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Abstract. Object models capture key properties of object-oriented ar-
chitectures, and they can highlight relationships between types, occur-
rences of sharing, and object encapsulation. We present a dynamic anal-
ysis to extract object models from legacy code bases. Our analysis recon-
structs each intermediate heap from a log of object allocations and field
writes, applies a sequence of abstraction-based operations to each heap,
and combines the results into a single object model that conservatively
approximates all observed heaps from the program’s execution. The re-
sulting object models reflect many interesting and useful architectural
properties.

1 Introduction

Object models capture the essence of object-oriented designs. However, many
systems are developed without documented object models or evolve in ways that
deviate from the original model. Tools to reconstruct object models are a valuable
aid for understanding and reasoning about such systems. This paper presents
a dynamic analysis to extract object models from existing code bases. We have
found that these inferred object models explicate key structural invariants of
object-oriented designs.

As an illustrative example, Figure 1 shows the inferred object model for parts
of the abstract syntax tree (AST) data structure related to class declarations
from the ESC/Java code base [15]. This object model is drawn as a UML class
diagram [7], in which nodes represent classes and edges represent indicate both
association and generalization relationships between classes. The graph reveals
a number of important (and occasionally surprising) properties of ASTs:

– Each ClassDecl (at the top of the graph) has a superClass field with
the somewhat unexpected multiplicity label ‘?’, indicating that this field
may be null. Inspection of the code revealed that the superClass field
can in fact be null in one special case, namely when the ClassDecl is for
java.lang.Object, the root of the class hierarchy.

– Each ClassDecl has a field elems containing one or more TypeDeclElem
objects, as indicated by the multiplicity ‘+’. Again, this label was somewhat
unexpected, since empty class declarations are valid in Java. However, fur-
ther investigation revealed that the parser automatically adds an implicit
nullary constructor to such classes.

! To appear at FATES/RV 2006.



Figure 1: Object Model for the AST Package from ESC/Java’s Front-End
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– Each TypeDeclElemmay be a MethodDecl, ConstructorDecl, or FieldDecl,
as indicated by the hollow-tipped generalization arrows from the subtypes
to the supertype.

– Each MethodDecl contains zero or more FormalParaDecls, as shown via the
multiplicity ‘*’.

– The bold, diamond-tailed edges indicate unique references. All edges in
this object model are unique, except for the parent pointers from each
TypeDeclElem, which point back to the containing ClassDecl. Thus, the
overall structure is mostly a tree, but documenting the non-unique parent
pointers is crucial since any tree traversal algorithm must include special
treatment for these pointers.

– Although not present in Figure 1, we also infer ownership and containment
properties, which we found necessary to express encapsulation properties in
complex situations where unique references are not sufficient, and we have
enriched UML class diagrams to express these additional properties.

Object models could be reconstructed statically, by analyzing the program
source code [5, 25, 23, 26]. However, precise static alias analysis is a notoriously
difficult problem, and so static analyses have some difficulties inferring precise
invariants regarding heap structure and sharing (although progress continues to
be made on this topic).

In contrast, dynamic alias analysis reduces to a simple pointer compari-
son, and so dynamic analyses can provide very precise information regarding
structural properties of heaps, such as: which portions of the heap follow a tree
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Figure 2: Schematic
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structure, which pointers are unique, and which objects are encapsulated within
other objects. Of course, any dynamic analysis is limited by test coverage and
may infer false invariants. In our experience, such anomalies, once discovered,
are straightforward to rectify by appropriately extending the test inputs.

Figure 2 presents a schematic of our analysis tool, Aardvark, which is based
on offline heap reconstruction. It first executes an instrumented version of the
target program that records a log of all object allocations and field writes. The
Builder phase then uses this log to reconstruct a snapshot of the heap at each
intermediate stage in the program’s execution. The primary focus of this paper
is on how to infer object models from these reconstructed heaps.

For each heap snapshot, Aardvark isolates the relevant fragment of that
heap via the projection and closure operations described in Section 2. It then
uses abstraction (or object merging) to generate an initial object model for that
heap, as described in Section 3. That object model is extended with additional
information regarding multiplicities, unique pointers, ownership, and contain-
ment (see Section 4). Thus, the sequence of heap snapshots is abstracted into a
corresponding sequence of object models.

We formalize the space of object models as labeled graphs, which form an
abstract domain [12] with abstraction and concretization functions. Section 5
defines the upper bound operation ! on this domain, which we use to compute a
single object model that conservatively approximates all of the heap snapshots
from the program’s execution.

The implementation of Aardvark is described in Section 6. Preliminary
experiments indicate that the inferred object models are quite precise and useful,
and that they explicate important architectural details. In many cases, we can
produce sufficiently accurate results by analyzing only a small sample of heap
snapshots. Section 8 discusses some important topics for future work, including
developing incremental versions of our abstraction algorithms.

2 Heap Projection and Closure

We begin by formalizing the notion of an object heap. We ignore primitive data
(such as integers) and focus only on the structure of the heap. Let A be the set
of object addresses (or simply objects) and let F be the set of field names in
the program. We use a, b, c, . . . as meta-variables ranging over object addresses,
and use f to range over field names. A heap H is a relation H ⊆ A × F × A
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describing how fields of some objects point to other objects.3 Each edge in H is
written as (a →f b), meaning that field f of object a points to object b.

In many situations, we may be interested only in certain parts of the heap,
such as the objects corresponding to a particular package or data structure. If
the object set J ⊆ A describes these objects of interest, then the projection of a
heap H onto J isolates them:

proj J(H) = {(a →f b) | (a →f b) ∈ H ∧ a, b ∈ J}

Figure 3(a) shows a heap projection that focuses on the AST data structure of
the ESC/Java front-end. The diagram shows that each class declaration contains
a set of method, constructor, and field declarations.

This diagram also includes nodes that describe how class declarations are
represented, via a TypeDeclElemVec object that contains an array. We often
want to abstract away such low-level representation details, which is accom-
plished via the following closure operation that elides these intermediate objects
(or representation nodes. For any set of low-level representation nodes J ⊆ A,
the closure of a heap H with respect to J is defined by

closeJ (H) =
{

(a →f b) a, b '∈ J and ∃ a path in H from a to b whose first
field is f and whose intermediate nodes are in J

}

The closure of Figure 3(a) with respect to representation nodes yields the dia-
gram of Figure 3(b), which more directly shows the relationship between class
declarations and their elements.

3 Abstraction

After projection and closure, the next step is to abstract from each program
heap H (with perhaps millions of objects) a concise graphical representation
G of the object model. Here, G is simply a graph over a collection of abstract
nodes and edges, as defined precisely in Section 3.1. We consider a sequence of
increasingly-precise abstractions. For clarity, we formalize the semantics of each
representation with a concretization function γ that defines the meaning of a
graph G as the set of heaps γ(G) matching that description. Conversely, the
abstraction function α maps a given concrete heap H to a corresponding graph
G = α(H). For soundness, we require that the meaning of G includes the original
graph H , i.e., H ∈ γ(α(H)).

A graph G1 is more precise than G2, denoted G1 ) G2, if γ(G1) ⊆ γ(G2).
Unlike in static analyses where the primary purpose of abstraction is to facilitate
convergence, the purpose of abstraction in our setting is to ignore low-level details
and isolate architectural invariants. For this reason, we do not require α(H) to
be a most precise element of {G | H ∈ γ(G)}.
3 We formalize the heap as a relation instead of a partial function A × F →p A to

facilitate our subsequent development.

4



Figure 3: Closure, Abstraction, and Generalization
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3.1 Heap Abstraction

The first class of abstractions we consider simply merges concrete objects into
summary, or abstract, objects. Each abstract object â is a set of corresponding
concrete objects (i.e., â ⊆ A), and we use Â to denote the set of abstract objects.
Thus Â ⊆ 2A. An (abstract) graph G is a pair (Â, Ê), where Ê ⊆ Â×F × Â is a
set of field-labeled edges between abstract objects. Each abstract edge (â →f b̂)
describes a set of possible concrete edges according to the edge concretization
function γ:

γ(â →f b̂) = {(a →f b) | a ∈ â, b ∈ b̂}

Each abstract graph (Â, Ê) represents a set of concrete heaps according to the
concretization function γe:

γe(Â, Ê) =
{
H ∀e ∈ H. ∃ê ∈ Ê. e ∈ γ(ê)

}

This function requires that every edge in the concrete heap H is represented
by some corresponding edge in Ê. (The superscript on γe distinguishes this
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concretization function from the ones presented below, and by convention the
superscript always corresponds to the last component in the graph tuple.)

Applying this abstraction requires first determining a suitable collection of
abstract objects. Since objects of the same class typically exhibit similar be-
havior, a particularly important abstraction is to partition objects according
to their type, as shown in Figure 3(c). In this situation, Â is a partition of A
and is isomorphic to the set of non-abstract class types in the program. It is
straightforward to define the corresponding abstraction function αe:

αe(H) = (Â, Ê) where Â partitions A according to type
and Ê =

{
(â →f b̂) â, b̂ ∈ Â ∧ (∃a ∈ â, b ∈ b̂. (a →f b) ∈ H)

}

Other possible partitioning strategies include, for example, partitioning objects
according to their creation site, or merging objects that satisfy the same predi-
cates, as in shape analyses [32]. Applying these ideas to object modeling remains
for future work.

The following lemma states that αe infers a conservative approximation of
the given heap.

Lemma 1 (Soundness). ∀H. H ∈ γe(αe(H)).

We next extend our notion of abstraction to incorporate generalization (or
subtype) edges, which are a key concern in object-oriented designs. Note that
Figure 3(c) shows the elems field of a ClassDecl storing three different kinds of
declarations. A better object model is shown in Figure 3(d), which indicates that
elems stores a set of TypeDeclElems, and the generalization edges (with hollow-
tipped arrowheads) indicate that method, constructor, and field declarations are
all subtypes of TypeDeclElem.

To illustrate how we perform generalization, suppose a class A extends B.
We create corresponding abstract objects â and b̂ as before, except that b̂ now
contains all concrete objects whose type is B or any subtype of B, including
A. Thus â ⊆ b̂, and we indicate this containment relationship by drawing a
generalization edge from â to b̂.

The presence of generalization edges complicates the abstraction mapping. In
general, a set of classes to which a field (such as elems) points could be general-
ized to any common supertype, but the best choice is the most-specific common
supertype. Due to Java’s multiple interface inheritance, this most-specific com-
mon supertype may not be unique, in which case Aardvark employs simple
heuristics to choose the most appropriate generalization.

4 Multiplicities and Structural Attributes

The abstractions of the previous section can produce precise summaries of large
heaps, but they can also lose key information. This section enriches those ab-
stract graphs with additional attributes describing the multiplicity of abstract
edges, as well as sharing and structural properties of the heap.
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Figure 4: Uniqueness
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4.1 Multiplicities

The object model in Figure 1 labels each abstract edge with a multiplicity that
describes how many objects it points to: “?” for at most one, “ε” for exactly
one, “∗” for zero or more, and “+” for one or more. Here ε indicates the absence
of a multiplicity label. These multiplicity labels reveal that class declarations
contain at least one element, method declarations contain zero or more formal
parameters, and method declarations contain exactly one statement.

To compute this information, we annotate each abstract edge (â →f b̂) with
a multiplicity set that describes, for each concrete object a ∈ â, how many b̂-
objects the object a points to. Specifically, the multiplicity set m((â →f b̂), H)
of an abstract edge (â →f b̂) in a heap H is the set of natural numbers given by:

m((â →f b̂), H) = {t1, . . . tn} where â = {a1, . . . , an}
and ti =

∣∣∣{b | b ∈ b̂ ∧ (ai →f b) ∈ H}
∣∣∣

We extend the abstract graph (Â, Ê) with an additional component M : Ê →
2Nat describing the multiplicity sets of each abstract edge. The concretization
function enforces this intended meaning, and the abstraction function computes
the appropriate multiplicities from the concrete graph:

γm(Â, Ê, M) =
{

H ∈ γe(Â, Ê) ∀ê ∈ Ê. m(ê, H) ⊆ M(ê)
}

αm(H) = (Â, Ê, M) where (Â, Ê) = αe(H) and M = λê ∈ Ê. m(ê, H)

Lemma 2 (Soundness Of Multiplicities). ∀H. H ∈ γm(αm(H)).

Since multiplicity sets are rather dependent on the specific program execu-
tion, when drawing diagrams we generalize them to the more abstract multiplic-
ity labels “?”, “ε”, “∗”, and “+”, described above.

4.2 Uniqueness

The process of abstracting or object merging loses information about cycles
or sharing in the underlying concrete heap. This limitation is illustrated by
the abstract graph of Figure 4(a). From this graph, it is unclear whether the
original heap was actually a binary tree, a doubly-linked list, a DAG, or some
more general graph structure. To avoid this limitation, we next describe three
increasingly sophisticated ways to enrich the abstract graph with additional
information describing the degree to which sharing can occur in the underlying
heap.
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We begin by introducing the notion of unique edges. A concrete edge (a →f b) ∈
H is unique if it points to an unshared object, that is, if H does not contain any
other edge (c →g b) that also points to b. This notion of uniqueness naturally
extends to abstract edges: an abstract edge is unique if it only corresponds to
unique concrete edges. In Figure 4(b), these unique edges (drawn in bold with
a solid diamond on the tail) clarify that no sharing occurs, and thus this object
model is more precise than Figure 4(a) since it describes only trees, and not
other DAG or graph structures.

To formalize this notion of uniqueness, we extend the abstract graph (Â, Ê, M)
of the previous section with an additional component U ⊆ Ê that describes which
abstract edges are unique. The concretization and abstraction functions become:

γu(Â, Ê, M, U) =
{
H ∈ γm(Â, Ê, M) ∀ê ∈ U. ∀e ∈ γ(ê) ∩ H. e is unique in H

}

αu(H) = (Â, Ê, M, U) where (Â, Ê, M) = αm(H)
and U = {ê ∈ Ê | ∀e ∈ γ(ê) ∩ H. e is unique in H}

Lemma 3 (Soundness Of Uniqueness). ∀H. H ∈ γu(αu(H)).

4.3 Ownership

Unique pointers provide precise information in the ideal case where there is no
sharing but cannot describe controlled or encapsulated sharing. For example,
the concrete heap of Figure 5(a) includes two java.util.LinkedLists, each
of which is represented by a doubly-linked list of LinkedList$Entrys. Each
LinkedList$Entry contains a Point, except for the dummy node at the head
of the list.

Even though LinkedList$Entrys are encapsulated by their owning list, point-
ers to LinkedList$Entrys are not unique. Thus, the abstract graph of Fig-
ure 5(b) loses this key encapsulation information and instead suggests that
LinkedList$Entrys could be shared between LinkedLists.

To remedy this limitation, we incorporate the notion of object ownership
based on dominators [11]. An object a dominates object b if every path from
a root of the heap to b must pass through a. Thus, the dominates relation
domH ⊆ A × A for a heap H is the greatest fixpoint of the equations:

domH (b) = {b} if b is a root of H

domH (b) = {b} ∪
( ⋂

(a →f b)∈H

domH (a)
)

otherwise

Roots could be, for example, all static fields in a program, or perhaps a more
specific collection of objects, depending on the particular domain.

We extend this dominator relation to abstract graphs, and say that â domi-
nates b̂ in H (written â %H b̂) if every b̂-object is dominated by some â-object,
i.e., if ∀b ∈ b̂. ∃a ∈ â. a ∈ domH (b). When drawing abstract graphs, we indi-
cate the closest, most precise dominator of each abstract object as an ownership
edge, drawn as a dashed arrow. In Figure 5(c), these ownership edges show that
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Figure 5: Ownership
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each LinkedList$Entry object is owned by some LinkedList, which means
that LinkedList$Entrys are never shared between LinkedLists. As expected,
Points are owned by the object Main and not the lists, since a Point is shared
between both lists. For LinkedList, which is the target of a unique pointer, an
ownership edge would be a redundant inverse of that unique pointer, and so is
omitted.

We include this abstract domination relation %H ⊆ Â × Â as an additional
component in the abstract graph, whose concretization and abstraction functions
become:

γ!(Â, Ê, M, U, %) =
{
H ∈ γu(Â, Ê, M, U) % ⊆ %H

}

α!(H) = (Â, Ê, M, U, %H) where (Â, Ê, M, U) = αu(H)

Lemma 4 (Soundness Of Ownership). ∀H. H ∈ γ!(α!(H)).

4.4 Containment

Our final refinement captures encapsulation in complex situations for which nei-
ther uniqueness nor ownership suffices. Consider the concrete heap of Figure 6(a),
which shows two java.util.HashMap objects, each of which has an array of
HashMap$Entry objects and some iterators that also point to the HashMap$Entry
objects. Each HashMap$Entry object is encapsulated in its HashMap and corre-
sponding iterators. Thus, the HashMap representations can be partitioned into
two connected components or containers.

However, in the abstract graph of Figure 6(b), neither uniqueness nor owner-
ship is sufficient to explicate this partitioning. In particular, the only owner for
the HashMap$Entrys is the object Main, since HashMap$Entrys are not dominated
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Figure 6: Containment
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by either HashMaps or the iterator. Thus, the graph suggests that HashMap$Entry
objects could be shared between HashMaps, in which case updating one HashMap
could then change the state of other HashMaps.

To remedy this limitation, we introduce the notion of containment and sin-
gletons. A container C is a set of abstract objects that represents an encapsulated
data structure. For example, Figure 6(c) includes a container (drawn as a large
box) encompassing the HashMap and related objects. Each concrete heap contains
some number of container instances c1, . . . , cn, where each container instance ci

is a set of concrete objects. The key concept of containment is that there can be
no concrete edges between container instances.

Figure 6(c) also shows that HashMap is a singleton (drawn as a double box),
indicating that each container instance contains exactly one HashMap object.
Thus, each container instance includes a single HashMap and its associated itera-
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tors, entries, and Strings, which means that HashMap$Entrys are never shared
between HashMaps.

To formalize these notions, we extend abstract graphs with two additional
components, the container C and the set of singleton objects S. The concretiza-
tion function becomes:
γs(Â, Ê, M, U, %, C, S) =


H ∈ γ!(Â, Ê, M, U, %)
∃n, c1, . . . , cn.

∀â, b̂ ∈ C, a ∈ â, b ∈ b̂. ((a →f b) ∈ H ⇒ ∃i. a, b ∈ ci)
∧ ∀â ∈ S. ∀i ∈ 1..n. |â ∩ ci| = 1






The corresponding abstraction function assumes we are given a fixed container
C by the programmer4. This function infers the set of container instances by
computing (using a union-find algorithm) the maximal partition P of the con-
tainer objects into valid container instances, and it then computes the set S of
singleton objects with respect to these containers:
αs(H) = (Â, Ê, M, U, %, C, S)
where (Â, Ê, M, U, %) = α!(H)
and P is the maximal partitioning of the container objects ∪C such that
∀â, b̂ ∈ C, a ∈ â, b ∈ b̂, if (a →f b) ∈ H then a and b are in the same partition

and S = {â ∈ C | ∀c ∈ P. |â ∩ c| = 1}

Lemma 5 (Soundness Of Containment). ∀H. H ∈ γs(αs(H)).

5 From Heaps to Traces

The previous two sections show how to extract an abstract graph from each con-
crete heap. Applying this abstraction process to each observed heap H1, . . . , Hn

in the instrumented execution yields a sequence of graphs G1, . . . , Gn, where
Gi = α(Hi). The final step is to merge these graphs into a single graph.

For this purpose, we introduce the following upper bound operation on ab-
stract graphs (Â, Ê, M, U, %, C, S). We assume that the graphs are defined over
the same collection of abstract objects Â, heap roots, and container C. The upper
bound operation then combines the remaining components by taking the union
of the abstract edge sets; the point-wise union (denoted ∪m) of the multiplicity
maps; and the intersection of the unique edge sets, the domination relations, and
the singleton sets:

(Â, Ê1, M1, U1, %1, C, S1) ! (Â, Ê2, M2, U2, %2, C, S2) =
(Â, Ê1 ∪ Ê2, M1 ∪m M2, U1 ∩ U2, %1 ∩ %2, C, S1 ∩ S2)

The point-wise union of two multiplicity maps is defined as:

(M1 ∪m M2)(ê) =






M1(ê) ∪ M2(ê) if ê ∈ domain(M1), ê ∈ domain(M2)
M1(ê) ∪ {0} if ê ∈ domain(M1), ê '∈ domain(M2)
{0} ∪ M2(ê) if ê '∈ domain(M1), ê ∈ domain(M2)

4 This technique generalizes to multiple different containers, and we are currently
exploring ways to algorithmically or heuristically identify likely containers
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Figure 7: Aardvark Script for ESC/Java AST Package

// g starts as the graph for the concrete heap.
// First, filter out nodes not reachable from ClassDecls:
g = proj(g, reachable(g, "ClassDecl"));
// Close over arrays and program-specific collections:
g = close(g, match(g, ".*\[\]|.*Vec|.*Set"));
g = abstractTypes(g);
g = generalizeTypes(g);
uniqueness(g); multiplicity(g);
ownership(g, match(g, "ClassDecl")); // ClassDecls are the roots

The next lemma states that operation ! is an upper bound operation on
abstract graphs.

Lemma 6 (Upper Bound). For any graphs G1 and G2:

Gi ) G1 ! G2 for all i ∈ 1..2

We use this upper bound operation to combine the sequence of abstract
graphs G1, . . . , Gn into a single graphical summary G = G1 ! · · · ! Gn. The
following lemma states that the final graph G is a conservative approximation
for each observed heap in the program’s execution.

Theorem 1 (Soundness for Traces). Suppose Gi = αs(Hi) for i ∈ 1..n and
that G = G1 ! · · · ! Gn. Then Hi ∈ γs(G) for all i ∈ 1..n.

6 Implementation

We have implemented our analysis in the Aardvark tool. Aardvark uses
the BCEL binary instrumentor [6] to modify Java class files to record each ob-
ject allocation and field write in a log file. The instrumentation overhead is
roughly 10x–50x, depending on how memory-intensive the target program is.
Currently, only single-threaded programs are supported, and analyzing concur-
rent programs remains for future work.

The off-line analysis then reconstructs a sequence of heaps from this log and
applies the abstractions of the previous sections to each heap before finally merg-
ing the results into a single object model. The visual output is then generated
by the dot utility [16].

A key characteristic of architectural diagrams is that they highlight concepts
by eliding, or abstracting away, extraneous details, such as the representation
nodes discussed in Section 2. Since which details are considered extraneous is
domain-dependent, we intend our tool to be used in an interactive setting in
which the software architect iteratively converges on an abstraction highlighting
the desired architectural features. To support this methodology, Aardvark is
extensible and driven by a script that configures and composes various pre-
defined, or user-defined, abstractions. Figure 7 shows an example script.
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Our prototype is capable of handling fairly large graphs. For example, the
concrete heap used to construct Figure 1 contains 380,000 nodes and 435,000
edges. Aardvark reconstructs this concrete heap in 15 seconds and computes
the abstract graph in another 15 seconds on a 3.06GHz Pentium Xeon worksta-
tion. While the concrete heaps for a trace are built incrementally, we currently
do not use incremental abstraction algorithms, meaning that the tool cannot ef-
ficiently examine the several million intermediate heaps reconstructed from that
log file. Instead, Aardvark samples these heaps in a configurable manner, which
in most cases is sufficient to yield precise object models. Figure 1 was produced
by sampling only the last heap from the log; all other graphs were produced by
abstracting and merging all intermediate heaps, which required only a couple of
seconds.

Further experimentation is needed to determine the best sampling technique
for Aardvark, both in terms of performance and precision. Specifically, chang-
ing the granularity of logging from individual heap updates to, for example,
method call boundaries, may lead to more precise models. The current low-level
logging can reveal a method call’s intermediate states in which structural in-
variants have been temporarily violated, resulting in imprecisions in the overall
abstraction. We are currently designing incremental algorithms, which we expect
to substantially improve scalability.

7 Related Work

Our tool produces graph representations similar in spirit, and based on, UML
class diagrams [7]. Other tools extract some pieces of UML class diagrams from
source code statically [5, 25, 23, 26], but they do not compute, or use unsound or
imprecise heuristics to compute, the structural attributes we have discussed. Of
these static tools, only SuperWomble [34] supports a limited form of user-defined
abstraction. Ptidej [18] uses a dynamic analysis similar to Aardvark to refine
statically-computed class diagrams. That tool does not explore the richer notions
of ownership and containment or support user-defined abstractions.

Several studies have explored how to compute and visually present ownership
information [21, 30, 28] from a program’s heap. However, since no abstraction is
performed, even small heaps can be too large to view effectively. More recently,
Mitchell [27] shows how to compute ownership information for very large heaps in
order to identify inefficiencies in a program’s memory footprint. That approach
uses a similar technique of repeatedly refining an initial heap configuration into
an abstract summary, but it deals primarily with allocation and storage patterns
and not other architectural issues. A number of other heap visualization tools
also focus on memory or garbage collector profiling, i.e. [29, 22].

Several projects have dynamically inferred likely program invariants, includ-
ing pre- and post- conditions [13], algebraic class specifications [20], and API
usage requirements [35, 4]. Ernst et al. [14] have developed a technique to infer a
class of common, but lower-level, data invariants for collection classes. We plan
to generalize Aardvark to dynamically infer high-level, architectural specifica-
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tions, such as usage patterns [19] and communication integrity constraints [1],
which describe how components in a system may interact.

Shape analysis computes a set of abstract memory locations reachable from
a pointer [24, 9, 17, 31, 32]. The goal of our work is similar to shape analysis in
that we infer the relationships between objects in an abstract heap. One inter-
esting avenue for future work is to extend Aardvark with additional notions
of abstraction that compute shape information for use in subsequent dynamic
or static analyses.

There are many static analyses for ownership and confinement, such as [11,
10, 3, 2, 8] and [33], respectively. For confinement, static analysis can ensure that
specified containment relationships are not violated by leaking references to con-
tained objects outside of a protection domain. While we capture similar contain-
ment relationships between objects, we have not focused on enforcing them. A
dynamic enforcement mechanism may be an interesting, and perhaps more pre-
cise, alternative in some situations.

8 Conclusions and Future Directions

Tools for inferring architecture-level models can be very valuable for reasoning
about legacy systems. This paper proposes that dynamic analysis is a promising
approach that can identify not only relationships between types, but also inter-
esting structural properties such as uniqueness, ownership, and containment. We
see a number of interesting extensions and applications for this work, including:

– inferring (and enforcing) architecture-level specifications and invariants, in-
cluding data dependent and temporal properties;

– seeding subsequent static, or dynamic, analyses with the shape information
computed by our tool;

– exploring how object models evolve in large systems;
– inferring object models for lower-level languages such as C or C++; and
– supporting concurrency.

To support the studies of large systems, we are also currently developing incre-
mental abstraction algorithms to improve scalability.
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