
Electronic Notes in Theoretical Computer Science 10 (1998)
URL: http://www.elsevier.nl/locate/entcs/volume10.html 7 pages

A Type System for Object Initialization
In the JavaTM Bytecode Language

Stephen N. Freund John C. Mitchell

Department of Computer Science

Stanford University

Stanford, CA 94305-9045

{freunds, mitchell}@cs.stanford.edu

Abstract

In the standard Java implementation, a Java language program is compiled to
Java bytecode and this bytecode is then interpreted by the Java Virtual Machine.
Since bytecode may be written by hand, or corrupted during network transmission,
the Java Virtual Machine contains a bytecode verifier that performs a number of
consistency checks before code is interpreted. However, there is no formal specifica-
tion of the verifier. As one-step towards such a specification, we develop a precise
specification of a subset of the bytecode language dealing with object creation and
initialization. For this subset, we prove that for every Java bytecode program that
satisfies our typing constraints, every object is initialized before it is used.

1 Introduction

The Java programming language is a statically-typed general-purpose pro-
gramming language with an implementation architecture that is designed to
facilitate transmission of compiled code across a network. In the standard
implementation, a Java language program is compiled to Java bytecode and
this bytecode is then interpreted by the Java Virtual Machine. The interme-
diate bytecode language, which we refer to as JVML, is a typed, machine-
independent form of assembly language with some low-level instructions that
reflect specific high-level Java source language constructs. For example, classes
are a basic notion in JVML. Since bytecode may be written by hand, or
corrupted during network transmission, the Java Virtual Machine contains a
bytecode verifier that performs a number of consistency checks before code is
interpreted. This protects the receiver from certain security risks and various
forms of attack.

In this paper, we develop a specification for a fragment of the bytecode
language that includes object creation (allocation of memory) and initializa-
tion. This work is based on a prior study of the bytecodes for local subroutine

c©1998 Published by Elsevier Science B. V.

Freund

call and return [2]. We prove soundness of the type system by a traditional
method using operational semantics. It follows from the soundness theorem
that any bytecode program that passes the static checks will initialize every
object before it is used.

2 Object Initialization

As in many other object-oriented languages, the Java implementation creates
new objects in two steps. The first step is to allocate space for the object. This
usually requires some environment specific operation to obtain an appropriate
region of memory. In the second step, user-defined code is executed to initialize
the object. In Java, the user initialization code is provided by a constructor
defined in the class of the object. Only after both of these steps are completed
can a method be invoked on an object.

In the Java source language, allocation and initialization are combined into
a single statement. This is illustrated in the following code fragment:

Point p = new Point(3);

p.Print();

Since every Java object is created by a statement like the one in the first line
here, it does not seem difficult to prevent Java source language programs from
invoking methods on objects that have not been initialized.

It is much more difficult to recognize initialization-before-use in bytecode.
This can be seen by looking at the five lines of bytecode that are produced by
compiling the two lines of source code above:

1: new #1 <Class Point>

2: dup

3: iconst_3

4: invokespecial #4 <Method Point(int)>

5: invokevirtual #5 <Method void Print()>

The most striking difference is that memory allocation (line 1) is separated
from the constructor invocation (line 4) by two lines of code. The first inter-
vening line, dup, duplicates the pointer to the uninitialized object. This line is
needed due to the calling convention of the Java Virtual Machine. The second
line, iconst 3, pushes the constructor argument 3 onto the stack.

Since pointers may be duplicated, as above, and there may be more than
one uninitialized object present at any time, some form of aliasing analysis
must be used. Sun’s Java Virtual Machine Specification [1] describes the alias
analysis used by the Sun’s JDK verifier. For each line of the bytecode program,
some status information is recorded for every local variable and stack location.
When a location points to an object that is not known to be initialized in
all executions reaching this statement, the status will include not only the
property uninitialized, but also the line number on which the uninitialized
object would have been created. As references are duplicated on the stack

2

Freund

and stored and loaded in the local variables, the analysis also duplicates these
line numbers. All references having the same line number are assumed to refer
to the same object. When an object is initialized, all pointers that refer to
objects created at the same line number are set to initialized. In other words,
all references to objects of a certain type are partitioned into equivalence
classes according to what is statically known about each reference. Since
aliasing is irrelevant for objects that have been initialized, it is not necessary
to track aliasing once a reference leads to an initialized object.

Since our approach is type based, the status information associated with
each reference for the alias analysis is recorded as part of its type.

3 JVMLi

This section describes the JVMLi language, a subset of JVML encompass-
ing basic constructs and object initialization. The run-time environment for
JVMLi consists only of an operand stack and a finite set of local variables.
A JVMLi program will be a map from Addr to instructions drawn from the
following list:

instruction ::= push 0 | inc | pop
| if L

| store x | load x

| new σ | init σ | use σ

| halt

where x is a local variable name, σ is an object type, and L is an address of
another instruction in the program. We refer the reader to Stata and Abadi
for a description of those instructions not defined below:

new σ: allocates a new, uninitialized object of type σ.

init σ: initializes a previously uninitialized object of type σ. This represents
calling the constructor of an object.

use σ: performs an operation on an initialized object of type σ. This corre-
sponds to several operations in JVML, including method invocation (invoke-
virtual), accessing an instance field (putfield/getfield), etc.

4 Operational and Static Semantics

4.1 Values and Types

JVMLi types are generated by the grammar:

τ ::= Int | σ | σ̂i | Top

where σ ∈ T , the set of valid object types. The type σ̂i will be given to values
resulting from allocating an object of type σ on line i of a program. The type
Int will be used for the type of integers. One final type is Top. Any value of

3

Freund

P [pc] = new σ
â ∈ Aσ̂pc ,Unused(â, f, s)

P ⊢ 〈pc, f, s〉 → 〈pc + 1, f, â · s〉

P [pc] = init σ
â ∈ Aσ̂j

a ∈ Aσ,Unused(a, f, s)
P ⊢ 〈pc, f, â · s〉 → 〈pc + 1, [a/â]f, [a/â]s〉

P [pc] = use σ
a ∈ Aσ

P ⊢ 〈pc, f, a · s〉 → 〈pc + 1, f, s〉

Fig. 1. JVMLi operational semantics.

any type also has type Top. This type will represent unusable values in our
static analysis.

Each object and uninitialized object type has a corresponding infinite set
of values which can be distinguished from values of any other type. For any
object type σ, this set of values is Aσ. Likewise, there is a set of values Aσ̂i

for all uninitialized object types σ̂i. The basic type rules for values are:

v is a value
v : Top

n is an integer
n : Int

a ∈ Aτ

a : τ

a ∈ Aτ̂i

a : τ̂i

where τ ∈ T and i ∈ Addr. We also extend values and types to sequences:

ǫ : ǫ

a : τ s : α

a · s : τ · α

4.2 Operational Semantics

The bytecode interpreter for JVMLi instructions is modeled using the standard
framework of operational semantics. Each instruction is characterized by a
transformation of machine states, where a machine state is a tuple of the form
〈pc, f, s〉, which has the following meaning:

• pc is a program counter, indicating the address of the instruction that is
about to be executed.

• f is a total map from Var, the set of local variables, to values.

• s is a stack of values representing the operand stack.

Each bytecode instruction yields one or more rules in the operational se-
mantics. These rules use the judgment

P ⊢ 〈pc, f, s〉 → 〈pc ′, f ′, s′〉

to indicate that a program P in state 〈pc, f, s〉 can move to state 〈pc ′, f ′, s′〉
in one step. The one-step operational semantics for the instructions we have
added to study object initialization are shown in Figure 1.

4

Freund

(new)

P [i] = new σ
σ ∈ T

F i+1 = F i

Si+1 = σ̂i · Si

σ̂i 6∈ Si

∀y ∈ Dom(F i). F i[y] 6= σ̂i

i + 1 ∈ Dom(P)

F , S, i ⊢ P
(init)

P [i] = init σ
σ ∈ T

F i+1 = [σ/σ̂j]F i

Si = σ̂j · α, j ∈ Dom(P)
Si+1 = [σ/σ̂j]α
i + 1 ∈ Dom(P)

F , S, i ⊢ P

(use)

P [i] = use σ
σ ∈ T

F i+1 = F i

Si = σ · Si+1

i + 1 ∈ Dom(P)

F , S, i ⊢ P

Fig. 2. Static semantics.

The rules for object initialization use the additional judgment Unused,
defined by

(unused)

a 6∈ s

∀y ∈ Var. f [y] 6= a

Unused(a, f, s)

This will allow the virtual machine to pick a value that is currently not used
by the program. The operational rules not presented here are discussed in [2].
These rules have been designed so that a step cannot be made from an illegal
state, such as being at a pop statement when there is an empty stack.

When a new object is created, a currently unused value of an uninitialized
object type is placed on the stack. The type of that value is determined by the
object type named in the instruction and the line number of the instruction.
When the value for an uninitialized object is initialized by an init instruction,
all occurrences of that value are replaced by a value corresponding to an
initialized object.

4.3 Static Semantics

A program P is well typed if there exist F and S such that

F , S ⊢ P .

F is a map from Addr to functions mapping local variables to types. As
described in [2], elements in a map over Addr are accessed as F i instead of
F [i]. Thus, F i[y] is the type of local variable y at line i of a program. Likewise,
S is a map from Addr to stack types such that Si is the type of the operand
stack at location i of the program. The judgment which allows us to conclude

5

Freund

that a program P is well typed by F and S is

(wt prog)

F 1 = FTop

S1 = ǫ

∀i ∈ Dom(P). F , S, i ⊢ P

F, S ⊢ P

where FTop is a function mapping all variables in Var to Top. The first two
lines of (wt prog) constrain the initial conditions for the program’s execution.
The third line requires that each instruction in the program is well typed
according to local judgments for each instruction. The rules for those instruc-
tions dealing with object initialization are presented in Figure 2.

4.4 Soundness

We prove that any well-typed program will not get stuck due to an error. This
notion is captured by our soundness theorem.

Theorem 4.1 (Soundness) Given P , F , and S such that F , S ⊢ P :

∀pc, f0, f, s.
(

P ⊢ 〈1, f0, ǫ〉 →∗ 〈pc, f, s〉
∧ ¬∃pc ′, f ′, s′. P ⊢ 〈pc, f, s〉 → 〈pc ′, f ′, s′〉

)

⇒ P [pc] = halt

In the initial state, the first instruction in the program is about to be
executed, the operand stack is empty, and f0 may map the local variables to
any values.

5 Discussion

Given the need to guarantee type safety for mobile Java code, developing
correct type checking and analysis techniques for JVML is crucial. However,
there is not an existing specification which fully captures how Java bytecodes
must be type checked. We have built on the previous work of Stata and
Abadi to develop such a specification by formulating a sound type system for
a fairly complex subset of JVML. Although our model is still rather abstract,
it has already proved effective as a foundation for examining both JVML and
existing bytecode verifiers. Even without a complete object model or notion
of an object heap, we have been able to study initialization, and also several
extensions to the work presented here. In fact, a previously unpublished bug in
Sun’s verifier implementation was found as a result of the analysis performed
while studying the soundness proofs for JVMLi extended with subroutines.

Acknowledgement

Thanks to Mart́ın Abadi and Raymie Stata (DEC SRC) for their assistance
on this project. Also, we thank Frank Yellin and Sheng Liang for several

6

Freund

interesting discussions.

References

[1] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[2] Raymie Stata and Mart́ın Abadi. A type system for Java bytecode subroutines.
In Proc. 25th ACM Symposium on Principles of Programming Languages,
January 1998.

7

