9, f9, s9, b̂, t̂) is
true using rule (corr).

(2) t̂ Þ ŝpc: Choose b̂ such that Corresponds(Fpc, Spc, f, s, b̂, t̂). By our
assumption that ConsistentInit(Fpc, Spc, f, s), there is such a b, and
Corresponds(Fpc9, Spc9, f9, s9, b̂, t̂) follows by Lemma 6.

Case 3: P[ pc] 5 init s. By the operational semantics, pc9 5 pc 1 1,
s 5 â z s0, f9 5 [a/â] f, and s9 5 [a/â]s0 for some s0, â, and a;s. By rule
(init), Spc 5 ŝ j z a for some a, meaning that s0;a and â;ŝ j follow from the
assumption s;Spc. Also, we know that Spc9 5 [s/ŝ j]a and Fpc9 5 [s/ŝ j]Fpc
from this rule. For each t̂ [ T̂, we must find b̂ such that Corresponds(Fpc9,
Spc9, f9, s9, b̂, t̂). If we can, then ConsistentInit(Fpc9, Spc9, f9, s9) follows
by rule (cons init). There are two cases for each t̂:

(1) t̂ 5 ŝ j: Choose b̂ 5 â. First, note that s Þ ŝ j, since s is an initialized
object type and ŝ j is an uninitialized object type. Lemma 11 and
Lemma 12 can be used to show that

@y [ Dom~@s/ŝ j#Fpc!. ~@s/ŝ j#Fpc!@ y# 5 ŝ j f ~@a/â# f !@ y# 5 â
StackCorresponds~@s/ŝ j#Spc , @a/â#s0, â, ŝ j!.

These two lemmas may be applied, since the hypotheses of the implica-
tion and the facts about a, â, s, and ŝ j satisfy the conditions for those
lemmas. Corresponds(Fpc9, Spc9, f9, s9, â, ŝ j) follows directly from
these two equations using rule (corr).

(2) t̂ Þ ŝ j: Choose b̂ such that Corresponds(Fpc, Spc, f, s, b̂, t̂). By our
assumption that ConsistentInit(Fpc, Spc, f, s), there is such a b̂. We
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now show that

Corresponds~Fpc9 , Spc9 , f9, s9, b̂, t̂!

is true. First,

@y [ Dom~@s/ŝ j#Fpc! z ~@s/ŝ j#Fpc!@ y# 5 t̂ f ~@a/â# f !@ y# 5 b̂ (12)

must be true. Consider any y such that ([s/ŝ j]F[ pc])[ y] 5 t̂. In this
case, Fpc[ y] 5 t̂ since t̂ Þ ŝ j. In addition, the correspondence between
b̂ and t̂ implies that f[ y] 5 b̂. Therefore, ([a/â] f[ y] Þ b̂ because â Þ b̂
and a is unused in f. We also know, that, given StackCorresponds(a, s0,
b̂, t̂) is a necessary condition for Corresponds(Fpc, Spc, f, s, b̂, t̂),

StackCorresponds~@s/ŝ j#a, @a/â#s0, b̂, t̂! (13)

is true by Lemma 13. Therefore, Corresponds(Fpc9, Spc9, f9, s9, â, ŝ j) is
true by rule (corr) applied to (12) and (13).

Case 4: P[ pc] 5 store x. By the operational semantics, pc9 5 pc 1 1,
s 5 v z s9, and f9 5 f[ x ° v] for some v. By rule (store), Spc 5 t z Spc9 and
Fpc9 5 Fpc[ x ° t] for some t. Since we assumed s;Spc, we know that v;t.
For each t̂ [ T̂, we must find b̂ such that Corresponds(Fpc9, Spc9, f9, s9, b̂,
t̂). If we can, then ConsistentInit(Fpc9, Spc9, f9, s9) follows by rule (cons
init). There are two cases for each t̂:

(1) t Þ t̂: Choose b̂ such that Corresponds(Fpc, Spc, f, s, b̂, t̂). We are
guaranteed that this will exist by the assumption that ConsistentInit
holds. Since (store) ensures x [ Dom(Fpc), Lemma 10 may be applied
to conclude Corresponds(Fpc[ x ° t], Spc, f[ x ° v], s, b̂, t̂). Simplify-
ing this and appealing to Lemma 3, we conclude that

Corresponds~Fpc9 , Spc9 , f9, s9, b̂, t̂!.

(2) t 5 t̂: Choose b̂ 5 v. In this case, Corresponds(Fpc, Spc, f, s, v, t̂) must
be true by Lemma 1. We may apply Lemma 9 to this to conclude that
Corresponds(Fpc[ x ° t̂], Spc, f[ x ° v], s, v, t̂). Finally, we know that
Corresponds(Fpc9, Spc9, f9, s9, v, t̂) is true using Lemma 3.

Case 5: P[ pc] 5 load x. By the operational semantics, pc9 5 pc 1 1,
s9 5 f[ x] z s, and f9 5 f. By rule (load), Spc9 5 Fpc[ x] z Spc and Fpc9 5
Fpc. We know that f[ x];Fpc[ x]. For each t̂ [ T̂, we must find b̂ such that
Corresponds(Fpc9, Spc9, f9, s9, b̂, t̂). If we can, then ConsistentInit(Fpc9,
Spc9, f9, s9) follows by rule (cons init). There are two cases for each t̂:

(1) Fpc[ x] Þ t̂: Choose b̂ such that Corresponds(Fpc, Spc, f, s, b̂, t̂). From
this, we know that Corresponds(Fpc9, Spc9, f9, s9, b̂, t̂) by Lemma 6.

(2) Fpc[ x] 5 t̂: Choose b̂ 5 f[ x]. Since ConsistentInit(Fpc, Spc, f, s), we
conclude Corresponds(Fpc, Spc, f, s, f[ x], Fpc[ x]) and StackCorre-
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sponds(Spc, s, f[ x], Fpc[ x]) by Lemma 2. Applying (sc 1) to this, we
know that StackCorresponds(Fpc[ x] z Spc, f[ x] z s, f[ x], Fpc[ x]) is
true, and Corresponds(Fpc9, Spc9, f9, s9, b̂, t̂) is true. e

Although the following definition is trivial for JVMLi, we include it both
for symmetry with the previous three invariants and because it will be
useful in the proofs of extensions of JVMLi.

Definition 4. For some instruction I, I preserves ProgramDomain if

@P, F, S, pc, f, s, pc9, f9, s9.
F, S £ P
` P £ ^pc, f, s& 3 ^pc9, f9, s9&

` P@ pc# 5 I
f pc9 [ Dom~P!

LEMMA 20. The following instructions have this property: inc , pop , push
0, load x, store x, new s, use s, init s, and if L.

PROOF. Two representative cases are shown. In each case, assume that
we have P, F, S, pc, f, s, pc9, f9, and s9 which satisfy all the hypotheses:

Case 1: inc . By the operational semantics, pc9 5 pc 1 1. By (inc), pc 1
1 [ Dom(P).

Case 2: if L. By the operational semantics, pc9 [ { pc 1 1, L}. By (if),
both of these possible values for pc9 are in the domain of P. e

LEMMA 21. Given P, F, and S such that F, S £ P,

@pc, f, s, pc9, f9, s9.
P £ ^pc, f, s& 3 ^pc9, f9, s9&

` s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

f pc9 [ Dom~P!

PROOF. We are guaranteed that P[ pc] preserves ProgramDomain, since
all instructions in JVMLi exhibit is property. Thus, this lemma follows
directly from Lemma 20. e

We may now prove Theorem 1:
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RESTATEMENT OF THEOREM 1. Given P, F, and S such that F, S £ P,

@pc, f, s, pc9, f9, s9.
P £ ^pc, f, s& 3 ^pc9, f9, s9&

` s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

f s9;Spc9

` @y [ VAR. f9@ y#;Fpc9@ y#

` ConsistentInit~Fpc9 , Spc9 , f9, s9!

` pc9 [ Dom~P!

PROOF. This theorem follows directly from Lemmas 15, 17, 19, and 21.
e

A.3 Progress

The proofs in this subsection and the next are based on the corresponding
proofs of Stata and Abadi. The progress theorem is easily proved by
showing that any instruction, except halt , will allow a program to take a
step from a well-formed state. For each instruction, we must simply show
how to construct the state to which the program can step.

RESTATEMENT OF THEOREM 2. Given P, F, and S such that F, S £ P,

@pc, f, s.
s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

` pc [ Dom~P!

` P@ pc# Þ halt

f ?pc9, f9, s9. P £ ^pc, f, s& 3 ^pc9, f9, s9&

PROOF. Assume that all the hypotheses are satisfied for some pc, f, and
s. We proceed by case analysis on possible instructions P[ pc]. The proof of
each case will simply choose values of pc9, f9, and s9 such that a step may
be taken by the program according to the operational semantics.

Case 1: P[ pc] 5 push 0 . Choose s9 5 0 z s, f9 5 f, and pc9 5 pc 1 1.

Case 2: P[ pc] 5 inc . Since we assumed s;Spc, and Spc 5 INT z Spc11
follows from (inc), we know that s 5 n z s0 for some n and s0. Therefore,
choosing s9 5 (n 1 1) z s0, f9 5 f, and pc9 5 pc 1 1 will allow progress to
be made.

Case 3: P[ pc] 5 pop . Since s;Spc, and Spc 5 t z a follows from (pop),
we know that s 5 v z s0 for some v and s0. Therefore, choose s9 5 s0, f9 5
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f, and pc9 5 pc 1 1. Also, the static semantics guarantees that x [
Dom(Fpc).

Case 4: P[ pc] 5 if L. Since we assumed s;Spc and Spc 5 INT z Spc11
follows from (if), we know that s 5 n z s0 for some n and s0. Therefore,
choosing s9 5 s0, f9 5 f, and pc9 5 pc 1 1 if n 5 0, or pc9 5 L otherwise,
will allow progress to be made.

Case 5: P[ pc] 5 store x. Since s;Spc, and Spc 5 t z Spc11 follows
from (pop), s 5 v z s0 for some v and s0. Therefore, choose s9 5 s0, f9 5
f[ x ° v], and pc9 5 pc 1 1.

Case 6: P[ pc] 5 load x. Choose s9 5 f[ x] z s, f9 5 f, and pc9 5 pc 1
1.

Case 7: P[ pc] 5 new s. A ŝpc contains an infinite number values. Since
VAR is fine made, there is at least one value â such that Unused(â, f, s).
Choose s9 5 â z s, f9 5 f, and pc9 5 pc 1 1.

Case 8: P[ pc] 5 init s. Since s;Spc, and Spc 5 ŝ j z Spc11 for some j
follows from rule (init), we know that s 5 â z s0 for some â [ A ŝ j and s0. As
in the previous case, there exists for at least one value a such that
Unused(a, f, s). Therefore, choose s9 5 [a/â]s0, f9 5 [a/â] f, and pc9 5
pc 1 1.

Case 9: P[ pc] 5 use s. Since s;Spc and Spc 5 s z Spc11 follows from
(use), we know that s 5 a z s0 for some a [ As and s0. Therefore, choose
s9 5 s0, f9 5 f[ x ° v], and pc9 5 pc 1 1. e

A.4 Soundness

We first extend the one-step soundness theorem to execution sequences of
any length:

LEMMA 22. Given P, F, and S such that F, S £ P,

@pc, f0 , f, s.
P £ ^1, f0 , e& 3 * ^pc, f, s&

f s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

` pc [ Dom~P!

PROOF. The proof is by induction on n, the number of execution steps.
The base case is when n 5 0. In this case, ^pc, f, s& 5 ^1, f0, e&. The
conclusions of the implication follow from the initial machine state, the
assumption that all programs have at least one line, and the constraints on
S1 and F1 in rule (wt prog).
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To prove the inductive step, we assume the lemma to be true for
sequences of length n and prove the lemma for execution sequences of
length n 1 1. In this case, the execution sequence must be

P £ ^1, f0 , e& 3 n ^pc9, f9, s9& 3 ^pc, f, s&

for some pc9, f9 and s9. Since n steps were taken from ^1, f0, e& to reach
^pc9, f9, s9&, we may apply the inductive hypothesis to conclude that

s9;Spc9

` @y [ VAR. f9@ y#;Fpc9@ y#

` ConsistentInit~Fpc9 , Spc9 , f9, s9!

` pc9 [ Dom~P!.

Applying Theorem 1 to these four conditions and the execution step from
^pc9, f9, s9& to ^pc, f, s&, we conclude

s;Spc

` @y [ VAR. f @ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

` pc [ Dom~P!.

Thus, this lemma is true for execution sequences of any length. e

RESTATEMENT OF THEOREM 3. Given P, F, and S such that F, S £ P,

@pc, f0 , f, s.

SP £ ^1, f0 , e& 3 * ^pc, f, s&

` ¬ ' pc9, f9, s9. P £ ^pc, f, s& 3 ^pc9, f9, s9&D
f P@ pc# 5 halt ` s;Spc

PROOF. Assume all the hypotheses are satisfied. We first prove the first
clause of the conclusion. Suppose P £ ^1, f0, e& 3* ^pc, f, s& and P[ pc] Þ
halt , but no further step can be taken by the program. By Lemma 22, the
following are true:

s;Spc

@y [ VAR. f @ y#;Fpc@ y#

ConsistentInit~Fpc , Spc , f, s!

pc [ Dom~P!

However, these four assertions and the assumption that P[ pc] Þ halt
mean, that, by Theorem 2, there does exist a state into which the program
can step. This contradicts the assumption that the program is stuck at ^pc,
f, s&, and we conclude that our assumption about P[ pc] is wrong. Thus,
P[ pc] 5 halt .
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We can conclude that the second half of the conjunction, s;Spc, is true
directly from the application of Lemma 22 to the assumptions of the
implication. e

B. SOUNDNESS OF EXTENSIONS

This appendix describes how to extend the proofs from Appendix A to cover
other type systems. The first two sections discuss JVMLc and JVMLs, and
the third section describes how to extend any of these systems to include
additional primitive types and operations.

B.1 JVMLc

This section gives a brief overview of the soundness proof for JVMLi with
constructors. As previously described, the one-step soundness theorem
must be augmented with another global invariant stating the equivalence
of z in the run-time state and ZP:

THEOREM 5 (CONSTRUCTOR ONE-STEP SOUNDNESS). Given P, F, and S
such that F, S £ P,

@pc, f, s, pc9, f9, s9.
P £ ^pc, f, s, z& 3 ^pc9, f9, s9, z9&

` s;Spc

` @y [ VAR. f@ y#;Fpc@ y#

` ConsistentInit~Fpc , Spc , f, s!

` z 5 ZP,pc

f s9;Spc9

` @y [ VAR. f9@ y#;Fpc9@ y#

` ConsistentInit~Fpc9 , Spc9 , f9, s9!

` z9 5 ZP,pc9

` pc9 [ Dom~P!

PROOF SKETCH. With the exception of proving that this one new invari-
ant is preserved by all instructions, proof of this theorem may be obtained
with minor modifications to the proof of Theorem 1 in Appendix A. To prove
that z9 5 ZP,pc9, we first define a new property:

Definition 5. For some instruction I, I preserves Constructor if

@P, F, S, pc, f, s, pc9, f9, s9.
F, S £ P
` P £ ^pc, f, s, z& 3 ^pc9, f9, s9, z9&

` P@ pc# 5 I
f z9 5 z

` ZP, pc9 5 ZP, pc
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Note that all instructions except super s guarantee this property. Given
that the hypotheses of Theorem 5 are satisfied,

z9 5 ZP,pc9 (14)

can be proved by case analysis on P[ pc]. If P[ pc] preserves Constructor
then (14) follows from Definition 5 and the assumption that z 5 ZP,pc. For
super s, the only other possible instruction, z9 5 true follows from the
operational semantics, and ZP,pc9 5 true follows from the definition of ZP

and the fact that pc9 5 pc 1 1. Therefore, line (14) holds for all possible
instructions, and Theorem 5 is true. e

Extending the previously described progress theorem from Appendix A.3
to cover constructors is also relatively straightforward, and the constructor
soundness theorem then follows:

RESTATEMENT OF THEOREM 4. Given P, F, S, w, and âw such that F, S £

P constructs w and âw;ŵ0:

@pc, f0 , f, s, z.

SP £c ^1, f0@0 ° âw#, e, false& 3 * ^pc, f, s, z&

` ¬?pc9, f9, s9, z9 z P £c ^pc, f, s, z& 3 ^pc9, f9, s9, z9&
D

f P@ pc# 5 halt ` z 5 true

PROOF SKETCH. The first half of the conclusion follows from reasoning
similar to that the proof presented in Appendix A.4. The second half is true
given the facts that z will be equal to ZP,pc and that the static semantics
guarantees that ZP,pc 5 true if P[ pc] 5 halt . e

B.2 JVMLs

This section outlines the soundness proof for JVMLi with subroutines. We
refer the reader to the extended version of Stata and Abadi [1999] for many
of the details omitted from this section. The proof sketch consists of three
basic steps. We first define JVMLi with subroutines in terms of a struc-
tured operational semantics based on the semantics presented in Stata and
Abadi [1999, Sect. 5], and we present additional definitions needed for the
proof. Next, we state and discuss the one-step soundness theorem for the
structured semantics. The third step relates the structured semantics to
the stackless semantics for JVMLs, shown previously in Figure 2 and
Figure 7. This part uses a simulation between the structured and stackless
semantics. Once the simulation is shown, the steps leading to the main
soundness theorem for JVMLs follow easily from our proofs in Appendix A
and the proofs of Stata and Abadi.

Figure 11 shows the structured operational semantics for JVMLs. The
machine state has a fourth component, r, representing the subroutine call
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stack, which is implicit in the real virtual machine. The only instructions
which change r are jsr L and ret x. The static type rules for the
structured operational semantics are the same rules presented in Figure 3

Fig. 11. JVMLc structured operational semantics.
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and Figure 8. The judgment to conclude that a program is well typed is

F1 5 FTOP

S1 5 e

R1 5 $ %

@i [ Dom~P!. R, i £ P labeled
@i [ Dom~P!. F, S, i £ P

F, S £s P ~wt prog sub!

The map R is described in Figure 12 and relates a line of the program to
the subroutine to which that line belongs. RP represents the canonical R
for program P.

Before stating the one-step soundness theorem, several additional defini-
tions are needed. We first define the types of local variables taking into
account the subroutine call stack. The type ^(F, pc, r)[ x] is defined by the
following rules:

x [ Dom~Fpc!

^~F, pc, r!@ x# 5 Fpc@ x# ~tt 0!

x [y Dom~Fpc!

^~F, p, r!@ x# 5 t

^~F, pc, p z r!@ x# 5 t ~tt 1!

As we will see below, as long as r satisfies some well-formedness condi-
tions, there will be some t such that ^(F, pc, r)[ x] 5 t for every x [ VAR.
This definition matches the definition given in Stata and Abadi [1999]. We

Fig. 12. Rules labeling instructions with subroutines.
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also need the WFCallStack judgment, which ensures that a subroutine call
stack is well-formed:

Dom~Fpc! 5 VAR

WFCallStack~P, F, pc, e!
~wf 0!

P@ p 2 1# 5 jsr L
L [ RP,pc

Dom~Fpc! # Dom~Fp!

WFCallStack~P, F, p, r!

WFCallStack~P, F, pc, p z r! ~wf 1!

In the presence of subroutines, the ConsistentInit invariant described
in Section 5 is insufficient for guaranteeing that uninitialized objects
are not used, and it must be strengthened. We define the new invariant
ConsistentInitWithSub as follows:

ConsistentInitWithSub~P, F, S, pc, f, s, p)[

ConsistentInit~Fpc , Spc , f, s!

` @y [ VAR\Dom~Fpc!. ¬?t. ^~F, pc, r!@ y# 5 t ` t [ T̂

The first line of the definition ensures the necessary correspondence
between values and uninitialized object types, taking into account the
subroutine call stack. In addition, we guarantee that uninitialized objects
are not hidden in variables inaccessible to the program at the current
instruction.

With these definitions, we may now state the one-step soundness theo-
rem.

THEOREM 6 (STRUCTURED ONE-STEP SOUNDNESS). Given P, F, and S such
that F, S £s P,

@pc, f, s, r, pc9, f9, s9, r9.
P £s ^pc, f, s, r& 3 ^pc9, f9, s9, r9&

` s;Spc

` @y [ VAR. ?t. ^~F, pc, r!@ y# 5 t ` f @ y#;t

` WFCallStack~P, F, pc, r!

` ConsistentInitWithSub~P, F, S, pc, f, s, r!

f s9;Spc9

` WFCallStack~P, F, pc9, r9!

` @y [ VAR. ?t9. ^~F, pc9, r9!@ y# 5 t9 ` f9@ y#;t9

` ConsistentInitWithSub~P, F, S, pc9, f9, s9, r9!

` pc9 [ Dom~P!
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PROOF SKETCH. Many of the details of this proof may be found in the
work of Stata and Abadi [1999] and in Appendix A. Therefore, we proceed
by briefly justifying each of the five invariants listed in the theorem and
indicating the main differences between this proof and the previous ones:

—s9;Spc9: This follows from a proof similar to the proof of Lemma 15,
where that lemma and Definition 1 are augmented with r.

—pc9 [ Dom(P): This follows from a proof similar to Lemma 21 for all
instructions in the language. The one complicated case, ret x, is proved
by Stata and Abadi.

—WFCallStack(P, F, pc9, r9): Appendix A.1 of Stata and Abadi [1999]
proves this invariant. All instructions other than jsr and ret satisfy the
conditions of Lemma 1 in that paper and preserve this invariant simply
because they do not affect the subroutine call stack or the domain of
visible local variables.

—@y [ VAR. ?t9. ^(F, pc9, r9)[ y] 5 t9 ` f9[ y];t9: This is proved by
Stata and Abadi for all instructions except those added to study object
initialization. Although new s and use s are trivial to prove, init s is
fairly tricky. We cannot rely on our previous proofs, since they do not
take into account the polymorphism of local variables. For this case, the
following equations are derived from the operational and static semantics

pc9 5 pc 1 1
r9 5 r

s 5 â z s0

f9 5 @a/â# f
Spc 5 ŝ j z a

Fpc9 5 @s/ŝ j#Fpc

for some â, a, s, and j. From these, we know that Corresponds(Fpc,
Spc, f, s, â, ŝ j) by Lemma 1. To prove that

@y [ VAR. ?t9. ^~F, pc9, r9!@ y# 5 t9 ` f9@ y#;t9

we find such a t9 for each y:

(1) y [ Dom(Fpc): We know that ^(F, pc, r)[ y] 5 Fpc[ y]. By Lemma 12,
([a/â] f )[ y]: ([s/ŝ j]Fpc)[ y] must be true, meaning that f9[ y];Fpc9[ y].
Since Dom(Fpc9) 5 Dom(Fpc), we know that ^(F, pc9, r9)[ y] 5
Fpc9[ y]. Thus, choose t9 5 Fpc9[ y].

(2) y [y Dom(Fpc): In this case, ^(F, pc9, r9)[ y] 5 t only if ^(F, pc,
r)[ y] 5 t. Also, from our assumption that ConsistentInitWithSub(P, F,
S, pc, f, s, r), we know that ^(F, pc, r)[ y] Þ ŝ j. If f[ y] Þ â, then we
are done, since local variable y is not affected. If f[ y] 5 â, then ^(F,
pc9, r)[ y] 5 TOP, and since â;TOP, this case still holds. Thus, choose
t9 such that ^(F, pc, r)[ y] 5 t9.
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—ConsistentInitWithSub(P, F, S, pc9, f9, s9, r9): If we know that r9 5 r
and Dom(Fpc9) 5 Dom(Fpc), both clauses may be proved by restricting
our proofs from Appendix A.2 to consider only variables in Dom(Fpc) and
noting that no variables outside of the domain of the current instruction
are affected by executing an instruction. This takes care of all cases
except jsr L and ret x.

—For jsr L, we know that

@y [ VAR\Dom~Fpc!. ^~F, pc, r!@ y# 5 t f t [y T̂ (15)

by ConsistentInitWithSub(P, F, S, pc, f, s, r). Also, we know that
@y [ Dom(Fpc), Fpc[ y] [y T̂ by (jsr). That rule also guarantees that

@y [ Dom~SL!. SL@ y# [y T̂

@y [ Dom~FL!. FL@ y# [y T̂
Dom~Fpc11! 5 Dom~Fpc!

@y [ Dom~Fpc11!\Dom~FL!. Fpc11@ y# 5 Fpc@ y#

There are no uninitialized object types present in FL and SL, and
ConsistentInit(FL, SL, f9, s9) is derivable. Also, the fourth line above
and (15) indicate that

@y [ Dom~Fpc!\Dom~FL!. @t. ^~F, L, ~ pc 1 1! z r!@ y# 5 t f t [y T̂
(16)

because, for all such y, ^(F, L, ( pc 1 1) z r)[ y] 5 Fpc11[ y]. From
(jsr), we know that Fpc11[ y], where we have already stated that Fpc[ y]
[y T̂. In addition, if y [y Dom(Fpc), then rule (tt 1) shows that we can
derive ^(F, L, ( pc 1 1) z r)[ y] 5 t only when we can also derive ^(F,
pc 1 1, r)[ y] 5 t. Given that Dom(Fpc11) 5 Dom(Fpc), this is the
same as deriving ^(F, pc, r)[ y] 5 t. From (15), we know that such a t
is not a type in T̂. Combining this with (16) makes the second half of
ConsistentInitWithSub(P, F, S, pc9, f9, s9, r9) true.

For ret x, we know that r 5 pc9 z r9. The types stored in Fpc9 are
constrained in two ways. Those variables also in the domain of the
subroutine from which we are returning must have the same type at pc9
as at pc, and these types do not belong to T̂, as constrained by (ret).
Those variables in Dom(Fpc9) but not in Dom(Fpc) must also not contain
uninitialized object types, since those local variables must have the
same types in Fpc9 as in Fpc921. This is true because P[ pc9 2 1] 5 jsr
L for some L, and the (jsr) rule will constrain these variables to not
belong to T̂. Thus, @y [ Dom(Fpc9). Fpc9[ y] [y T̂ is true. As before, no
uninitialized object types appear in Fpc9 and Spc9, making Consisten-
tInit(Fpc9, Spc9, f9, s9) trivially true. The second half of ConsistentInit-
WithSub(P, F, S, pc9, f9, s9, r9) easily follows from the above
statements as well. e
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The third step for proving soundness for JVMLi with subroutines is to
show a simulation between the structured and stackless semantics. While
we do not describe the details, much of the proof follows directly from
Appendix B of Stata and Abadi, and the insight that new s, init s, and
use s neither change the subroutine call stack nor touch any value or type
corresponding to a return address. Once the simulation has been shown,
the main soundness theorem is easily proved.

B.3 Primitive Types and Basic Operations

One of the benefits of the proof style used in Appendix A is that it relates
very simple properties of instruction execution to the preservation of the
global invariants required by the one-step soundness theorem. For exam-
ple, any instruction whose operational and static semantics exhibit the
property in Definition 1 is guaranteed to preserve the invariant that the
operand stack is well typed.

Using these properties, we can add many more instructions and basic
types to JVMLi with very little effort. Instead of reasoning about the global
invariants directly, we may reason in terms of the much simpler properties.

For an example of this, we add the instruction iadd . The operational and
static semantics for this instruction are

P@ pc# 5 iadd

P £ ^pc, f, n1 z n2 z s& 3 ^pc 1 1, f, ~n1 1 n2! z s&

P@i# 5 iadd

Fi11 5 Fi

Si 5 INT z INT z a

Si11 5 INT z a

i 1 1 [ Dom~P!

F, S, i £ P ~iadd!

To show that the soundness theorems proved for JVMLi also apply to
JVMLi with iadd , its suffices to prove (1) that the four properties from
Appendix A apply to iadd and (2) that progress can always be made if that
instruction is about to be executed in a well-formed state. We first prove
the four properties:

—iadd preserves StackType: Assume that the hypotheses of the implication
in Definition 1 are satisfied. Since s;Spc and pc9 5 pc 1 1, we know
that s 5 n1 z n2 z s0 for some s0, and integers n1 and n2. Choose s1 5
n1 z n2, s2 5 s0, s3 5 (n1 1 n2), a1 5 INT z INT, a2 5 a, and a3 5 INT.

—iadd preserves VariableType: From the operational and static semantics,
we know that pc9 5 pc 1 1, f9 5 f, and Fpc9 5 Fpc.
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—iadd preserves ConsistentInit: Choose s1, s2, s3, a1, a2, and a3 as in the
stack case. Also note that f9 5 f, Fpc9 5 Fpc, and INT [y T̂ follow from
the operational and static semantics, given that pc9 5 pc 1 1.

—iadd preserves ProgramDomain: From the operational semantics, pc9 5
pc 1 1, and (iadd) ensures i 1 1 [ Dom(P).

To show that progress can always be made, assume that hypotheses of
Theorem 2 are satisfied and that P[ pc] 5 iadd . As above, we know that
s 5 n1 z n2 z s0 for some values of n1, n2, and s0. Choose pc9 5 pc 1 1,
f9 5 f, and s9 5 (n1 1 n2) z s0.
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