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Abstract
Multithreaded programs are notoriously prone to race conditions.
Prior work on dynamic race detectors includes fast but imprecise
race detectors that report false alarms, as well as slow but precise
race detectors that never report false alarms. The latter typically
use expensive vector clock operations that require time linear in
the number of program threads.

This paper exploits the insight that the full generality of vec-
tor clocks is unnecessary in most cases. That is, we can replace
heavyweight vector clocks with an adaptive lightweight represen-
tation that, for almost all operations of the target program, requires
only constant space and supports constant-time operations. This
representation change significantly improves time and space per-
formance, with no loss in precision.

Experimental results on Java benchmarks including the Eclipse
development environment show that our FASTTRACK race detector
is an order of magnitude faster than a traditional vector-clock race
detector, and roughly twice as fast as the high-performance DJIT+

algorithm. FASTTRACK is even comparable in speed to ERASER
on our Java benchmarks, while never reporting false alarms.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification–reliability; D.2.5 [Software
Engineering]: Testing and Debugging–monitors, testing tools;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms Languages, Algorithms, Verification

Keywords Race conditions, concurrency, dynamic analysis

1. Introduction
Multithreaded programs are notoriously prone to race conditions
and other concurrency errors, such as deadlocks and atomicity vi-
olations. The widespread adoption of multi-core processors only
exacerbates these problems, both by driving the development of
increasingly-multithreaded software and by increasing the inter-
leaving of threads in existing multithreaded systems.

A race condition occurs when a program’s execution contains
two accesses to the same memory location that are not ordered by
the happens-before relation [21], where at least one of the accesses
is a write. Race conditions are particularly problematic because
they typically cause problems only on certain rare interleavings,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

making them extremely difficult to detect, reproduce, and elimi-
nate. Consequently, much prior work has focused on static [1, 5, 3,
19, 4, 12, 15, 26, 40] and dynamic [33, 38, 27, 42, 30, 11, 34, 42,
30] analysis tools for detecting race conditions.

In general, dynamic race detectors fall into two categories, de-
pending on whether they report false alarms. Precise race detectors
never produce false alarms. Instead, they compute a precise repre-
sentation of the happens-before relation for the observed trace and
report an error if and only if the observed trace has a race con-
dition. Typically, the happens-before relation is represented using
vector clocks (VCs) [23], as in the DJIT+ race detector [29, 30].
Vector clocks are expensive, however, because they record infor-
mation about each thread in a system. Thus, if the target program
has n threads, then each VC requires O(n) storage space and each
VC operation requires O(n) time.

Motivated in part by the performance limitations of vector
clocks, a variety of alternative imprecise race detectors have been
developed, which may provide better coverage but can report false
alarms on race-free programs. For example, Eraser’s LockSet al-
gorithm [33] enforces a lock-based synchronization discipline and
reports an error if no lock is consistently held on each access to a
particular memory location. Eraser may report false alarms, how-
ever, on programs that use alternative synchronization idioms such
as fork-join or barrier synchronization. Some LockSet-based race
detectors include happens-before reasoning to improve precision in
such situations [42, 28]. MultiRace [29, 30] leveraged this combi-
nation of techniques to improve performance as well. That analysis,
and others [42], also group multiple memory locations into mini-
pages to improve performance, again at some cost in precision.

A primary limitation of both static race detectors and impre-
cise dynamic race detectors is the potential for a large number of
false alarms. Indeed, it has proven surprisingly difficult and time
consuming to identify the real errors among the spurious warnings
produced by some tools. Even if a code block looks suspicious,
it may still be race-free due to some subtle synchronization dis-
cipline that is not (yet) understood by the current programmer or
code maintainer. Even worse, additional real bugs (e.g., deadlocks)
could be added while attempting to “fix” a spurious warning pro-
duced by these tools. Conversely, real race conditions could be
ignored because they appear to be false alarms. Precise (albeit in-
complete) race detectors avoid these issues, but such detectors are
limited by the performance overhead of vector clocks.

This paper exploits the insight that, while vector clocks provide
a general mechanism for representing the happens-before relation,
their full generality is not actually necessary in most cases. Indeed,
the vast majority of data in multithreaded programs is either thread
local, lock protected, or read shared. Our FASTTRACK analysis
uses an adaptive representation for the happens-before relation to
provide constant-time fast paths for these common cases, without
any loss of precision or correctness in the general case.
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Figure 1: Multithreaded Program Traces

α ∈ Trace = Operation∗

a, b ∈ Operation = rd(t, x) | wr(t, x)
| acq(t,m) | rel(t,m)
| fork(t, u) | join(t, u)

s, u, t ∈ Tid x, y ∈ Var m ∈ Lock

In more detail, a VC-based race detector such as DJIT+ records
the clock of the most recent write to each variable x by each
thread t. By comparison, FASTTRACK exploits the observation that
all writes to x are totally ordered by the happens-before relation
(assuming no races detected so far), and so it records information
only about the very last write to x, specifically, the clock and thread
identifier of that write. We refer to this pair of a clock and a thread
identifier as an epoch.

Read operations on thread-local and lock-protected data are
also totally ordered (assuming no races have been detected) and so
FASTTRACK records only the epoch of the last read to such data.
FASTTRACK adaptively switches from epochs to vector clocks
where necessary (for example, when data becomes read-shared) in
order to guarantee no loss of precision. It also switches from vector
clocks back to lightweight epochs where possible (for example,
when read-shared data is subsequently updated).

Using these adaptive representation techniques, FASTTRACK
reduces the analysis overhead of almost all monitored operations
from O(n)-time (where n is the number of threads in the target
program) to O(1)-time, via lightweight, constant-time fast paths.
Note that this performance improvement involves no precision loss.

In addition to improving performance, our epoch representation
also reduces space overhead. A VC-based race detector requires an
O(n) space overhead for each memory location of the target pro-
gram and can quickly exhaust memory resources. By comparison,
FASTTRACK reduces the space overhead for thread-local and lock-
protected data from O(n) to O(1).

For comparison purposes, we have developed implementations
of six different dynamic race detectors:

- ERASER [33], a well-known imprecise race detector.

- GOLDILOCKS, a precise race detector based on an extended
notion of “LockSets” [14].

- BASICVC, a traditional VC-based race detector.

- DJIT+, a high-performance VC-based race detector [30].

- MULTIRACE, a hybrid LockSet/DJIT+ race detector [30].

- FASTTRACK, the algorithm presented in this paper.

These tools are all implemented on top of the same framework
for dynamic analysis of multithreaded Java software, and the VC-
based tools use the same optimized vector clock primitives, thus
providing a true “apples-to-apples” comparison. Our experimental
results on several Java benchmarks including the Eclipse develop-
ment environment [13] show that FASTTRACK outperforms these
other tools. For example, it provides almost a 10x speedup over BA-
SICVC and a 2.3x speedup even over the DJIT+ algorithm. It also
provides a substantial increase in precision over ERASER, with no
loss in performance.

In summary, the main contributions of FASTTRACK are:

• It provides a significant improvement in precision over earlier,
imprecise race detectors such as Eraser [33], while providing
comparable performance.

• Despite its efficiency, it is still a comparatively simple algorithm
that is straightforward to implement, as illustrated in Figure 5.
• It uses an adaptive lightweight representation for the happens-

before relation that reduces both time and space overheads.
• It contains optimized constant-time fast paths that handle up-

wards of 96% of the operations in benchmark programs.
• It provides a 2.3x performance improvement over the prior

DJIT+ algorithm, and typically incurs less than half the mem-
ory overhead of DJIT+.
• FASTTRACK also improves the performance of more heavy-

weight dynamic analysis tools by identifying millions of irrel-
evant, race-free memory accesses that can be ignored. It pro-
vides a 5x speedup for the VELODROME dynamic atomicity
checker [17] and an 8x speedup for the SINGLETRACK deter-
minism checker [32].

The presentation of our results proceeds as follows. The fol-
lowing section reviews preliminary concepts and notation, as well
as the DJIT+ algorithm. Section 3 presents the FASTTRACK algo-
rithm. Section 4 describes our prototype implementation of this al-
gorithm, and Section 5 presents our experimental results. Section 6
concludes with a discussion of related work.

2. Preliminaries
2.1 Multithreaded Program Traces
We begin by formalizing the notions of execution traces and race
conditions. A program consists of a number of concurrently exe-
cuting threads, each with a thread identifier t ∈ Tid , and these
threads manipulate variables x ∈ Var and locks m ∈ Lock . (See
Figure 1.) A trace α captures an execution of a multithreaded pro-
gram by listing the sequence of operations performed by the various
threads. The set of operations that a thread t can perform include:

• rd(t, x) and wr(t, x), which read and write a value from x;
• acq(t,m) and rel(t,m), which acquire and release a lock m;
• fork(t, u), which forks a new thread u; and
• join(t, u), which blocks until thread u terminates.

The happens-before relation <α for a trace α is the smallest
transitively-closed relation over the operations1 in α such that the
relation a <α b holds whenever a occurs before b in α and one of
the following holds:

• Program order: The two operations are performed by the same
thread.
• Locking: The two operations acquire or release the same lock.
• Fork-join: One operation is fork(t, u) or join(t, u) and the

other operation is by thread u.

If a happens before b, then it is also the case that b happens after
a. If two operations in a trace are not related by the happens-before
relation, then they are considered concurrent. Two memory access
conflict if they both access (read or write) the same variable, and at
least one of the operations is a write. Using this terminology, a trace
has a race condition if it has two concurrent conflicting accesses.

We restrict our attention to traces that are feasible and which re-
spect the usual constraints on forks, joins, and locking operations,
i.e., (1) no thread acquires a lock previously acquired but not re-
leased by a thread, (2) no thread releases a lock it did not previ-

1 In theory, a particular operation a could occur multiple times in a trace. We
avoid this complication by assuming that each operation includes a unique
identifier, but, to avoid clutter, we do not include this unique identifier in
the concrete syntax of operations.
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ously acquire, (3) there are no instructions of a thread u preceding
an instruction fork(t, u) or following an instruction join(t, u), and
(4) there is at least one instruction of thread u between fork(t, u)
and join(v, u).

2.2 Review: Vector Clocks and the DJIT+ Algorithm
Before presenting the FASTTRACK algorithm, we briefly review
the DJIT+ race detection algorithm [30], which is based on vector
clocks [23]. A vector clock VC : Tid → Nat records a clock
for each thread in the system. Vector clocks are partially-ordered
(v) in a point-wise manner, with an associated join operation (t)
and minimal element (⊥V ). In addition, the helper function inct
increments the t-component of a vector clock:

V1 v V2 iff ∀t. V1(t) ≤ V2(t)

V1 tV2 = λt. max (V1(t),V2(t))

⊥V = λt. 0

inct(V ) = λu. if u = t then V (u) + 1 else V (u)

In DJIT+, each thread has its own clock that is incremented
at each lock release operation. Each thread t also keeps a vector
clock Ct such that, for any thread u, the clock entry Ct(u) records
the clock for the last operation of thread u that happens before the
current operation of thread t. In addition, the algorithm maintains a
vector clock Lm for each lock m. These vector clocks are updated
on synchronization operations that impose a happens-before order
between operations of different threads. For example, when thread
u releases lock m, the DJIT+ algorithm updates Lm to be Cu. If a
thread t subsequently acquires m, the algorithm updates Ct to be
Ct tLm, since subsequent operations of thread t now happen after
that release operation.

To identify conflicting accesses, the DJIT+ algorithm keeps two
vector clocks, Rx and Wx, for each variable x. For any thread t,
Rx(t) and Wx(t) record the clock of the last read and write to x by
thread t. A read from x by thread u is race-free provided it happens
after the last write of each thread, that is, Wx v Cu. A write to
x by thread u is race-free provided that the write happens after all
previous accesses to that variable, that is, Wx v Cu and Rx v Cu.

As an example, consider the following fragment from an exe-
cution trace, where we include the relevant portion of the DJIT+

instrumentation state: the vector clocks C0 and C1 for threads 0
and 1; and the vector clocks Lm and Wx for the last release of lock
m and the last write to variable x, respectively. We show two com-
ponents for each vector clock, but the target program may of course
contain additional threads.2

⟨4,0,...⟩

⟨4,0,...⟩

⟨5,0,...⟩

wr(0,x)

rel(0,m)

⟨4,8,...⟩

⟨0,8,...⟩

⟨4,8,...⟩

acq(1,m)

wr(1,x)

⟨0,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,8,...⟩

C0 Lm WxC1

⟨0,8,...⟩

⟨0,8,...⟩

⟨5,0,...⟩

⟨5,0,...⟩

2 For clarity, we present a variant of the DJIT+ algorithm where some
clocks are one less than in the original formulation [29]. This revised
algorithm has the same performance as the original but is slightly simpler
and more directly comparable to FASTTRACK.

At the write wr(0, x), DJIT+ updates Wx with current clock of
thread 0. At the release rel(0,m), Lm is updated with C0. At the
acquire acq(1,m), C1 is joined with Lm, thus capturing the dashed
release-acquire happens-before edge shown above. At the second
write, DJIT+ compares the vector clocks

Wx = 〈4, 0, . . .〉 v 〈4, 8, . . .〉 = C1

Since this check passes, the two writes are not concurrent, and no
race condition is reported.

3. The FASTTRACK Algorithm
A limitation of VC-based race detectors such as DJIT+ is their
performance. If a target program has n threads, then each vector
clock requires O(n) storage space and each vector clock operation
(copying, comparing, joining, etc) requires O(n) time.

Empirical data gathered from a variety of Java programs indi-
cates that synchronization operations (lock acquires and releases,
forks, joins, waits, notifies, etc) account for a very small fraction
of the operations that must be monitored by a race detector. Reads
and writes to object fields and arrays, on the other hand, account for
over 96% of monitored operations. The key insight behind FAST-
TRACK is that the full generality of vector clocks is not necessary
in over 99% of these read and write operations: a more lightweight
representation of the happens-before information can be used in-
stead. Only a small fraction of operations performed by the target
program necessitate expensive vector clock operations.

We begin by providing an overview of how our analysis catches
each type of race condition. Each race condition is either: a read-
write race condition (where the trace contains a read that is con-
current with a later write to the same variable); a write-read race
condition (a write concurrent with a later read); or a write-write
race condition (involving two concurrent writes).

Detecting Write-Write Races. We first consider how to efficiently
analyze write operations. At the second write operation in the
trace discussed in the previous section, DJIT+ compares the vector
clocks Wx v C1 to determine whether there is a race. A careful
inspection reveals, however, that it is not necessary to record the
entire vector clock 〈4, 0, . . .〉 from the first write to x. Assuming no
races have been detected on x so far,3 then all writes to x are totally
ordered by the happens-before relation, and so the only critical
information that needs to be recorded is the clock (4) and identity
(thread 0) of the thread performing the last write. This information
(clock 4 of thread 0) is then sufficient to determine if a subsequent
write to x is in a race with any preceding write.

We refer to a pair of a clock c and a thread t as an epoch,
denoted c@t. Although rather simple, epochs provide the cru-
cial lightweight representation for recording sufficiently-precise
aspects of the happens-before relation efficiently. Unlike vector
clocks, an epoch requires only constant space, independent of
the number of threads in the program, and copying an epoch is
a constant-time operation.

An epoch c@t happens before a vector clock V (c@t � V )
if and only if the clock of the epoch is less than or equal to the
corresponding clock in the vector.

c@t � V iff c ≤ V (t)

Comparing an epoch to a vector clock (�) requires onlyO(1) time,
unlike vector clock comparisons (v), which requireO(n) time. We
use⊥e to denote a minimal epoch 0@0. (This minimal epoch is not
unique; for example, another minimal epoch is 0@1.)

Using this optimized representation, FASTTRACK analyzes the
above trace using a compact instrumentation state that records only

3 FASTTRACK guarantees to detect at least the first race on each variable.
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a write epoch Wx for variable x, rather than the entire vector
clock Wx, reducing space overhead. (C and L record the same
information as C and L in DJIT+.)

⟨4,0,...⟩

⟨4,0,...⟩

⟨5,0,...⟩

wr(0,x)

rel(0,m)

⟨4,8,...⟩

⟨0,8,...⟩

⟨4,8,...⟩

acq(1,m)

wr(1,x)

⟨0,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

4@0

⟘e

4@0

4@0

8@1

C0 Lm WxC1

⟨0,8,...⟩

⟨0,8,...⟩

⟨5,0,...⟩

⟨5,0,...⟩

At the first write to x, FASTTRACK performs an O(1)-time epoch
write Wx := 4@0. FASTTRACK subsequently ensures that the
second write is not concurrent with the preceding write via the
O(1)-time comparison:

Wx = 4@0 � 〈4, 8, ...〉 = C1

To summarize, epochs reduce the space overhead for detecting
write-write conflicts from O(n) to O(1) per allocated memory
location, and replaces the O(n)-time vector clock comparison “v”
with the O(1)-time comparison operation “�”.

Detecting Write-Read Races. Detecting write-read races under
the new representation is also straightforward. On each read from
xwith current vector clockCt, we check that the read happens after
the last write via the same O(1)-time comparison Wx � Ct.

Detecting Read-Write Races. Detecting read-write race condi-
tions is somewhat more difficult. Unlike write operations, which
are totally ordered (assuming no race conditions detected so far),
reads are not totally ordered even in race-free programs. Thus, a
write to a variable x could potentially conflict with the last read of
x performed by any other thread, not just the last read in the entire
trace seen so far. Hence, we may need to record an entire vector
clock Rx, in which Rx(t) records the clock of the last read from x
by thread t.

However, we can avoid keeping a complete vector clock in
many cases. Our examination of data access patterns across a va-
riety of multithreaded Java programs indicate that variable reads
are often totally ordered in practice, particularly in the following
common situations:

• Thread-local data, where only one thread accesses a variable,
and hence these accesses are totally ordered by program-order.
• Lock-protected data, where a protecting lock is held on each

access to a variable, and hence all access are totally ordered,
either by program order (for accesses by the same thread) or by
synchronization order (for accesses by different threads).

Reads are typically unordered only when data is read-shared, that
is, when the data is first initialized by one thread and then shared
between multiple threads in a read-only manner.

FASTTRACK uses an adaptive representation for tracking the
read history of each variable that is tuned to optimize the common
case of totally-ordered reads, while still retaining the full precision
of vector clocks when necessary.

In particular, if the last read to a variable happens after all pre-
ceding reads, then FASTTRACK records only the epoch of this last
read, which is sufficient to precisely detect whether a subsequent

access to that variable conflicts with any preceding read in the
entire program history. Thus, for thread-local and lock-protected
data (which do exhibit totally-ordered reads), FASTTRACK requires
onlyO(1) space for each allocated memory location and onlyO(1)
time per memory access.

In the less common case where reads are not totally ordered,
FASTTRACK stores the entire vector clock. However, it still handles
read operations in O(1) time, via an epoch-VC comparison (�). In
addition, since such data is typically read-shared, writes to such
variables are rare, and so their analysis overhead is negligible.

Analysis Details. Based on the above intuition, we now describe
the FASTTRACK algorithm in detail. Our analysis is an online algo-
rithm that maintains an analysis state σ; when the target program
performs an operation a, the analysis updates its state via the rela-
tion σ ⇒a σ′. The instrumentation state σ = (C,L,R,W ) is a
tuple of four components, where:

• Ct identifies the current vector clock of thread t.

• Lm identifies the vector clock of the last release of lock m.

• Rx identifies either the epoch of the last read from x, if all other
reads happened-before that read, or else records a vector clock
that is the join of all reads of x.

• Wx identifies the epoch of the last write to x.

The initial analysis state is:

σ0 = (λt.inct(⊥V ), λm.⊥V , λx.⊥e, λx.⊥e)
Figure 2 presents the key details of how FASTTRACK (left col-

umn) and DJIT+ (right column) handle read and write operations
of the target program. Expensive O(n)-time operations are high-
lighted in grey. That table also shows the instruction frequencies
observed in our program traces, as well as how frequently each rule
was applied. For example, 82.3% of all memory and synchroniza-
tion operations performed by our benchmarks were reads, and rule
[FT READ SAME EPOCH] was used to check 63.4% of those reads.

Read Operations. The first four rules provide various alternatives
for analyzing a read operation rd(t, x). Rule [FT READ SAME EPOCH]
optimizes the case where x was already read in this epoch. This
fast path requires only a single epoch comparison and handles over
60% of all reads. We use E(t) to denote the current epoch c@t of
thread t, where c = Ct(t) is t’s current clock. DJIT+ incorporates
a comparable rule [DJIT+ READ SAME EPOCH].

The remaining three read rules all check for write-read conflicts
via the fast epoch-VC comparison Wx � Ct, and then update Rx
appropriately. Here, R is a function, Rx abbreviates the function
application R(x), and R[x := V ] denotes the function that is iden-
tical to R except that it maps x to V . Changes to the instrumen-
tation state are expressed as functional updates for clarity in the
transition rules, but they are implemented as constant-time in-place
updates in our implementation.

If Rx is already a vector clock, then [FT READ SHARED] simply
updates the appropriate component of that vector. Note that multi-
ple reads of read-shared data from the same epoch are all covered
by this rule. We could extend rule [FT READ SAME EPOCH] to han-
dle same-epoch reads of read-shared data by matching the case that
Rx ∈ VC and Rx(t) = Ct(t). The extended rule would cover
78% of all reads (the same as [DJIT+ READ SAME EPOCH]) but does
not improve performance of our prototype perceptibly.

If the current read happens after the previous read epoch
(where that previous read may be either by the same thread or
by a different thread, presumably with interleaved synchroniza-
tion), [FT READ EXCLUSIVE] simply updates Rx with the access-
ing threads current epoch. For the more general situation where
the current read may be concurrent with the previous read epoch,
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Figure 2: FASTTRACK Race Detection Algorithm and its Comparison to DJIT+.

FASTTRACK State: DJIT+ State:

C : Tid → VC
L : Lock → VC
W : Var → Epoch
R : Var → (Epoch ∪VC )

C : Tid → VC
L : Lock → VC
W : Var → VC
R : Var → VC

Reads: 82.3% of all Operations

[FT READ SAME EPOCH]
63.4% of readsRx = E(t)

(C,L,R,W )⇒rd(t,x) (C,L,R,W )

[DJIT+ READ SAME EPOCH]
78.0% of readsRx(t) = Ct(t)

(C,L,R,W)⇒rd(t,x) (C,L,R,W)

[FT READ SHARED]
20.8% of readsRx ∈ VC

Wx � Ct
R′ = R[x := Rx[t := Ct(t)]]

(C,L,R,W )⇒rd(t,x) (C,L,R′,W )

[FT READ EXCLUSIVE]
15.7% of readsRx ∈ Epoch

Rx � Ct
Wx � Ct
R′ = R[x := E(t)]

(C,L,R,W )⇒rd(t,x) (C,L,R′,W )

[FT READ SHARE]
0.1% of readsRx = c@u

Wx � Ct
V = ⊥V [t := Ct(t), u := c]
R′ = R[x := V ]

(C,L,R,W )⇒rd(t,x) (C,L,R′,W )

[DJIT+ READ]
22.0% of readsWx v Ct

R′ = R[x := Rx[t := Ct(t)]]
(C,L,R,W)⇒rd(t,x) (C,L,R′,W)

Writes: 14.5% of all Operations

[FT WRITE SAME EPOCH]
71.0% of writesWx = E(t)

(C,L,R,W )⇒wr(t,x) (C,L,R,W )

[DJIT+ WRITE SAME EPOCH]
71.0% of writesWx(t) = Ct(t)

(C,L,R,W)⇒wr(t,x) (C,L,R,W)

[FT WRITE EXCLUSIVE]
28.9% of writesRx ∈ Epoch

Rx � Ct
Wx � Ct
W ′ = W [x := E(t)]

(C,L,R,W )⇒wr(t,x) (C,L,R,W ′)

[FT WRITE SHARED]
0.1% of writesRx ∈ VC

Rx v Ct
Wx � Ct
W ′ = W [x := E(t)]
R′ = R[x := ⊥e]

(C,L,R,W )⇒wr(t,x) (C,L,R′,W ′)

[DJIT+ WRITE]
29.0% of writesWx v Ct

Rx v Ct
W′ = W[x := Wx[t := Ct(t)]]

(C,L,R,W)⇒wr(t,x) (C,L,R,W′)
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[FT READ SHARE] allocates a vector clock to record the epochs of
both reads, since either read could subsequently participate in a
read-write race.

Of these three rules, the last rule is the most expensive but
is rarely needed (0.1% of reads) and the first three rules provide
commonly-executed, constant-time fast paths. In contrast, the cor-
responding DJIT+ rule [DJIT+ READ] always executes an O(n)-
time vector clock comparison for these cases.

Write Operations. The next three FASTTRACK rules handle a
write operation wr(t, x). Rule [FT WRITE SAME EPOCH] optimizes
the case where x was already written in this epoch, which applies
to 71.0% of write operations, and DJIT+ incorporates a comparable
rule. [FT WRITE EXCLUSIVE] provides a fast path for the 28.9% of
writes for which Rx is an epoch, and this rule checks that the
write happens after all previous accesses. In the case where Rx
is a vector clock, [FT WRITE SHARED] requires a full (slow) VC
comparison, but this rule applies only to a tiny fraction (0.1%) of
writes. In contrast, the corresponding DJIT+ rule [DJIT+ WRITE]
requires slow VC comparisons on 29.0% of writes.

Other Operations. Figure 3 shows how FASTTRACK handles all
other operations (acquire, release, fork, and join). These operations
are rare, so the traditional analysis for these operations in terms of
expensive VC operations is perfectly adequate. Thus, these FAST-
TRACK rules are similar to those of DJIT+ and other VC-based
analyses.

Example. The execution trace in Figure 4 illustrates how FAST-
TRACK dynamically adapts the representation for the read history
Rx of a variable x. Initially, Rx is ⊥e, indicating that x has not
yet been read. After the first read operation rd(1, x), Rx becomes
the epoch 1@1 recording both the clock and the thread identifier of
that read. The second read rd(0, x) at clock 8 is concurrent with
the first read, and so FASTTRACK switches to the vector clock rep-
resentation 〈8, 1, . . .〉 for Rx, recording the clocks of the last reads
from x by both threads 0 and 1. After the two threads join, the write
operation wr(0, x) happens after all reads. Hence, any later opera-
tion cannot be in a race with either read without also being in a race
on that write operation, and so the rule [FT WRITE SHARED] discards
the read history of x by resetting Rx to ⊥e, which also switches x
back into epoch mode and so optimizes later accesses to x. The last
read in the trace then sets Rx to a non-minimal epoch.

Correctness. FASTTRACK is precise and reports data races if and
only if the observed trace contains concurrent conflicting accesses,
as characterized by the following theorem.

THEOREM 1 (Correctness). Suppose α is a feasible trace. Then α
is race-free if and only if ∃σ such that σ0 ⇒α σ.

PROOF The two directions of this theorem follow from Theo-
rems 2 and 3, respectively. See Appendix. 2

4. Implementation
ROADRUNNER. We have developed a prototype implementa-
tion of FASTTRACK as a component of ROADRUNNER, a frame-
work we have designed for developing dynamic analyses for mul-
tithreaded software. ROADRUNNER is written entirely in Java and
runs on any JVM. ROADRUNNER inserts instrumentation code into
the target bytecode program at load time. This instrumentation code
generates a stream of events for lock acquires and releases, field
and array accesses, method entries and exits, etc. Back-end tools,
such as FASTTRACK, process this event stream as it is generated.
Re-entrant lock acquires and releases (which are redundant) are fil-
tered out by ROADRUNNER to simplify these analyses.

Figure 3: Synchronization and Threading Operations

Other: 3.3% of all Operations

[FT ACQUIRE]
C′ = C[t := (Ct t Lm)]

(C,L,R,W )⇒acq(t,m) (C′, L,R,W )

[FT RELEASE]
L′ = L[m := Ct]
C′ = C[t := inct(Ct)]

(C,L,R,W )⇒rel(t,m) (C′, L′, R,W )

[FT FORK]
C′ = C[u := Cu t Ct, t := inct(Ct)]

(C,L,R,W )⇒fork(t,u) (C′, L,R,W )

[FT JOIN]
C′ = C[t := Ct t Cu, u := incu(Cu)]

(C,L,R,W )⇒join(t,u) (C′, L,R,W )

ROADRUNNER enables back-end tools to attach instrumenta-
tion state to each thread, lock object, and data memory location
used by the target program. Tool-specific event handlers update the
instrumentation state for each operation in the observed trace and
report errors when appropriate.

The ROADRUNNER framework provides several benefits. By
working exclusively at the bytecode level, ROADRUNNER tools
can check any Java program regardless of whether source code is
available. Moreover, tools only need to reason about the relatively
simple bytecode language. In addition, ROADRUNNER’s compo-
nent architecture facilitates reliable comparisons between different
back-end checking tools.

FastTrack Instrumentation State and Code. FASTTRACK repre-
sents an epoch c@t as a 32-bit integer, where the top eight bits
store the thread identifier t and the bottom twenty-four bits store the
clock c. Two epochs for the same thread can be directly compared
as integers, since the thread identifier bits in each integer are iden-
tical. FASTTRACK represents a vector clock as an array of epochs,
even though the thread identifier bits in these epochs are redun-
dant, since this representation optimizes the epoch-VC comparison
operation (�). We use the function TID(e) to extract the thread
identifier of an epoch.

While 32-bit epochs has been sufficient for all programs tested,
switching to 64-bit epochs would enable the FASTTRACK to handle
large thread identifiers or clock values. In addition, existing tech-
niques to reduce the size of vector clocks [10] could also be em-
ployed to save space.

FASTTRACK associates with each thread a ThreadState ob-
ject (see Figure 5) containing a unique thread identifier tid and a
vector clock C. The current epoch for thread t can be expressed as
t.C[t.tid], and we cache that value in the epoch field.

Each memory location (object field or array element) has an as-
sociated VarState object containing epochs W and R and a vector
clock Rvc. These represent the W and R components of the analy-
sis state. Setting R to the special epoch READ SHARED indicates that
the location is in read-shared mode, and hence Rvc is in use. FAST-
TRACK also maintains a LockState containing a vector clock for
each object used as a lock.

Figure 5 shows FASTTRACK event handling pseudocode for
read and write operations. The code includes the name of the corre-
sponding FASTTRACK analysis rule for each code branch, as well
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Figure 4: Example Trace.
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as the percentage of time that the branch is taken. Note that the two
slow operations in these event handlers (vector clock allocation
and comparison) are executed extremely rarely, on 0.1% of reads
and 0.1% of writes. Despite its performance, the FASTTRACK al-
gorithm is surprisingly straightforward to implement. Event han-
dlers for other operations are also simple but less interesting.
Our actual implementation introduces some additional features,
such as more precise error reporting, and it replaces the 6� check
“x.W > t.C[TID(x.W)]” with the equivalent but slightly faster
condition “TID(x.W) != t.tid && x.W > t.C[TID(x.W)]”,
eliminates obvious common subexpressions, etc.

Granularity. ROADRUNNER supports two levels of granularity
for analyzing memory locations. The default fine-grain analysis
treats each field of an object as a distinct entity that has its own
VarState. The coarse-grain analysis treats all fields of an object
as a single entity with a single VarState. The coarse-grain analy-
sis significantly reduces the memory footprint for VarStates, but
may produce false alarms if, for examples, two fields of an ob-
ject are protected by different locks. However, as others have ob-
served [38, 42], object-oriented programs most often use the same
synchronization discipline for all fields of an object. ROADRUN-
NER also supports fine and coarse grain analyses for arrays.

Extensions. The FASTTRACK implementation extends our anal-
ysis in several straightforward ways. Most importantly, it supports
additional synchronization primitives, including wait and notify,
volatile variables, and barriers.

FASTTRACK models a wait operation on lock m in terms of
the underlying release and subsequent acquisition of m. Thus, no
additional analysis rules are necessary. A notify operation can be
ignored by FASTTRACK. It affects scheduling of threads but does
not induce any happens-before edges between them.

The Java Memory Model [22] guarantees that a write to a
volatile variable vx ∈ VolatileVar happens before every subse-
quent read of vx . To handle volatiles, FASTTRACK extends the L

Figure 5: FastTrack Instrumentation State and Code

class ThreadState {
int tid;
int C[];
int epoch; // invariant: epoch == C[tid]

}

class VarState {
int W, R;
int Rvc[]; // used iff R == READ_SHARED

}

class LockState {
int L[];

}

void read(VarState x, ThreadState t)
if (x.R == t.epoch) return; // Same Epoch 63.4%

// write-read race?
if (x.W > t.C[TID(x.W)]) error;

// update read state
if (x.R == READ_SHARED) { // Shared 20.8%

x.Rvc[t.tid] = t.epoch;
} else {

if (x.R <= t.C[TID(x.R)]) { // Exclusive 15.7%
x.R = t.epoch;

} else { // Share 0.1%
if (x.Rvc == null)

x.Rvc = newClockVector(); // (SLOW PATH)
x.Rvc[TID(x.R)] = x.R;
x.Rvc[t.tid] = t.epoch;
x.R = READ_SHARED;

}
}

}

void write(VarState x, ThreadState t)
if (x.W == t.epoch) return; // Same Epoch 71.0%

// write-write race?
if (x.W > t.C[TID(x.W)]) error;

// read-write race?
if (x.R != READ_SHARED) { // Shared 28.9%

if (x.R > t.C[TID(x.R)]) error;
} else { // Exclusive 0.1%

if (x.Rvc[u] > t.C[u] for any u) error; // (SLOW PATH)
}
x.W = t.epoch; // update write state

}

component of the analysis state to map volatile variables to the vec-
tor clock of the last write:

L : (Lock ∪VolatileVar)→ VC

Volatile reads and writes then modify the instrumentation state in
much the same way as lock acquire and release.

[FT READ VOLATILE]
C′ = C[t := Ct t Lvx ]

(C,L,R,W )⇒vol rd(t,vx) (C′, L,R,W )

[FT WRITE VOLATILE]
L′ = L[vx := (Ct t Lvx )]
C′ = C[t := inct(Ct)]

(C,L,R,W )⇒vol rd(t,vx) (C′, L′, R,W )

We also add a new type of event to indicate when threads are
released from a barrier. While strictly not necessary since FAST-
TRACK can precisely handle the synchronization primitives upon
which barriers are built, the barrier implementations used in many
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benchmarks and libraries contain benign race conditions that would
cause spurious warnings if not handled specially. The operation
barrier rel(T ) indicates that the set of threads T are simultane-
ously released from a barrier. (We do not need to track entries to
barriers.)

[FT BARRIER RELEASE]
C′ = λt.. if t ∈ T then inct(

⊔
u∈T

Cu) else C(t)

(C,L,R,W )⇒barrier rel(T ) (C′, L,R,W )

Thus, the first post-barrier step by any thread t ∈ T happens after
all pre-barrier steps by threads in T and is unordered with respect
to the next steps taken by other threads in T . Configuration options
enable FASTTRACK to use this rule for any barrier implementation
identified by the user.

Although FASTTRACK does not currently support the full set
of concurrency primitives available in the Java concurrency li-
brary [37], we believe their effects on a program’s happens-before
graph can all be modeled in our representation.

5. Evaluation
We validate the effectiveness of FASTTRACK with three sets of ex-
periments. We first compare FASTTRACK’s performance and pre-
cision to other dynamic race detectors when checking a variety
of benchmarks. Second, we demonstrate how to use FASTTRACK
to improve the performance of checkers for more complex con-
currency properties. Finally, we describe our experience of using
FASTTRACK to check the Eclipse development environment [13].

5.1 Precision and Performance
This section compares the precision and performance of seven
dynamic analyses: EMPTY (which performs no analysis and is
used to measure the overhead of ROADRUNNER); FASTTRACK;
ERASER [33], extended to handle barrier synchronization [29];
DJIT+ [30]; MULTIRACE [30]; GOLDILOCKS [14]; and BA-
SICVC. BASICVC is a simple VC-based race detector that main-
tains a read and a write VC for each memory location and performs
at least one VC comparison on every memory access. To ensure
reliable comparisons, all tools were implemented on top of ROAD-
RUNNER as similarly as possible. For example, BASICVC, DJIT+,
MULTIRACE, and FASTTRACK use the same vector clock imple-
mentation, and all checkers were profiled and tuned to eliminate
unnecessary bottlenecks.

We note that several additional techniques could be used to im-
prove the performance of all these checkers. For example, we could
(1) include a separate static analysis to reduce the need for run-time
checks; (2) include a separate dynamic escape analysis; (3) add un-
sound optimizations; (4) tune ROADRUNNER to better support one
particular kind of analysis; (5) implement these checkers directly
on a JVM rather than on top of ROADRUNNER; (6) implement the
checkers inside the JVM itself (sacrificing portability, maintainabil-
ity, etc); or (7) at the extreme, implement the checkers directly in
hardware. These techniques would improve performance in ways
that are orthogonal to the central contributions of this paper, and at
the cost of additional complexity. In order to present our results n
the most consistent manner, we do not report on these complemen-
tary optimizations.

Benchmark Configuration. We performed experiments on 16
benchmarks: elevator, a discrete event simulator for eleva-
tors [39]; hedc, a tool to access astrophysics data from Web
sources [39]; tsp, a Traveling Salesman Problem solver [39];
mtrt, a multithreaded ray-tracing program from the SPEC JVM98
benchmark suite [35]; jbb, the SPEC JBB2000 business object
simulator [35]; crypt, lufact, sparse, series, sor, moldyn,

montecarlo, and raytracer from the Java Grande benchmark
suite [20]; the colt scientific computing library [6]; the raja
ray tracer [18]; and philo, a dining philosophers simulation [14].
The Java Grande benchmarks were configured to use four worker
threads and the largest data set provided (except crypt, for which
we used the smallest data set because BASICVC, DJIT+, and MUL-
TIRACE ran out of memory on the larger sizes).

All experiments were performed on an Apple Mac Pro with dual
3GHz quad-core Pentium Xeon processors and 12GB of memory,
running OS X 10.5.6 and Sun’s Java HotSpot 64-bit Server VM
version 1.6.0. All classes loaded by the benchmark programs were
instrumented, except those from the standard Java libraries. The
timing measurements include the time to load, instrument, and
execute the target program, but it excludes JVM startup time to
reduce noise. The tools report at most one race for each field of each
class, and at most one race for each array access in the program
source code.

Summary of Results. Table 1 lists the size, number of threads,
and uninstrumented running times for each program examined. All
timing measurements are the average of 10 test runs. Variability
across consecutive runs was typically less than 10%. The four
programs marked with ‘*’ are not compute-bound, and we exclude
these programs when computing average slowdowns.

The “Instrumented Time” columns show the running times of
each program under each of the tools, reported as the ratio to the
uninstrumented running time. Thus, target programs ran 4.1 times
slower, on average, under the EMPTY tool. Most of this overhead
is due to communicating all target program operations to the back-
end checker. For GOLDILOCKS, we include both measurements for
our own implementation on top of ROADRUNNER and performance
estimates for the original implementation [14], as discussed below.

The variations in slowdowns for different programs that we ob-
served in our experiments are not uncommon for dynamic race con-
dition checkers. Different programs exhibit different memory ac-
cess and synchronization patterns, some of which will impact anal-
ysis performance more than others. In addition, instrumentation can
impact cache performance, class loading time, and other low-level
JVM operations. These differences can sometimes even make an
instrumented program run slightly faster than the uninstrumented
(as in colt).

The last six columns show the number of warnings produced
by each checker using the fine grain analysis. All eight warnings
from FASTTRACK reflect real race conditions. As reported pre-
viously [16, 28, 38, 39], some of these are benign (as in tsp,
mtrt, and jbb) but others can impact program behavior (as on the
checksum field in raytracer and races on several fields related to
a thread pool in hedc).

ERASER Comparison. The performance results show that our
re-implementation of ERASER incurs an overhead of 8.7x, which
is competitive with similar Eraser implementations built on top
of unmodified JVMs, such as [28]. Surprisingly, FASTTRACK is
slightly faster than ERASER on some programs, even though it
performs a precise analysis that traditionally has been considered
more expensive.

More significantly, ERASER reported many spurious warnings
that do not correspond to actual races.4 Augmenting our ERASER
implementation to reason about additional synchronization con-
structs [30, 42] would eliminate some of these spurious warnings,
but not all. On hedc, ERASER reported a spurious warning and also
missed two of the real race conditions reported by FASTTRACK,

4 The total number of warnings is about three times higher if ERASER does
not reason about barriers.
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colt 111,421 11 16.1 0.9 0.9 0.9 1.8 2 0.9 0.9 0.9 3 0 0 0 0 0
crypt 1,241 7 0.2 7.6 14.7 54.8 77.4 – 84.4 54.0 14.3 0 0 0 0 0 0
lufact 1,627 4 4.5 2.6 8.1 42.5 – 8.5 95.1 36.3 13.5 4 0 – 0 0 0
moldyn 1,402 4 8.5 5.6 9.1 45.0 17.5 28.5 111.7 39.6 10.6 0 0 0 0 0 0
montecarlo 3,669 4 5.0 4.2 8.5 32.8 6.3 2.2 49.4 30.5 6.4 0 0 0 0 0 0
mtrt 11,317 5 0.5 5.7 6.5 7.1 6.7 – 8.3 7.1 6.0 1 1 1 1 1 1
raja 12,028 2 0.7 2.8 3.0 3.2 2.7 – 3.5 3.4 2.8 0 0 0 0 0 0
raytracer 1,970 4 6.8 4.6 6.7 17.9 32.8 146.8 250.2 18.1 13.1 1 1 1 1 1 1
sparse 868 4 8.5 5.4 11.3 29.8 64.1 – 57.5 27.8 14.8 0 0 0 0 0 0
series 967 4 175.1 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1 0 0 0 0 0
sor 1,005 4 0.2 4.4 9.1 16.9 63.2 1.4 24.6 15.8 9.3 3 0 0 0 0 0
tsp 706 5 0.4 4.4 24.9 8.5 74.2 2.9 390.7 8.2 8.9 9 1 1 1 1 1
elevator* 1,447 5 5.0 1.1 1.1 1.1 1.1 – 1.1 1.1 1.1 0 0 0 0 0 0
philo* 86 6 7.4 1.1 1.0 1.1 7.2 1 1.1 1.1 1.1 0 0 0 0 0 0
hedc* 24,937 6 5.9 1.1 0.9 1.1 1.1 3.3 1.1 1.1 1.1 2 1 0 3 3 3
jbb* 30,491 5 72.9 1.3 1.5 1.6 2.1 – 1.6 1.6 1.4 3 1 – 2 2 2
Average 4.1 8.6 21.7 31.6 24.2 89.8 20.2 8.5 27 5 3 8 8 8

Table 1: Benchmark Results. Programs marked with ‘*’ are not compute-bound and are excluded when computing average slowdowns.
Vector Clocks Allocated Vector Clock Operations

Program FAST FAST
DJIT+ TRACK DJIT+ TRACK

colt 849,765 76,209 5,792,894 1,266,599
crypt 17,332,725 119 28,198,821 18
lufact 8,024,779 2,715,630 3,849,393,222 3,721,749
moldyn 849,397 26,787 69,519,902 1,320,613
montecarlo 457,647,007 25 519,064,435 25
mtrt 2,763,373 40 2,735,380 402
raja 1,498,557 3 760,008 1
raytracer 160,035,820 14 212,451,330 36
sparse 31,957,471 456,779 56,553,011 15
series 3,997,307 13 3,999,080 16
sor 2,002,115 5,975 26,331,880 54,907
tsp 311,273 397 829,091 1,210
elevator 1,678 207 14,209 5,662
philo 56 12 472 120
hedc 886 82 1,982 365
jbb 109,544,709 1,859,828 327,947,241 64,912,863
Total 796,816,918 5,142,120 5,103,592,958 71,284,601

Table 2: Vector Clock Allocation and Usage.
due to an (intentional) unsoundness in how the Eraser algorithm
reasons about thread-local and read-shared data [33].

BASICVC and DJIT+ Comparison. DJIT+ and BASICVC re-
ported exactly the same race conditions as FASTTRACK. That is,
the three checkers all yield identical precision. In terms of perfor-
mance, however, the results show that FASTTRACK significantly
outperforms the other checkers. In particular, it is roughly 10x
faster than BASICVC and 2.3x faster than DJIT+. These perfor-
mance improvements are due primarily to the reduction in the allo-
cation and use of vector clocks, as shown in Table 2. Over all the
benchmarks, DJIT+ allocated more over 790 million vector clocks,
whereas FASTTRACK allocated only 5.1 million. DJIT+ performed
over 5.1 billion O(n)-time vector clock operations, while FAST-
TRACK performed only 17 million. The memory overhead for stor-
ing the extra vector clocks leads to significant cache performance
degradation in some programs, particularly those that perform ran-
dom accesses to large arrays.

MULTIRACE Comparison. MULTIRACE maintains DJIT+’s in-
strumentation state, as well as a lock set for each memory loca-

tion [29]. The checker updates the lock set for a location on the
first access in an epoch, and full vector clock comparisons are
performed after this lock set becomes empty. This synthesis sub-
stantially reduces the number of vector clock operations, but in-
troduces the overhead of storing and updating lock sets. In addi-
tion, the use of ERASER’s unsound state machine for thread-local
and read-shared data leads to imprecision. In combination with a
coarse-grain analysis, this approach produced substantial perfor-
mance improvement [29].

Our re-implementation of the MULTIRACE algorithm in ROAD-
RUNNER used fine-grain analysis and exhibited performance com-
parable to DJIT+. Interestingly, over all benchmarks MULTIRACE
performed less than half the number of VC operations as FAST-
TRACK. However, this did not lead to speed-ups over DJIT+, be-
cause the memory footprint was even larger than DJIT+, leading to
substantial cache performance degradation. Additionally, on aver-
age roughly 10% of all operations required an ERASER operation
that also imposed some additional overhead.

GOLDILOCKS Comparison. GOLDILOCKS [14] is a precise race
detector that does not use vector clocks to capture the happens-
before relation. Instead, it maintains, for each memory location, a
set of “synchronization devices” and threads. A thread in that set
can safely access the memory location, and a thread can add itself
to the set (and possibly remove others) by performing any of the
operations described by the synchronization devices in the set.

GOLDILOCKS is a complicated algorithm that required 1,900
lines of code to implement in ROADRUNNER, as compared to fewer
than 1,000 lines for each other tool. GOLDILOCKS also ideally re-
quires tight integration with the underlying virtual machine and,
in particular, with the garbage collector, which is not possible un-
der ROADRUNNER. Both of these factors cause GOLDILOCKS to
incur a high slowdown. As shown in Table 1, GOLDILOCKS imple-
mented in ROADRUNNER incurred a slowdown of 31.6x across our
benchmarks (but ran out of memory on lufact), even when utilizing
an unsound extension to handle thread-local data efficiently. (This
extension caused it to miss the three races in hedc found by other
tools.) We believe some performance improvements are possible,
for both GOLDILOCKS and the other tools, by integration into the
virtual machine.

As another data point, the original GOLDILOCKS study reported
its slowdown for the compute-intensive benchmarks in common
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Memory Overhead Slowdown
Memory Fine Coarse Fine Coarse

Program (MB) FAST FAST FAST FAST
DJIT+ TRACK DJIT+ TRACK DJIT+ TRACK DJIT+ TRACK

colt 36 4.3 2.4 2.0 1.8 0.9 0.9 0.9 0.8
crypta 41 44.3 10.5 1.2 1.2 54.0 14.3 6.6 6.6
lufactc 80 9.8 4.1 1.1 1.1 36.3 13.5 5.4 6.6
moldynb 37 3.3 1.7 1.3 1.2 39.6 10.6 11.9 8.3
montecarlob 595 6.1 2.1 1.1 1.1 30.5 6.4 3.4 2.8
mtrt 51 3.9 2.2 2.6 1.9 7.1 6.0 8.3 7.0
raja 35 1.3 1.3 1.2 1.3 3.4 2.8 3.1 2.7
raytracerb 36 6.2 1.9 1.4 1.2 18.1 13.1 14.5 10.6
sparsec 131 23.3 6.1 1.0 1.0 27.8 14.8 3.9 4.1
seriesc 51 8.5 3.1 1.1 1.1 1.0 1.0 1.0 1.0
sorc 40 5.3 2.1 1.1 1.1 15.8 9.3 5.8 6.3
tsp 33 1.7 1.3 1.2 1.2 8.2 8.9 7.6 7.3
elevator* 32 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1
philo* 32 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.1
hedc* 33 1.4 1.4 1.3 1.3 1.1 1.1 0.9 0.9
jbb* 236 4.1 2.4 2.3 1.9 1.6 1.4 1.3 1.3
Average 7.9 2.8 1.4 1.3 20.2 8.5 6.0 5.3

Table 3: Comparison of Fine and Coarse Granularities.
with this paper to be roughly 4.5x [14]. However, those results are
for a GOLDILOCKS implementation written in compiled C code
inside the Kaffe Virtual Machine, and target programs were in-
terpreted by this modified JVM.5 If GOLDILOCKS were imple-
mented inside a JIT, then target programs would run significantly
faster, and so the GOLDILOCKS slowdown would appear larger but
would be more directly comparable to ROADRUNNER tools (in
which both the target program and checker are optimized by the
JIT). To compensate for this effect, we estimated the corresponding
GOLDILOCKS-JIT slowdown from the experimental results of [14]
as:

(Goldilocks-Time− Interpreted-Time) + JIT-Time
JIT-Time

That is, we compute the cost of the Goldilocks analysis based
on the running times of the unmodified Kaffe interpreter and the
Goldilocks-aware Kaffe interpreter, and then estimate the slow-
down that this overhead would have on the running time of the tar-
get program in the Kaffe JIT. We include these estimates in Table 1
in the “Kaffe” column. They suggest the GOLDILOCKS slowdown
on a JIT could be as high as 25x, which is close to our implemen-
tation.

In summary, GOLDILOCKS is an interesting algorithm but its
complexity and JVM-integration issues make it difficult to imple-
ment efficiently, and so GOLDILOCKS may not provide significant
performance benefits over FASTTRACK.

Analysis Granularity. Next, we investigate the effect of analy-
sis granularity on space and time overheads. Table 3 shows the
memory requirements for each uninstrumented program, and the
memory overhead factor and slowdown factor for DJIT+ and
FASTTRACK, using both fine and course grain analyses. Mem-
ory overhead is reported as the ratio of the maximum heap space
used during analysis to the maximum heap space used under unin-
strumented execution. The overall increase in heap usage can be
smaller than the total size of allocated vector clocks because the
garbage collector collects vector clocks belonging to reclaimed
objects.

The memory overhead for the fine-grain analysis is substantial
(columns 3 and 4), since every field and array element requires
a its own “VarState” object. However, FASTTRACK’s memory
requirements are substantially better than DJIT+’s because many

5 Some of the JavaGrande benchmark programs were run on smaller data
sets than we used, which could also impact relative performance.

fewer vector clocks are allocated. The coarse-grain analysis (col-
umn 5 and 6) reduces the memory overhead by roughly half for
both checkers, and results in a roughly 50% speedup.

The coarse-grain analysis does cause FASTTRACK and the other
analyses to report spurious warnings on most of the benchmarks.
We could adaptively refine the granularity of the analysis for those
objects for which the coarse analysis generates warnings, either by
iteratively running the checker under different levels of granular-
ity [30] or by performing on-line adaptation [42] with some loss of
precision. Our estimates suggest that performing on-line adaptation
in ROADRUNNER would yield performance close to the coarse-
grain analysis, but with some improvement in precision.

5.2 Analysis Composition
Precise race condition information can also significantly improve
the performance of other dynamic analyses. For example, atomicity
checkers, such as ATOMIZER [16] and VELODROME [17], and
determinism checkers, such as SINGLETRACK [32], can ignore
race-free memory accesses.

To compose independent analyses, the ROADRUNNER com-
mand line option: “-tool FastTrack:Velodrome” configures
ROADRUNNER to feed the event stream from the target program
to FASTTRACK, which filters out race-free memory accesses from
the event stream and passes all other events on to VELODROME.6

The following table illustrates the improvement of ATOM-
IZER, VELODROME and SINGLETRACK under five different filters:
NONE, which shows the slowdown of these tools over the original,
uninstrumented benchmark programs; TL, which filters out only
accesses to thread-local data; ERASER; DJIT+; and FASTTRACK.
FASTTRACK significantly improves the performance of these tools,
because their rather complex analyses can avoid analyzing poten-
tially millions of uninteresting, race-free data accesses. The slow-
downs reported are the average slowdown for our compute-bound
benchmarks.

Slowdown for Prefilters
Checker FAST

NONE TL ERASER DJIT+ TRACK

ATOMIZER 57.2 16.8 —7 17.5 12.6
VELODROME 57.9 27.1 14.9 19.6 11.3
SINGLETRACK 104.1 55.4 32.7 19.7 11.7

6 Note that FASTTRACK (and other tools) may filter out a memory access
that is later determined to be involved in a race condition; thus this opti-
mization may involve some small reduction in coverage.
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5.3 Checking Eclipse for Race Conditions
To validate FASTTRACK in a more realistic setting, we applied it
to the Eclipse development environment, version 3.4.0 [13]. We
modified two lines of source code to report the time to perform
each user-initiated operation but made no other modifications. We
used Sun’s Java 1.5.0 HotSpot Client VM because our test platform
must run Eclipse as a 32-bit application with a maximum heap size
of 2GB.

We performed experiments with the following five Eclipse op-
erations:

Startup: Launch Eclipse and load a workspace containing four
projects with 65,000 lines of code.

Import: Import and perform an initial build on a project containing
23,000 lines of code.

Clean Small: Rebuild a workspace with four projects containing a
total of 65,000 lines of code.

Clean Large: Rebuild a workspace with one project containing
290,000 lines of code.

Debug: Launch the debugger and run a small program that imme-
diately throws an exception.

Base Instrumented Time (Slowdown)
Operation Time FAST

(sec) EMPTY ERASER DJIT+ TRACK

Startup 6.0 13.0 16.0 17.3 16.0
Import 2.5 7.6 14.9 17.1 13.1
Clean Small 2.7 14.1 16.7 24.4 15.2
Clean Large 6.5 17.1 17.9 38.5 15.4
Debug 1.1 1.6 1.7 1.7 1.6

For these tests, FASTTRACK loaded and instrumented roughly
6,000 classes corresponding to over 140,000 lines of source code.
Several classes using reflection were not instrumented to avoid
current limitations of ROADRUNNER, but these classes did not
involve interesting concurrency. Native methods were also not in-
strumented. Eclipse used up to 24 concurrent threads during these
tests.

Eclipse startup time was heavily impacted by the bytecode in-
strumentation process, which accounted for about 75% of the ob-
served slowdowns. While ROADRUNNER does not currently sup-
port off-line bytecode instrumentation, that feature would remove a
substantial part of startup time. FASTTRACK performed quite well
on the three most compute-intensive tests (Import, Clean Small,
and Clean Large), exhibiting performance better than DJIT+ and
comparable to ERASER. Monitoring the Debug test incurred less
overhead for all tools because that test spent much of its time start-
ing up the target VM and switching views on the screen.

ERASER reported potential races on 960 distinct field and ar-
ray accesses for these five tests, largely because Eclipse uses many
synchronization idioms, such as wait/notify, semaphores, readers-
writer locks, etc. that ERASER cannot handle. Additional exten-
sions [42] could handle some of these cases.

FASTTRACK reported 30 distinct warnings. While we have not
been able to fully verify the correctness of all code involved in
these races, none caused major failures or data corruption during
our tests. They include:

• Races on an array of nodes in a tree data structure implemen-
tation. We believe these races can cause null pointer exceptions
under Java’s non-sequentially consistent memory model.

7 Since ATOMIZER already uses ERASER to identify potential races inter-
nally, it would not be meaningful to add it as a prefilter.

• Races on fields related to progress meters that may cause incor-
rect information to be displayed briefly.
• An instance of double-checked locking in the code to read

files for compilation units from disk that, while benign, adds
significant complexity to the code.
• Benign races on array entries used to communicate values from

helper threads back to their parents, and in the initialization
code in the debugger for monitoring input and output streams.

DJIT+ reported 28 warnings. These overlapped heavily with those
reported by FASTTRACK, but scheduling differences led to several
being missed and several new (benign) races being identified. The
items listed above were reported by both tools.

Although our exploration of Eclipse is far from complete, these
preliminary observations are quite promising. FASTTRACK is able
to scale to precisely check large applications with lower run-time
and memory overheads than existing tools.

6. Related Work
Much prior work has focused on dynamic analyses to detect race
conditions. In addition to the dynamic race detectors discussed
earlier, a variety of alternative approaches have been explored.
Eraser’s LockSet algorithm [33] has been refined to eliminate false
positives, reduce overhead, and handle additional synchronization
idioms, as in [38, 27].

Some race detectors have combined Eraser’s LockSet algo-
rithm with happens-before reasoning (e.g., for analyzing barriers
and fork-join synchronization), with good results. RaceTrack [42],
for example, uses happens-before information to approximate the
set of threads concurrently accessing memory locations. An empty
lock set is only considered to reflect a potential race if the happens-
before analysis indicates that the corresponding location is ac-
cessed concurrently by multiple threads. MultiRace [30], as de-
scribed above, also falls into this category. While these analyses
reduce the number of false alarms, they cannot eliminate them com-
pletely. Other approaches have combined dynamic analysis with a
global static analysis to improve precision and performance [8, 14,
39].

TRaDE [11] is a precise race detector based on a dynamic es-
cape analysis and accordion clocks [10], a technique that reduces
the space overhead of vector clocks for applications with many
short-lived threads. Unlike FASTTRACK, TRaDE is implemented
inside the HotSpot virtual machine interpreter, and so the target
program is interpreted while the instrumentation code is compiled,
making it difficult to compare results directly. However, for the
two benchmarks (colt and raja) common to both papers, FAST-
TRACK is several times faster. We expect the TRaDE innovations
(dynamic escape analysis and accordion clocks) to further improve
FASTTRACK’s performance.

In addition to on-the-fly analyses that monitor and report races
as a program runs, other techniques record program events for post-
mortem race identification (see, for example, [9, 2, 31]). These
approaches, however, might be difficult to use for long-running
programs. Dynamic race detectors have also been developed for
other settings, including for nested fork-join parallelism [24].

Many static analysis techniques for identifying races have also
been explored. While static race detection provides the potential
to detect all race conditions over all program paths, decidability
limitations imply that, for all realistic programming languages, any
sound static race detector is incomplete and may produce false
alarms. Warlock [36] was an early static race detector system for
ANSI C programs for reasoning about lock-based synchronization.
Type systems for identifying race conditions have been developed
for various languages, including Java [1, 5, 3] and Cyclone, a
statically safe variant of C [19]. Aiken and Gay [4] investigate
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static race detection in the context of SPMD programs. A variety
of other approaches have also been developed, including model
checking [7, 41, 25] and dataflow analysis [12, 15], as well as
scalable whole-program analyses [26, 40].

7. Conclusions
Race conditions are notoriously difficult to debug. Precise race de-
tectors avoid the programmer-overhead of identifying and elimi-
nating spurious warnings, which are particularly problematic on
large programs with complex synchronization. FASTTRACK is a
new precise race detection algorithm that achieves better perfor-
mance than existing algorithms by tracking less information and
dynamically adapting its representation of the happens-before re-
lation based on memory access patterns. The FASTTRACK algo-
rithm and adaptive epoch representation is also straightforward to
implement, and may be useful in other dynamic analyses for mul-
tithreaded software.
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A. FastTrack Correctness Proofs
For a transition σa ⇒a σ′a, by convention the elements in state σa
are named Ca, La, Ra, and W a, and the elements in state σ′a are
named Ća, Ĺa, Ŕa, and Ẃ a. We interpret each epoch as a function
from threads to clocks:

c@t ' (λu. if t = u then c else 0)

This interpretation allows us to overload the function application
operator to also apply to the W and R components of the state.

DEFINITION 1 (Well-Formed States). A state σ = 〈C,L,R,W 〉
is well-formed if

1. for all u, t ∈ Tid , if t 6= u then Cu(t) < Ct(t),
2. for all m ∈ Lock , t ∈ Tid , Lm(t) < Ct(t),
3. for all x ∈ Var , t ∈ Tid , Rx(t) ≤ Ct(t),
4. for all x ∈ Var , t ∈ Tid , Wx(t) ≤ Ct(t).

LEMMA 1. σ0 is well-formed.

LEMMA 2 (Preservation of Well-Formedness). If σ is well-formed
and σ ⇒a σ′ then σ′ is well-formed.

LEMMA 3 (Clocks Imply Happens-Before). Suppose σa is well-
formed and σa ⇒a.α σb ⇒b σ′b. Let t = tid(a) and u = tid(b).
If Cat (t) ≤ Cbu(t) then a <a.α.b b.

PROOF If t = u then a <a.α.b b by program order. Otherwise
assume t 6= u, and the proof proceeds by induction on the length
of α. Since σa is well-formed,

Cau(t) < Cat (t) ≤ Cbu(t)

(Here, Cau denotes the clock vector for the thread u in the pre-state
of operation a.) Hence there must be some operation d ∈ a.α that
increases the Cu(t) component of the analysis state. Thus:

Cau(t) ≤ Cdu(t) < Cat (t) ≤ Ćdu(t) ≤ Cbu(t)

Since d increases theCu(t) component of the analysis state, it must
be one of fork(v, u), join(u, v), or acq(u,m). We illustrate the
case for d = join(u, v). In this case:

Cat (t)

≤ Ćdu(t) from above
= max (Cdu(t), Cdv (t)) by [FT JOIN]
= Cdv (t) as Cdu(t) < Cat (t)

If e is the last operation by v that appears before d in a.α, then
Cdv (t) = Cev(t), and so a <a.α.b e <a.α.b d <a.α.b b by induction,
fork-join order, and program order, respectively.

Note that if there is no v-operation before d in a.α then no
operation increases the Cv(t) component of the state, and so we
obtain the contradiction that Cav (t) 6< Cat (t).

2

THEOREM 2 (Soundness). If σ0 ⇒α σ′ then α is race-free.

PROOF Suppose α has a race condition, and thus contains an
operation a followed by a later operation b where a conflicts with b
and a 6<α b. The proof proceeds by lexicographic induction on the
length of α, and on the number of intervening operations between a
and b. Without loss of generality, we assume the prefix of α before
b is race-free, and that b is not in a race with any operation in α
before a. Let t = tid(a) and u = tid(b). Clearly t 6= u. By
Lemma 3, Cat (t) > Cbu(t).

We illustrate the argument for a = wr(t, x) and b = rd(u, x).

• If the rule for b is [FT READ SAME EPOCH], then there must have
been a preceding read d = rd(u, x).
If d is after a, then by induction a <α d <α b.
If d is before a, then since d and b are in the same epoch, there
can be no intervening fork or release operations by thread u
(as those increase Cu(u) and so change the epoch) and hence
d 6<α a, and so there is an earlier race condition in this trace.
• Otherwise, if the rule for b is not [FT READ SAME EPOCH], then

(Cat (t))@t = Ẃ a by [FT WRITE . . . ]
= W b as no intervening writes to x
� Cb by [FT READ . . . ]

Hence Cat (t) ≤ Cbu(t), and so we have a contradiction.

2

We introduce the abbreviation:

Ka =

{
Ća if a a join or acquire operation
Ca otherwise

LEMMA 4. Suppose σ is well-formed and σ ⇒α σ′ and a ∈ α.
Let t = tid(a) and u = tid(b). If a <α;b b then Ka(t) v Kb(u).

PROOF By induction on the derivation of a <α b. We choose
to use a happens-before derivation that applies program-order in
preference to other rules wherever possible.8 2

THEOREM 3 (Completeness). If α is race-free then σ0 ⇒α σ.

PROOF Suppose α = β.a.γ such that operation a is stuck, that is:

σ0 ⇒β σ′ 6⇒a · · ·
We consider all possible operations for a that could get stuck, and
illustrate the argument for a = rd(t, x). If this read is stuck, then
W a
x 6� Cat . We consider the last write b = wr(u, x) preceding a.

In all cases,

(Cbu(u))@u = Ẃ b
x = W a

x 6� Cat
Hence

Kb
u(u) = Cbu(u) 6≤ Cat (u) = Ka

t (u)

By Lemma 4, b 6<α a, and so α has a write-read race condition.
2

8 This lemma has been revised from the original PLDI version so that b
is not part of α to match how the lemma is used in the proof of the
Completeness Theorem. Thanks to Joe Devietti for pointing this out.
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