
Atomizer:
A Dynamic Atomicity Checker For Multithreaded Programs

(Summary)

Cormac Flanagan
Department of Computer Science

University of California at Santa Cruz
Santa Cruz, CA 95064

Stephen N. Freund
Department of Computer Science

Williams College
Williamstown, MA 01267

Abstract

Ensuring the correctness of multithreaded programs is
difficult, due to the potential for unexpected interactions
between concurrent threads. We focus on the fundamen-
tal non-interference property of atomicity and present a
dynamic analysis for detecting atomicity violations. This
analysis combines ideas from both Lipton’s theory of re-
duction and earlier dynamic race detectors such as Eraser.
Experimental results demonstrate that this dynamic atom-
icity analysis is effective for detecting errors due to unin-
tended interactions between threads. In addition, the ma-
jority of methods in our benchmarks are atomic, supporting
our hypothesis that atomicity is a standard methodology in
multithreaded programming.

1 The Need for Atomicity

Multiple threads of control are widely used in software
development because they help reduce latency and provide
better utilization of multiprocessor machines. However,
reasoning about the correctness of multithreaded code is
complicated by the nondeterministic interleaving of threads
and the potential for unexpected interference between con-
current threads. Since exploring all possible interleavings
of the executions of the various threads is clearly impracti-
cal, methods for specifying and controlling the interference
between concurrent threads are crucial for the development
of reliable multithreaded software. Much previous work on
controlling thread interference has focused on race condi-
tions, which occur when two threads simultaneously access
the same data variable, and at least one of the accesses is a
write [1].

Unfortunately, the absence of race conditions is not suf-
ficient to ensure the absence of errors due to unexpected
interference between threads. As a concrete illustration of

this limitation, consider the following excerpt from the class
java.lang.StringBuffer. All fields of a String-
Buffer object are protected by the implicit lock associated
with the object, and all StringBuffer methods should
be safe for concurrent use by multiple threads.

Excerpt from java.lang.StringBuffer

public final class StringBuffer {

public synchronized
StringBuffer append(StringBuffer sb) {

int len = sb.length();
... // other threads may change sb.length()
... // len does not reflect length of sb
sb.getChars(0, len, value, count);
...

}

public synchronized int length() { ... }
public synchronized void getChars(...) { ...}
...

}

The append method shown above first calls
sb.length(), which acquires the lock sb, retrieves
the length of sb, and releases the lock. The length of
sb is stored in the variable len. At this point, a second
thread could remove characters from sb. In this situation,
len is now stale and no longer reflects the current length
of sb, and so the getChars method is called with an
invalid len argument, and may throw an exception. Thus,
StringBuffer objects cannot be safely used by multiple
threads, even though the implementation is race-free.

To catch errors like this, we focus on a widely-applicable
non-interference property called atomicity. A procedure (or
code block) is atomic if for every (arbitrarily interleaved)
program execution, there is an equivalent execution with the
same overall behavior where the atomic procedure is exe-
cuted serially, that is, the procedure’s execution is not inter-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 



leaved with actions of other threads. This non-interference
guarantee reduces the challenging problem of reasoning
about an atomic procedure’s behavior in a multithreaded
context to the simpler problem of reasoning about the pro-
cedure’s sequential behavior. The latter problem is signifi-
cantly more amenable to standard techniques such as man-
ual code inspection, dynamic testing, and static analysis.

In addition, atomicity is a natural methodology for mul-
tithreaded programming, and experimental results indicate
that many existing procedures and library interfaces already
follow this methodology [3]. Finally, many synchronization
errors can be detected as atomicity violations.

Although atomicity is a widely-applicable and funda-
mental correctness property of multithreaded code, stan-
dard testing techniques are inadequate to verify atomicity.
Testing may discover a particular interleaving on which an
atomicity violation results in erroneous behavior, but the
exponentially-large number of possible interleavings makes
obtaining adequate test coverage essentially impossible.

2 Checking Atomicity Dynamically

We present a dynamic analysis for detecting atomicity
violations. For each code block annotated as being atomic,
our analysis verifies that every execution of that code block
does not interfere with other threads. Intuitively, this ap-
proach increases the coverage of traditional dynamic test-
ing. Instead of waiting for a particular interleaving on which
an atomicity violation causes erroneous behavior, such as a
program crash, the checker actively looks for evidence of
atomicity violations that may cause errors under other in-
terleavings. Our approach synthesizes ideas from dynamic
race detectors (such as Eraser’s Lockset algorithm) and Lip-
ton’s theory of reduction [4], as described below. We re-
fer the reader to the extended version of this paper for the
complete details of our approach, as well as a discussion of
related race condition and atomicity checking tools [3].

2.1 The Lockset Algorithm

In order to identify atomicity violations, our tool first
identifies race conditions using a variant of Eraser’s Lock-
set algorithm [5]. This algorithm tracks a lockset for each
shared variable. This lockset contains all locks that have
been consistently held on all accesses to that variable. Each
lock set initially contains all locks, and on each shared vari-
able access, the Lockset algorithm removes from the cor-
responding lockset all locks not held by the current thread.
If the lockset for a variable becomes empty, then no lock
consistently protects all accesses to that variable, and our
analysis assumes that there may be a race condition on that
variable. This information regarding race conditions is then
used by the following reduction algorithm.

2.2 The Theory of Reduction

Our analysis leverages Lipton’s theory of reduction to
dynamically detect atomicity violations. The theory of re-
duction is based on the notion of right-mover and left-mover
actions [4]. An action b is a right-mover if, for any execu-
tion where the action b performed by one thread is imme-
diately followed by an action c of a concurrent thread, the
actions b and c can be swapped without changing the result-
ing state. Conversely, an action c is a left-mover if whenever
c immediately follows an action b of a different thread, the
actions b and c can be swapped, again without changing
the resulting state. We classify operations performed by a
thread as (left or right) movers as follows:

Operation Mover Status
lock acquire right-mover
lock release left-mover
access to protected data both-mover
access to unprotected data non-mover

Once a thread acquires a lock, no other thread may acquire
or release it. Hence the acquire operation can be moved to
the right of a step by a concurrent thread without changing
the resulting state. Similarly, a release operation commutes
to the left. An access (read or write) to a shared variable
that is protected by a lock is a both-mover since no other
thread can simultaneously access that variable. In contrast,
an access to a variable on which there may be race condi-
tions is a non-mover since other threads may concurrently
access the same variable.

To illustrate how the classification of actions as various
kinds of movers enables us to verify atomicity, consider the
first execution trace in the diagram below. In this trace, a
thread (1) acquires a lock m, (2) reads a variable x pro-
tected by that lock, (3) updates x, and then (4) releases m.
The execution path of this thread is interleaved with arbi-
trary actions b1, b2, b3 of other threads. Because the ac-
quire operation is a right-mover and the write and release
operations are left-movers, there exists an equivalent serial
execution (with the same final state Σ7) in which the op-
erations of this path are not interleaved with operations of
other threads, as illustrated by the following diagram. Thus
the execution path is atomic.

Reduced execution sequence

Σ′
1 Σ′

2 Σ′
3 Σ′

4 Σ′
5 Σ′

6

acq(m) x= t+1t=x rel(m)
Σ7

Σ2 Σ3 Σ4 Σ5 Σ6 Σ7Σ1Σ0

Σ0

b3

b3b2

b1

b1

b2 x= t+1acq(m) t=x rel(m)

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 



More generally, suppose an execution path through a
method contains a sequence of right-movers, followed by
at most one non-mover action and then a sequence of left-
movers. Then this path can be reduced to an equivalent
serial execution, with the same resulting state, where the
path is executed without any interleaved actions by other
threads. Our dynamic analysis verifies that every executed
trace through each atomic method is reducible, and it re-
ports warnings when irreducible paths are observed.

3 Implementation and Evaluation

We have developed an implementation, called the Atom-
izer, of the dynamic analysis outlined above. The Atomizer
takes as input a multithreaded Java program and rewrites the
program to include additional instrumentation code. This
instrumentation code calls appropriate methods of the At-
omizer run-time library that implement the Lockset and re-
duction algorithms and issue warning messages when atom-
icity violations are detected.

For the StringBuffer class, the Atomizer detects
that append contains a window of vulnerability between
where the lock sb is released inside length and then
re-acquired inside getChars, and produces the following
warning, even on executions where this window of vulner-
ability is not exploited to produce an observable error.

Error report

StringBuffer.append is not atomic:
Atomic block entered

at StringBuffer.append(StringBuffer.java:445)
at BreakStringBuffer.main(Test.java:21)

Atomic block commits at lock release:
at StringBuffer.length(StringBuffer.java:144)
at StringBuffer.append(StringBuffer.java:451)
at Test.main(Test.java:21)

Atomicity violation at lock acquire:
at StringBuffer.getChars(StringBuffer.java:326)
at StringBuffer.append(StringBuffer.java:455)
at Test.main(Test.java:21)

The application of the Atomizer to over 100,000 lines
of Java code demonstrates that it detects defects in multi-
threaded programs that would be missed by existing race-
detection tools, and it produces fewer false alarms on benign
races that do not cause atomicity violations. In addition, the
Atomizer found no atomicity violations in over 90% of the
methods annotated as atomic that were exercised during our
test runs. While certainly sensitive to the coverage of our
testing, this statistic suggest that atomicity is a fundamental
design principle in many multithreaded systems, especially
library classes and reusable application components.

4 Conclusions

Developing reliable multithreaded software is notori-
ously difficult, because concurrent threads often interact in
unexpected and erroneous ways. Clearly, the cost-effective
development of reliable multithreaded systems requires the
development and application of methods for controlling the
interference between concurrent threads. The notion of
atomicity provides a strong (indeed maximal) and widely-
applicable non-interference guarantee. This paper presents
a dynamic analysis designed to catch atomicity violations
would be missed by traditional testing or (static or dynamic)
race-detection techniques.

We suggest that the wider adoption and emphasis on
atomicity in multithreaded software could provide many
benefits, which may include: simpler procedure specifica-
tions; better static analyses; decreased testing cost; easier
code inspection; and detecting more scheduler-dependent
bugs.

In additon, whereas this work has focused on multi-
threaded systems, an interesting avenue for future work is
to study what notions of non-interference similar to atomic-
ity are appropriate for distributed systems.

Acknowledgments. This work was partly supported by the
National Science Foundation under Grants CCR-0341179
and CCR-0341387, and by faculty research funds granted
by the University of California at Santa Cruz and by
Williams College.

References

[1] A. D. Birrell. An introduction to programming with threads.
Research Report 35, Digital Equipment Corporation Systems
Research Center, 1989.

[2] C. Flanagan and S. N. Freund. Atomizer: A dynamic atom-
icity checker for multithreaded programs. In Proceedings of
the ACM Symposium on the Principles of Programming Lan-
guages, pages 256–267, 2004.

[3] R. J. Lipton. Reduction: A method of proving properties of
parallel programs. Communications of the ACM, 18(12):717–
721, 1975.

[4] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems,
15(4):391–411, 1997.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 


	Select a link below
	Return to Main Menu
	Return to Previous View


