
RedCard: Redundant Check Elimination For
Dynamic Race Detectors

Technical Report UCSC-SOE-13-05∗

Cormac Flanagan1 Stephen N. Freund2

1 University of California at Santa Cruz
2 Williams College

Abstract. Precise dynamic race detectors report an error if and only
if an observed program trace exhibits a data race. They must typically
check for races on all memory accesses to ensure that they catch all
races and generate no spurious warnings. However, a race check for a
particular memory access is guaranteed to be redundant if the accessing
thread has already accessed that location within the same release-free
span. A release-free span is any sequence of instructions containing no
lock releases or other “release-like” synchronization operations, such as
notify or fork.

We present a static analysis to identify redundant race checks by reason-
ing about memory accesses within release-free spans. In contrast to prior
whole program analyses for identifying accesses that are always race-free,
our redundant check analysis is span-local and can also be made method-
local without any major loss in effectiveness. RedCard, our prototype
implementation for the Java language, enables dynamic race detectors
to reduce the number of run-time checks by close to 40% with no loss in
precision.

We also present a complementary shadow proxy analysis for identify-
ing when multiple memory locations can be treated as a single location
by a dynamic race detector, again with no loss in precision. Combined,
our analyses reduce the number of memory accesses requiring checks by
roughly 50%.

1 Introduction

Multithreaded programs are prone to race conditions caused by unintended in-
terference between threads, a problem exacerbated by the broad adoption of
multi-core processors. A race condition occurs when two threads concurrently
perform conflicting memory accesses that read or write the same location, where
at least one access is a write. The order in which the conflicting accesses are
performed may affect the program’s subsequent state and behavior, likely with
unintended or erroneous consequences. Such problems may arise only on rare
interleavings, making them difficult to detect, reproduce, and eliminate.

∗ This work appears in ECOOP 2013.

The problems caused by data races have motivated much work on detecting
races via static [1, 3, 5, 15, 23, 30, 40] or dynamic [10, 14, 31, 32, 35, 37, 43] anal-
ysis, as well as via post-mortem analyses [2, 9, 34]. In this paper, we focus on
on-line dynamic race detectors, which detect races by monitoring a program as
it executes. Dynamic race detectors typically use a broad notion of when two
conflicting accesses are considered concurrent to maximize coverage, and con-
flicting accesses need not be performed at exactly the same time. Instead, a race
condition is said to occur when there is no “synchronization dependence” be-
tween the two accesses, such as the dependence between a lock release by one
thread and a subsequent lock acquire by a different thread. These various kinds
of synchronization dependencies form a partial order over the instructions in the
execution trace called the happens-before relation [26]. Two memory accesses are
considered to be concurrent if they are not ordered by this relation.

Dynamic detectors may be classified by whether they are precise or imprecise.
Precise analyses never produce false alarms. Instead, they compute an exact
representation of the happens-before relation for the observed trace and report
an error if and only if the observed trace has a race condition [18, 28, 32].1

Despite the development of a variety of implementation techniques (including
vector clocks [28, 32], epochs [18], accordion clocks [10], and others [14]), the
overhead of precise dynamic race detectors can still be prohibitive.

A promising approach for improving the performance of precise dynamic race
detectors is to use a static analysis to identify accesses that do not need to be
checked at run time. Several prior analyses identify accesses that are guaranteed
to be race-free, with good results [8, 17, 30, 38], but the more effective analyses
are typically whole-program and quite expensive.

We focus instead on the orthogonal and more tractable property of identifying
race checks that are guaranteed to be redundant, where a race check is redundant
if ignoring that access during dynamic race checking leads to no missed races or
false alarms. Interestingly, whereas verifying an access to be statically race-free
typically requires information about multithreaded control flow, aliasing, and
synchronization most readily computed via whole-program analysis, many race
checks can be verified as redundant using more local information, specifically
the locations the current thread has accessed since entering the current release-
free span. Informally, a release-free span is a sequence of instructions containing
no lock releases (or other synchronization operations such as fork that may
similarly introduce an outgoing edge in the happens-before graph).

We present a static analysis for identifying and eliminating redundant race
checks based on this notion. While others have explored removing limited forms
of redundant checks in various imprecise detectors [8, 13] and in programs with
structured parallelism [33], we focus exclusively on redundancy (independent of

1 Precise dynamic race detectors do not reason about all possible traces and may not
identify races occurring on unobserved code paths. While full coverage is desirable,
it comes at the cost of potential false alarms due to the undecidability of the halting
problem. To avoid false alarms, precise race detectors thus focus on detecting race
conditions only on the observed trace.

2

the dynamic race detection algorithm used) and tailor our analysis to be highly
effective at reasoning about that notion. It primarily leverages local reasoning
about memory accesses, aliasing, data invariants, and synchronization to elimi-
nate a substantial amount of redundant checking for any dynamic race detector,
with no loss in precision.

Redundant Check Elimination. A release-free span is a code fragment con-
taining no operations that create out-going edges in the happens-before graph.
Thus release-free spans may not contain lock releases (which create happens-
before edges from the release to any subsequent acquires by other threads), forks
(which create edges from the fork to the first step of the new thread), writes to
volatiles (which create edges from the write to subsequent reads), and so on.

Spans exhibit a key property for our analysis: if an access to a memory loca-
tion is in a race with a step by another thread, all previous accesses to that mem-
ory location within the current span will also be in a race with the other thread.

y1 = x.f

...

y2 = x.f

x.f = 1

...

Thread A Thread BTo illustrate why this property holds, suppose
Thread A executes some span reading x.f twice while
Thread B writes to x.f. If the write is in a race with
the second read, then it must also be in a race with
the first. If this were not the case, then the happens-
before graph for the racy execution would have the
form shown on the right, where the dashed line is
present due to the synchronization operation ensuring
that the write happens after the first read. However,
this situation is impossible, because release-free spans
contain no out-going edges to steps by other threads, and so the dashed line
cannot exist. Thus it is sufficient for a dynamic race detector to check for races
only on the first access to a memory location in each span. It may ignore any
subsequent accesses without any loss in precision.

At a high level, our analysis records at each program point a context Π
containing available paths describing memory locations previously accessed in the
current release-free span, as well as other local state invariants we describe later.

1 synchronized(m) {

2 y = x.fCheck;
3 y = x.fNoCheck;
4 }

5 y = x.fCheck;

To illustrate this idea, consider the code to the right in
which lines 1–3 form a release-free span. Our system
verifies that x.f is an available path at line 3, and
thus labels only the first access in the span as Check
to indicate that the dynamic detector must examine
that access. No paths are available after the span ends
on line 4, and the detector must again check the first access to x.f in the new
span.

To support arrays, contexts may also include universally quantified paths,
as in the code in Figure 1, which clears a two-dimensional array. The com-
ments indicate the most salient context items inferred at various program points.
Examining the inner loop on lines 3–6, the Check annotation for assignment
“a[i]NoCheck[j]Check = 0” on line 5 indicates that only a single check, on the
access to the jth element of array a[i], is required on each iteration of the

3

Figure 1: Redundant Check Elimination for Arrays.

1 // Π : ∅
2 for (int i = 0; i < a.length; i++) {

3 for (int j = 0; j < a[i]Check .length; j++) {

4 // Π : a[i], ∀(k ∈ 0 to j). a[i][k]
5 a[i]NoCheck[j]Check = 0;

6 }

7 // Π : ∀(h ∈ 0 to i). ∀(j ∈ 0 to a[h].length). a[h][j]
8 }

9 // Π : ∀(i ∈ 0 to a.length). ∀(j ∈ 0 to a[i].length). a[i][j]

loop. Race checks on the access a[i] on 5 are redundant, because that loca-
tion was previously checked, as indicated by its presence in the context on line
4. Removing these checks substantially reduces the number of run-time checks
performed. The post-loop context on 9 shows that any subsequent accesses to
this two-dimensional array within the current span would also be check-free.

Shadow Proxies. Our analysis also identifies memory locations for which no
checks are ever required, which further reduces time and space overhead since
no analysis (or shadow) state needs to be maintained for such locations. Our
approach is based on the observation that accesses to different memory locations
are often correlated. For example, a Point object may be used in such a way
that whenever its x field is accessed, its y field is accessed in the same span.
We say that y is a shadow proxy for x in this case, and any race on x naturally
implies that there is a race on y. A dynamic race detector will thus still detect
the presence of a race, even if all accesses to x are ignored. Our analysis also
identifies shadow proxy relationships between array elements.

RedCard. We have implemented our analysis in RedCard (Redundant Checks
for Race Detectors) for Java bytecode programs. On a collection of benchmarks,
RedCard reduced the number of run-time race condition checks required by a
precise detector by roughly 40%. When configured to also infer shadow proxies,
RedCard reduced the number of checks by close to 50%. Eliminating these
redundant checks in the FastTrack dynamic race detector [18] improved its
running-time by about 25%.

A number of other tools, such as Chord [30], leverage global may-happen-in-
parallel or other flow-insensitive analyses to reason about conflicting accesses.
This can be quite effective at finding unnecessary checks in some programs, but
typically requires more expensive and less scalable global reasoning. We compare
RedCard to Chord-like analyses in more detail in our experimental validation.

Contributions. In summary, this paper:

– defines a notion of a redundant check for precise dynamic race detectors,
describes an analysis to identify redundant checks as an effect system for an
idealized language, and proves this analysis is correct (Sections 2 and 3);

4

Figure 2: RedJava Syntax

P ∈ Program ::= D s1|| . . . ||sn
D ∈ Defn ::= class C { f meth }

meth ∈ Method ::= m(x) spec { s; return r }

s ∈ Stmt ::= skip | s; s | if be s s | while be s | x = e | x = new C

| y.fk = x | x = y.fk | x = y.m(z) | acq x | rel x

e ∈ Expr ::= x | v | . . .
be ∈ BoolExpr ⊆ Expr
v ∈ Value ::= ρ | true | false | null | . . .
k ∈ CheckOption ::= Check | NoCheck

C ∈ ClassName
x, y, r ∈ Var

f ∈ FieldName
ρ ∈ Address

m ∈ MethodName

– extends the core analysis to handle arrays (Section 4) and to identify shadow
proxies, which characterize memory locations that can be ignored by race
detectors entirely, with no loss in precision (Section 5);

– describes our RedCard system for inferring redundant accesses in Java
programs (Section 6); and

– shows that, on a collection of benchmarks, RedCard reduces the number
of access checks required by a precise detector by close to 50%, leading to a
roughly 25% speedup in the FastTrack race detector (Section 7).

2 RedJava Language and Semantics

We formalize our analysis for the idealized language RedJava, a multithreaded
subset of Java summarized in Figure 2. A RedJava program P is a sequence
of class definitions D together with a sequence of statements s1|| . . . ||sn. At run
time, the statements in s1|| . . . ||sn are evaluated concurrently by multiple threads.

Each definition associates a class name C with a collection of field and method
declarations. Field declarations are simply names and contain no type informa-
tion. (We assume that standard typing requirements are verified for RedJava
programs via a separate analysis. Enforcing a traditional typing discipline is or-
thogonal to the concerns of this paper and omitted for simplicity.) A method
declaration “m(x) spec { s; return r }” defines a method m with parameters
x and statement body s. The method returns the value stored in variable r.
The variable this is implicitly bound to the receiver in the method body. We
assume that all methods have unique names to avoid type-based method reso-
lution. Methods also contain specifications, as described below.

RedJava statements are expressed in a low-level language somewhat analo-
gous to JVM bytecode. Statement forms include sequential composition, condi-
tionals, while loops, and method calls. Local variables, which are not explicitly

5

declared, can be mutated via the assignment statement “x = e”. We leave the
set of expressions e intentionally unspecified but assume that they range over at
least null, boolean values, variable identifiers, and object addresses.

The object allocation statement “x = new C” assigns a freshly allocated C
object to variable x, where all fields of that object are initialized to null. Field
read (x = y.fk) and write (y.fk = x) statements includes a check tag k, which
is Check if the dynamic race detector should verify it for race-freedom and
NoCheck if the dynamic race detector should skip verifying that access. As in
Java, each object x has a corresponding mutual exclusion lock with operations
acq x and rel x.

A program D s1|| . . . ||sn executes by evaluating the statements s1, . . . , sn in
concurrent threads. The Appendix formalizes a small-step semantics describing
evaluation as a relation D ` Σ →a Σ′, where the run-time state Σ stores a heap
of dynamically allocated objects; and Σ′ is the same heap updated with the
effects of this step. The Action a records any shared-memory or synchronization
operation performed by the step. For example, the action t :acc(ρ.fCheck) denotes
that the thread identifier t ∈ Tid performed a checked access to the field f of
the object at address ρ. The special action t : ε denotes a step that has no heap
effect.

u, t ∈ Tid ::= 1 | 2 | . . .
a, b ∈ Action ::= t :acc(ρ.fk) | t :acq(ρ) | t :rel(ρ) | t :ε
α ∈ Trace ::= Action

The relation D ` Σ →α Σ′ is the reflexive transitive closure of the single-step
relation and formalizes the behavior of a Trace α = a1 · a2 · · · an. The initial
state Σ0 contains a freshly-allocated object for each free variable in s1|| . . . ||sn.
Those objects may be referenced by multiple threads.

2.1 Race Conditions and Dynamic Race Detection

The happens-before relation for trace α is the smallest reflexive, transitive rela-
tion <α on α such that a <α b if a occurs before b in α and either: a and b are
performed by the same thread; or a releases some lock and b acquires that lock.

Two operations are concurrent if they are not ordered by the happens-before
relation, and two accesses conflict if they read or write to the same location ρ.f .
Our definition of conflicting accesses implies that two reads may conflict, which
simplifies our formal development. We address commuting read operations in
Section 6. A trace has a race condition if it has a pair of concurrent conflicting
accesses. Moreover, a trace has a detected race condition if it has a pair of
concurrent conflicting accesses that are both marked as Check.

We now consider which accesses in a trace require checks. A release-free
span, or simply a span, is the sequence of instructions by a thread between
two release statements. A trace is well-formed if each unchecked access t :
acc(ρ.fNoCheck) is preceded by a checked access t :acc(ρ.fCheck) in the same span,
under the assumption the trace prefix up to the unchecked access is race-free.

6

Figure 3: Contexts, Path Sets, and Modifies Sets.

Π ∈ Context ::= π
π ∈ ContextItem ::= p | c | be
c ∈ AliasConstraint ::= x = p

P,Q ∈ PathSet ::= p
p ∈ Path ::= x.f
K ∈ ModifiesSet ::= κ
κ ::= f | All

y1 = x .fCheck;
z1 = y1 .gCheck;
y2 = x .fNoCheck;
z2 = y2 .gNoCheck;

To motivate this race-free assumption, consider the
code fragment to the right. We would like to annotate
the last read y2.g as NoCheck, arguing that y1 and y2
are aliases, and that y1.g was previously read. However, concurrent racy writes
to x.f could cause y1 and y2 to differ. The race-free prefix assumption precludes
this possibility and enables the unchecked read of y2.gNoCheck.

The following theorem, which is proved in the companion technical report,
shows that the checked accesses in well-formed traces are sufficient to guarantee
that, for any trace with one or more race conditions, at least one of those races
will be detected. In practice, our implementation detects all races on all of our
benchmarks, since the above corner case in which one race masks another race
is extremely rare.

Theorem 1 (Race Detection). Any well-formed trace has a race condition if
and only if it has a detected race condition.

3 Redundant Check Elimination

We now develop a static analysis for identifying which accesses are redundant
(that is, race-free race under the assumption that previous accesses are race-free).
For presentation purposes, we describe our analysis as a decision procedure for
verifying NoCheck annotations, but this decision procedure naturally maps to an
inter-procedural least-fixed point algorithm for inferring NoCheck annotations in
our implementation, as described in Section 6.

Our analysis tracks a context Π that includes paths p of the form x.f that
have already been accessed in the current span.2 In the simple case, redundant
check elimination can be accomplished by standard compiler optimizations for
redundant load elimination (see, e.g. [4, 24, 39]), which may remove the second
redundant read of x.f entirely. However, redundant check elimination applies in
more general cases, for example when iterating through an array for a second
time in a span, since the array contents likely would not fit in the register file,
or on a read that occurs after different writes on different control-flow paths.

To help identify redundant checks, the context includes must-alias informa-
tion, such as the equality y1 = y2 from the earlier example in Section 2.1. Finally
the context includes boolean constraints over local variables, which additionally
aid in reasoning about both aliasing and array accesses, as discussed below.

2 We discuss longer access paths, such as a.f[i], in Section 6.

7

Figure 4: Analysis (We assume w is fresh in all rules.)

D ` s : Π ; Π′

[Skip] D ` skip : Π ; Π

[Acq] D ` acq x : Π ; Π

[Rel] D ` rel x : Π ; Π \ All

[Assign] D ` x = e : Π ; Π[x := w] ∪ {x = e[x := w]}
[New] D ` x = new C : Π ; Π[x := w]

[Read]
k = NoCheck ⇒ Π ` y.f

p = (y.f)[x := w] Π′ = Π[x := w] ∪ {x = p, p}
D ` x = y.fk : Π ; Π′

[Write]

k = NoCheck ⇒ Π ` y.f
Π′ = (Π \ f) ∪ {x = y.f, y.f}
D ` y.fk = x : Π ; Π′

[If]

D ` s1 : Π ∪ {be} ; Π1

D ` s2 : Π ∪ {¬be} ; Π2

D ` if be s1 s2 : Π ; (Π1 uΠ2)

[While]
Π v Πinv Π′ v Πinv

D ` s : (Πinv ∪ {be}) ; Π′

D ` while be s : Π ; (Πinv ∪ {¬be})

[Seq]

D ` s1 : Π ; Π′′

D ` s2 : Π′′ ; Π′

D ` s1; s2 : Π ; Π′

[Call]

m(z′) requires P ensures Q modifies K { . . . return r } ∈ D
θ = [z′ := z, this := y, r := x] ∀p ∈ θ(P). Π ` p
D ` x = y.m(z) : Π ; (Π \K)[x := w] ∪ θ(Q)

[Method]

m is unique in D s does not mutate this, x
K contains all fields that may be modified while evaluating s
K contains All if a lock may be released while evaluating s

FV(P) ⊆ {this, x} FV(Q) ⊆ {this, x, r}
D ` s : P ; Q′ Q′ v Q

D ` m(x) requires P ensures Q modifies K { s; return r }

D ` meth ` D ` D s1|| . . . ||sn

[Class]

∀meth ∈ meth. D ` meth

D ` class C { f meth }

[Declarations]

∀D ∈ D. D ` D
` D

[Program]

` D ∀i ∈ 1..n. D ` si : ∅ ; Π

` D s1|| . . . ||sn

Π \K, Π \ κ

Π \ {κ1, . . . , κn} = Π \ κ1 \ . . . \ κn

Π \ f = { p ∈ Π } ∪ { be ∈ Π } ∪ { (y = p) ∈ Π | p 6= x.f }
Π \ All = { be ∈ Π }

To facilitate modular reasoning, each method carries a specification

spec ∈ MethodSpec = requires P ensures Q modifies K

where the PathSet P denotes the paths that must be in the context at any
call site to the method, which enables inter-procedural check elimination. The
PathSet Q denotes paths that are available at the end of the method body, and
the ModifiesSet K denotes fields that may be modified by the method body. (See
Figure 3.) The ModifiesSet K also contains the special token All if the method
contains a lock release or other span-ending operation.

8

3.1 Type System

The core of our analysis is the set of rules in Figure 4 defining the judgment
D ` s : Π ; Π ′, where the context Π denotes available paths and constraints
that hold in the pre-state of statement s, and context Π ′ similarly characterizes
the post-state of s. The definitions D are included to provide access to class
declarations. The complete set of statement typing rules, as well as rules for
additional judgments to check declarations and programs, appear in Figure 4.
We describe the most salient rules below.

[Assign] Assigning to a local variable x may affect constraints or paths con-
taining x. Simply removing all such elements mentioning x from Π would be
overly conservative. Instead, we introduce a class of Skolem variables that are
implicitly existentially quantified. The post-context for a statement x = e
from a pre-context Π is then computed to be Π[x := w] ∪ {x = e[x := w]},
where the fresh implicitly existentially quantified variable w captures the
pre-assignment value of x. (The substitution Π[x := w] replaces all occur-
rences of x with w in Π, and similarly for e[x := w].)

To illustrate this rule, consider the code fragment to the
right. The context prior to the assignment to z contains
a = z.f and b = z.f, which implies a and b are aliases.
After the assignment to z, the context will contain
a = w.f and b = w.f for some fresh w. Thus we may
still prove a and b are aliases and the last access is re-
dundant, even though a and b are no longer equal to z.f.

a = z .fCheck;
b = z .fNoCheck;
z = y;
t1 = a .gCheck;
t2 = b .gNoCheck;

Note that this rule adds the equality x = e[x := w] to Π, where e may be
any expression. The most useful equality constraints for reasoning about field
accesses have the form x = y, but we will see in Section 4 that constraints
over more complex scalar expressions are crucial for reasoning about array
accesses.

[Read] For the read statement x = y.fk, we verify that y.f has already been
accessed in the current span if k = NoCheck. To do this, we could simply
require that y.f ∈ Π. However, this syntactic notion of membership does
not take into account aliasing or other information. Thus we introduce the
context implication relation Π ` y.f to indicate that the elements in context
Π imply that y.f has been accessed, perhaps via an aliased name:

Π ` y.f iff Π ` z = y ∧ z.f ∈ Π

Any sound decision procedure may be used to implement the relation Π `
z = y. In our implementation, we leverage the SMT solver Z3 [11], making
sure that the translation into Z3’s input language is appropriately conser-
vative. Below, we use a generalized context implication relation Π ` π to
express that the context Π implies the context item π, which may be a path,
alias constraint, or a boolean constraint.
The substitution y.f [x := w] in this rule ensures that the proper elements
are added to post-context Π ′ in the case where y = x.

9

[Write] For the write statement y.fk = x, we verify that y.f has already been
accessed in the current span if k = NoCheck. To compute the post-context
Π ′, we remove all equalities referring to the f field of an object via the
operation Π \ f defined in Figure 4. After the assignment, we include both
the equality x = y.f and the available path y.f in Π ′.

[If] The rule for conditionals merges the post-contexts of the then and else
branches via the meet operator

Π1 uΠ2 = { π ∈ Π1 ∪Π2 | Π1 ` π and Π2 ` π }

This operator computes the largest set of facts in Π1 ∪Π2 that are provable
from bothΠ1 andΠ2. Those contexts may refer to different Skolem variables,
but this rule does not attempt to unify them in any way. Thus, any π in
Π1 uΠ2 will only refer to Skolem variables appearing in both Π1 and Π2.

[While] The rule for loops identifies an appropriate loop invariant context
Πinv that is implied by the pre-state of the loop and also preserved by each
iteration of the loop body. Implication between contexts is defined as

Π1 v Π2 iff ∀π ∈ Π2. Π1 ` π

Our implementation uses a form of Cartesian predicate abstraction [20,22] to
heuristically compute appropriate loop invariants, as described in Section 6.
It synthesizes initial candidate invariants based on loop induction variable
and bounds information extracted from the code and pattern matching for
common idioms.

[Call] This rule for a method call x = y.m(z1..n) first ensures that there is a
corresponding method definition

m(z′) requires P ensures Q modifies K { s; return r }

and creates a substitution θ to map this, the formal parameters z′, and the
result variable r to the corresponding variables y, z, and x at the call site.
The PathSet precondition P describes paths that must be available at call
sites, and this rule checks that each path p ∈ θ(P) is entailed by Π.
The ModifiesSet K contains fields assigned to while evaluating the body of m
(either directly, or indirectly while evaluating a nested method call), as well
as a special token All ifm performs a release or other span-ending operation.
(That requirement is enforced in [Method].) The operation Π \K removes
any invalidated constraints from the context Π. We also replace occurrences
of x in Π as in the previous rules and add the paths from the method’s
post-context Q, yielding the final context Π ′ = (Π \K)[x := w] ∪ θ(Q).

[Acq] Acquires do not change the current context.
[Rel] Once a lock is released, we cannot assume any location is race-free or

any aliasing constraint still holds. Thus, we remove all aliasing information
and available paths from the context, leaving just the boolean expression
constraints, which only refer to local variables.

10

3.2 Correctness

We now sketch the correctness guarantees provided by our analysis. The Ap-
pendix contains the full details of our formal development. We first note that
the semantics exhibits the standard preservation property that evaluation pre-
serves well-typing under an appropriate extension of the type system to run-
time states, denoted D,α ` Σ. This judgment ensures that the run-time state
is consistent with the statically-computed contexts for each thread’s code. The
judgment includes the trace α to provide information about previous accesses
performed within currently active spans.

Our first main correctness result is a preservation theorem showing that if
our analysis can verify the NoCheck annotations in a run-time state Σ with
execution trace α, then it can also verify any successor state Σ′ with respect to
an appropriately extended trace, provided that the extended trace is race-free.

Theorem 2 (Preservation). If D;α ` Σ and Σ −→a Σ′ and α ·a is race-free,
then D; (α · a) ` Σ′.

Based on this theorem, we then show that any verified program state Σ generates
only well formed traces α.

Theorem 3 (Soundness). If D; ε ` Σ and Σ −→α Σ′, then α is well-formed.

Thus, by Theorem 3, a race detector can safely ignore NoCheck accesses in any
verified program, with no loss in precision.

4 Arrays

In order to better optimize array-intensive programs, we extend our analysis to
support universally quantified paths, as illustrated by the following code frag-
ment to clear an array, as well as computed analysis contexts:

i = 0;

// Π : i = 0
while (i < a.length) {

// Π : ∀(j ∈ 0 to i). a[j], i < a.length

a[i]Check = 0;

// Π : ∀(j ∈ 0 to i). a[j], a[i], i < a.length

i = i + 1;

// Π : ∀(j ∈ 0 to i′). a[j], a[i], i = i′ + 1, i′ < a.length

}

// Π : ∀(j ∈ 0 to a.length). a[j], i ≥ a.length

We wish to infer that after the loop terminates, all array elements have been
accessed, which we capture as the universally quantified path

∀j ∈ (0 to a.length). a[j]

11

stating that array elements a[0], a[1], . . . , a[a.length−1] have been accessed.
Verifying this loop post-condition naturally requires a corresponding loop invari-
ant path

∀j ∈ (0 to i). a[j]

and also a richer constraint language to capture relevant invariants on indexed
variables. For example, on entry to the loop, the equality i = 0 ensures that the
loop invariant holds initially:

{ i = 0 } ⇒ { ∀j ∈ (0 to i). a[j] }

Moreover, the invariant holds on the loop’s back edge due to the following impli-
cation, where the Skolem variable i′ refers to the value of i before the increment:

{ ∀j ∈ (0 to i′). a[j], a[i′], i = i′ + 1 } ⇒ { ∀j ∈ (0 to i). a[j] }

Finally, on loop termination, we verify:

{ ∀j ∈ (0 to i). a[j], i ≥ a.length } ⇒ { ∀j ∈ (0 to a.length). a[j] }

Figure 5 formalizes the extended language of quantified paths and type rules
used by our analysis. Paths now include array accesses x[z] as well as field
accesses. Paths may also include an enclosing quantification (∀i ∈ r. •) over a
strided range r of the form “estart to eend by estep”, which represents the set
of indices { i ∈ [estart , eend) | (i − estart) mod estep = 0 }. (We abbreviate the
strided range “estart to eend by 1” as “estart to eend”.)

The rule [Array Write] for an array assignment y[z] = x uses the operation
Π \ Array, defined below, to remove from Π any information dependent on
array values. We also include Array as a possible ModifiesSet component κ in
method specifications.

κ ::= f | All | Array

Π \Array = { p ∈ Π } ∪ { be ∈ Π } ∪ { (x = p) ∈ Π | p 6= y[e] }

This treatment of array writes is quite coarse since an assignment to any array
eliminates facts about all arrays in the program. In practice, we use a type-based
rule that, when an array of type C is modified, eliminates only facts dependent
on values stored in arrays of type C. This refinement works well in practice, but
further refinements based on more precise points-to information could be used
in cases where it proves insufficient.

5 Shadow Proxies

Identifying redundant checks can improve the performance of dynamic race de-
tectors, but it does not directly reduce the memory overhead of keeping analysis
(or shadow) state for each memory location. Various race detectors [32,43] have
explored using one shadow state per object or array, but this approach may
produce spurious warnings.

12

Figure 5: RedJava Extensions to Support Arrays.

s ∈ Stmt ::= . . . | x = new C[z] | x = y[z]k | y[z]k = x

p ∈ Path ::= x.f | x[e]
qp ∈ QuantifiedPath ::= p | ∀i ∈ r. qp
r ∈ StridedRange ::= e to e by e

π ∈ ContextItem ::= qp | c | be

D ` s : Π ; Π′

[Array Read]
k = NoCheck ⇒ Π ` y[z]

p = (y[z])[x := w] Π′ = Π[x := w] ∪ {x = p, p}
D ` x = y[z]k : Π ; Π′

[Array Write]
k = NoCheck ⇒ Π ` y[z]

Π′ = (Π \ Array) ∪ {x = y[z], y[z]}
D ` y[z]k = x : Π ; Π′

We now explore how to reduce the number of shadow states via static anal-
ysis, while still preserving precision. Our approach is based on the observation
that accesses to different memory locations are often correlated. For example, an
object ρ of type C with fields f and g may be used in such a way that whenever
ρ.g is accessed, ρ.f will also be accessed in the same span. Thus any data race
on ρ.g naturally implies there is a race on ρ.f . In this case, we say that ρ.f is a
proxy location for ρ.g, and we say that f is a proxy field for g, written f � g, if
that proxy relationship holds for all C objects.

If f � g, then a race checker may forego allocating shadow state for g fields
and ignore all accesses to them while still providing the following guarantees for
all objects ρ:

– If no races are found on ρ.f , then both ρ.f and ρ.g are race-free.
– No races will be reported on ρ.g, since those accesses are not checked.
– A detected race on ρ.f implies that there is a race on ρ.f and that there

may be a race on ρ.g.

Note that if both f � g and g � f (i.e., f and g are always accessed together),
then the third guarantee may be strengthened to:

– A detected race on ρ.f implies that there are races on both ρ.f and ρ.g.

However, the weaker asymmetric requirement f � g enables more check elimina-
tion and memory footprint reduction while still providing the useful correctness
guarantee of always detecting a data race on any trace containing one.

Although space limitations prevent a full discussion, we summarize type sys-
tem extensions for identifying proxy fields in the rest of this section. The key
typing requirement is that f � g if and only if, for each access instruction
x = y.gk or y.gk = x, either

– Π ` y.f , where Π is the instruction’s computed context; or
– Π ′ ` y.f , where Π ′ is the computed context for some instruction in the same

span that post-dominates the access to g.

13

The first clause captures cases when f is accessed before g, and the second
captures the converse. If these requirements hold, all race checks for g are re-
dundant. In our Java implementation, we compute the post-dominator relation
assuming all unchecked exceptions, such as NullPointerExceptions, are errors
in the source code and guarantee no loss in precision only on error-free traces.

Array entries may also have proxies. Location ρ[i] is a proxy location for ρ[j]
if ρ[i] is accessed in every span accessing ρ[j]. We say that i is a proxy index
for j if that requirement holds for all array accesses in a program. Distinguishing
arrays by allocation site (via, for example, a standard points-to analysis) enables
a more precise definition: i �l j if i is a proxy index for j for all arrays allocated
at source location l. The key typing requirement for arrays is that i �l j if and
only if, for each access instruction x = y[z]k or y[z]k = x such that y may be
an array allocated at source location l and z’s value may be j, either

– Π ` y[i], where Π is the instruction’s computed context; or
– Π ′ ` y[i], where Π ′ is the computed context for some instruction in the

same span that post-dominates the array access.

Given this definition, the race check on an access y[z] is redundant if, for every
possible value j for z and allocation site l for y, there exists an i such that i �l j.

Typically, shadow proxies for all indices of an array can be summarized quite
succinctly. For example, the relation ∀i. (i div 4)∗4 �l i indicates that all arrays
allocated at l are divided into chunks of four elements, where the first index in
each chunk is a proxy for the other three indexes in the chunk. Any array access
instruction guaranteed not to touch one of the proxies may be tagged with
NoCheck. Moreover, a race detector can use the shadow location maintained
for each chunk’s proxy when checking accesses to any elements in the chunk,
reducing the number of required shadow locations for an array of n elements
from n to n/4. Similar reductions in checking and memory requirements are
possible for many different proxy relations, several of which are described below.

The shadow proxy analysis requires information about each span. However,
one may be able to identify many proxies without examining all spans: for exam-
ple, proxies among private fields can be found by examining only a single class
at a time. We could also augment our system with simple “proxy specifications”
on classes, which could then be subsequently verified by a modular analysis. We
hope to explore these items in more detail in the future.

6 Implementation

We have implemented our analysis for the full Java language as part of a tool
called RedCard. This analysis reads in bytecode programs and labels each field
and array access as either NoCheck or Check. It outputs a list of the accesses
marked NoCheck, and that list may then be used to optimize any dynamic race
detector. Transforming our type system to the full Java language and an in-
ference algorithm for bytecode is mostly straightforward. We describe the most
interesting implementation details below.

14

We implemented RedCard in the WALA analysis infrastructure [41], which
represents method bodies as control flow graphs over instructions in SSA form.
The tool analyzes all methods appearing in a call graph built by WALA using
0-CFA. RedCard implements the relation Π ` π via the Z3 SMT Solver [11].

For each instruction in each method, we compute a context Π via dataflow
analysis. All contexts begin as the special context Top, where Π uTop = Π for
all contexts Π. The analysis then uses a meet operator and transfer functions
based on the system presented in Section 3.1 to compute the maximal fixed
point solution for the contexts for each instruction. RedCard handles all basic
synchronization operations present in Java, including locks, volatile variables,
fork/join, wait/notify, and so on. RedCard then identifies each memory access
instruction for which its context implies a check is redundant.

Intra- and Inter-Procedural Modes. RedCard processes methods in one
of two modes: an intra-procedural mode in which RedCard assumes the most
conservative specification “requires { } ensures { } modifies { All }” for all
methods and proceeds to infer redundant checks via an intra-procedural dataflow
analysis; or an inter-procedural mode in which RedCard uses a context-insensitive
inter-procedural dataflow analysis to infer both method specifications and redun-
dant checks. The inter-procedural mode also uses a class hierarchy analysis to
reason about method resolution. This mode yields better results when precise
specifications are not available, but it is also a more complex and compute-
intensive analysis.

Distinguishing Reads and Writes. Up to this point, our analysis has not
distinguished reads and writes. However, it is necessary to do so in practice since
precise dynamic race detectors treat them differently. Specifically, two concurrent
accesses are considered conflicting only when at least one of them is a write.
Given this distinction, RedCard uses the following rules to determine whether
a check is redundant:

– A dynamic check on a write is redundant if there is a previous write to the
same location in the current span.

– A dynamic check on a read is redundant if there is a previous read or write
to the same location in the current span.

Thus, we record in Π whether each access p is a read or a write, and we adjust
the definition of redundancy to match the above. For simplicity, we continue to
treat all accesses uniformly in the examples below.

Libraries. Since we evaluate RedCard when used in conjunction with Fast-
Track, RedCard follows FastTrack’s treatment of libraries: Fields of library
classes are not checked for races, and synchronization operations internal to li-
braries are assumed to not be used to protect any of the target’s data and
are ignored. However, several key library methods from java.lang.Object and
java.lang.Thread, such as Object.notify and Thread.start, are treated spe-
cially as synchronizing operations. These assumptions may cause FastTrack
to report false alarms (since necessary synchronization within libraries may be

15

ignored), but we have never observed false alarms for the benchmarks studied.
RedCard treats synchronization in libraries in exactly the same way, thereby
leaving the completeness/soundness guarantees of FastTrack unchanged. The
programmer can also provide more precise library module specifications or fully
analyze specific library classes via RedCard command-line options.

φ-functions. WALA’s SSA representation makes some aspects of the dataflow
analysis much easier since local variables are immutable. However, SSA does have
φ-functions for merging multiple definitions into a single variable at meet-points
in the CFG, as in the following example, which also shows how we compute Π
for the entry to the block containing a φ-function:

x2 = ...

x = φ(x1,x2)
...

Π1

x1 = ...

Π2 Π = (Π1[x := w1] ∪ {x = x1})
u (Π2[x := w2] ∪ {x = x2})

In essence, we equate x with the appropriate variable in the incoming contexts
Π1 and Π2. Contexts propagated along back edges introduce one additional
complexity. For example, if Π2 is the context propagated back to the top of a
loop containing the definition of x, then Π2 may already include references to
x. Thus, we replace all occurrences of x in Π2 with a fresh, Skolem variable w2,
and similarly modify Π1, prior to adding the equalities and computing the meet
of the resulting contexts.

Path Expansion. Our previously defined meet operator can be overly coarse
at meet-points. To illustrate why, consider the following program and contexts:

 t1 = a.fCheck

 y1 = t1.gCheck

 a = ...

 t2 = a.fCheck

 y2 = t2.gCheck

 t3 = a.fNoCheck

 y3 = t3.gNoCheck

Π2Π1

Π1 = { a.f, t1 = a.f, t1.g, y1 = t1.g }

Π2 = { a.f, t2 = a.f, t2.g, y2 = t2.g }

Π1 uΠ2 = { π ∈ Π1 ∪Π2 | Π1 ` π and Π2 ` π }
= {a.f}

Both branches access a.f.g. Thus, the check on y3 = t3.g is redundant. How-
ever, we cannot prove that because the context for the start of the final block
would be Π1 u Π2 = {a.f}. In essence, the meet operation loses information
about available paths because incoming contexts may encode aliasing via dif-
ferent local variables. To reason more precisely about such situations at meet-
points, we permit paths to include more than one field or array reference, and
RedCard expands each access path in Π1 and Π2, using their respective aliasing
constraints, until the access paths refer only to variables defined by instructions
common to both control-flow paths leading to the meet point (i.e., that domi-
nate the meet-point). In Π1 above, t1.g and t1 = a.f are combined to obtain
a.f.g. The same path is similarly derived from Π2. These expanded paths are
added back into Π1 and Π2 before u is applied, yielding

(Π1 ∪ {a.f.g}) u (Π2 ∪ {a.f.g}) = { a.f, a.f.g }

16

which does allow us to conclude that checking for races on y3 = t3.g is re-
dundant. Supporting longer paths requires changes to PathSet and ModifiesSet
operations, but it is mostly straightforward. Our implementation limits paths to
contain at most four field or array references to ensure termination.

Loop Invariants. RedCard infers loop invariants with a specialized form of
Cartesian predicate abstraction [20, 22] on both access paths and constraints.
More specifically, we compute the loop invariant context Πinv in rule [while] by
first heuristically generating a conjectured context Πheuristic and then repeatedly
analyzing the loop body to infer the maximal Πinv ⊆ Πheuristic that is a valid
loop invariant. Our heuristics conjecture invariants based, in part, on the context
that first flows to the loop head, inferred loop induction variables, and pattern
matching for common idioms. Unusual array access patterns, complex index
computations, and irreducible flow graphs may be problematic for our approach,
but we found it to work quite well in practice for most loops, including nested
loops iterating over multi-dimensional arrays in various ways.

Shadow Proxies. After computing the contexts for every program point, Red-
Card infers field shadow proxies by conjecturing that each field is a proxy for
every other field and then refuting the conjectures that do not hold.

To identify array shadow proxies, RedCard first conjectures a set of possible
index relations that hold for all arrays allocated at each allocation site l. These
include relations of the form “∀i. F (i) �l i” where F (i) is one of the following:

F (i) = 0 F (i) = (i div 4) ∗ 4 F (i) = i mod 4
F (i) = 1 F (i) = (i div 8) ∗ 8 F (i) = i mod 8

The first column characterizes whole arrays proxied by a single index, the middle
column characterizes arrays divided into chunks where an index is proxied by the
first index in its chunk, and the right column characterizes arrays that are always
traversed by a fixed stride (e.g., every fourth element is touched). RedCard
then refutes the proxy relations for arrays that do not hold. We believe further
improvements could be made by expanding this set of conjectures and refining
our analysis to reason about more sophisticated patterns.

Code Transformations. A variety of code transformations significantly im-
prove the number of statically identifiable redundant checks. One particularly
useful transformation is loop unrolling [8,38]. For example, the following loop (on
the left) performs N run-time race checks on a.f. Assuming m does not modify
a.f, all of these checks are redundant except the first. Thus the semantically-
equivalent version on the right performs only one check.

for (i = 0; i < N; i++) {

a.fCheck .m();
}

i = 0;

if (i < N) {

a.fCheck .m();
for (i = 1; i < N; i++) { a.fNoCheck .m(); }

}

RedCard currently implements loop unrolling via a source-to-source translation
step occurring prior to the dataflow analysis. Another transformation we hope

17

to explore in the future is method specialization based on available paths at
different call sites. This optimization is synergistic with loop unrolling, since a
method called inside the loop body can be specialized to two versions: one for
the first iteration outside the loop, and one version for inside the loop where
fewer checks may be necessary.

7 Evaluation

We demonstrate the effectiveness of RedCard by evaluating its ability to elim-
inate redundant checks in a variety of benchmarks. We first describe our ex-
perimental framework and analysis time, then show the percentage of access
checks removed by RedCard for each program, and finally demonstrate how
eliminating checks improves the performance of the FastTrack race detector.

Benchmark Configuration. We performed experiments on the following bench-
marks: elevator, a discrete event simulator for elevators [38]; hedc, a tool to ac-
cess astrophysics data from Web sources [38]; tsp, a Traveling Salesman Problem
solver [38]; mtrt, a multithreaded ray-tracing program from the SPEC JVM98
benchmark suite [36]; jbb, the SPEC JBB2000 business object simulator [36];
crypt, lufact, sparse, series, sor, moldyn, montecarlo, and raytracer from
the Java Grande benchmark suite [25]; the colt scientific computing library [6];
the raja ray tracer [21]; and and philo, a dining philosophers simulation [14].
We configured the Java Grande benchmarks to use four worker threads and the
largest data set provided. Table 1 shows statistics for both the “Original” pro-
grams and “Unrolled” variants in which RedCard transformed all inner-most
loops as described in Section 6. All experiments were performed on an Apple
Mac Pro with dual 3GHz quad-core Pentium Xeon processors and 12GB of mem-
ory running Sun’s Java HotSpot 64-bit Server VM version 1.6.0. Access counts
and running times are the average of ten executions.

RedCard Static Analysis Time. The time required by RedCard to process
the “Original” benchmarks was on average 18 seconds per thousand lines of code.
Approximately 40% of this time was spent loading class files and building the
internal data structures used by the WALA analysis engine. The remaining time
was primarily consumed by the RedCard dataflow analysis, which has not been
optimized. We believe substantial speed ups could be achieved by refactoring and
refining our core data structures. Typically, less than 15% of the total running
time was spent solving Z3 queries, indicating that the SMT solver was not a
bottleneck. The more complex control flow graphs in the “Unrolled” versions
led to an average processing time of 24 seconds per thousand lines of code.

Analysis time increased by roughly 50% when RedCard was configured to
identify field and array proxies. Our prototype conjectures a large set of possible
field and array proxies, and then checks the validity of each conjecture inde-
pendently. Replacing this approach by a more efficient algorithm that processes
multiple conjectures simultaneously would eliminate much of this overhead.

18

% Accesses Checked
Original Unrolled

Program
Size

(lines)

A
cc

es
se

s
(M

il
li
o
n
s)

D
y
n
a
m
ic

a
l
ly

N
o
n
R

e
d
u
n
d
a
n
t

R
e
d
C

a
r
d

R
C

+
P
r
o
x
y

D
y
n
a
m
ic

a
l
ly

N
o
n
R

e
d
u
n
d
a
n
t

R
e
d
C

a
r
d

R
C

+
P
r
o
x
y

colt 111,162 1,102.42 99.6 99.9 99.6 99.3 99.9 99.9
crypt 1,255 2,150.0 56.4 59.2 46.7 40.7 44.6 43.5
lufact 1,627 7,531.07 99.1 99.4 99.4 99.1 99.3 99.3
moldyn 1,409 30,586.08 53.1 59.5 27.5 26.3 27.7 14.8
montecarlo 3,669 2,713.35 2.3 43.0 34.8 2.3 28.8 24.6
mtrt 11,315 24.23 40.2 77.8 77.0 40.2 77.7 76.8
raja 12,027 5.39 55.6 96.8 69.9 55.6 96.8 69.9
raytracer 1,971 39,560.09 51.5 86.2 34.0 48.4 83.2 31.0
sparse 868 7,244.5 83.0 90.5 56.1 34.6 42.1 42.1
series 967 4.0 75.0 83.3 66.7 0.1 33.3 33.3
sor 1,017 2,417.42 83.3 83.5 83.5 66.3 82.8 82.8
tsp 706 820.71 62.9 92.8 86.5 61.3 75.6 69.5
elevator 2,840 0.02 69.2 80.0 66.5 58.5 69.5 61.2
philo 86 <0.01 64.5 67.3 59.4 54.5 59.0 52.2
hedc 24,932 0.05 5.9 94.6 94.5 2.3 93.5 93.4
jbb 45,943 1,068.74 75.8 84.2 78.3 68.4 75.4 69.3

Geo. Mean 46.7 79.3 63.1 24.6 62.6 53.4

Table 1. Percentage of run-time race checks eliminated under different configurations.

Although we have not optimized RedCard for speed, the initial results show
that it is no more expensive than existing whole-program techniques. For exam-
ple, the geometric mean of the time required to process each program in the
JavaGrande suite was 101 sec. for Chord and 55 sec. for RedCard. These tools
are built on top of frameworks (Soot / WALA) with different performance char-
acteristics, and a more consistent implementation and analysis of them would
be required to draw definitive conclusions.

Redundant Check Elimination. Table 1 shows the number of accesses per-
formed by each program. A precise race detector would need to check 100%
of those accesses. That table also shows how many of those checks could be
eliminated under three scenarios:

Dynamically NonRedundant: To gauge how well the inherently conserva-
tive RedCard analysis performs, we first estimate the “optimal” set of in-
structions that could be annotated as NoCheck by examining run-time access
histories. Specifically, we ran each program and identified access instructions
that only referenced locations already accessed in the current span. We labeled
those instructions as NoCheck and all others as Check. This may over-estimate
the number of removable checks due to coverage limitations but seems a rea-
sonable approximation for general comparisons.

19

RedCard: This column reports the percentage of run-time accesses corre-
sponding to checks that the RedCard static analysis labeled as Check.

RC+Proxy: This column also uses RedCard to label accesses, but reasons
about shadow proxies for fields and arrays as well.

We show the number of accesses requiring run-time race checks for these scenar-
ios as a percentage of the total number accesses. For the “Original” programs,
RedCard reduced the geometric mean of accesses checked to 79.3% of the total
number of accesses. While still higher than the Dynamically NonRedundant
estimate of 46.7%, it does remove a substantial amount, and for a number of
programs, RedCard was close to the estimated optimal.

Inferring shadow proxies proved particularly useful for a number of programs,
as shown in the RC+Proxy column. For example, in raytracer, RedCard
recognized that the x, y, and z fields of a heavily-used 3-D point class were
proxies, leading to a reduction in the number of checks performed from 86% to
34%. Other programs, such as crypt, contained large arrays for which proxy
relations could be computed. Overall, RedCard with proxy inference roughly
cut in half the number of run-time race checks.3 Switching to the intra-procedural
mode still provided significant benefit, reducing the checking rate to about 83%
for RedCard, and to about 70% for RC+Proxy.

For the “Unrolled” programs, RedCard performed somewhat better and re-
duced the checking rate to roughly 63% for RedCard and to 53% for RC+Proxy.

Overall, these results are quite promising. We note that there is high variance
in how well RedCard performs relative to the estimated optimal. In those cases
where RedCard performed poorly, imprecisions in aliasing information, array
index computations, or loop invariant conjectures made it unable to verify that
commonly exercised instructions could be tagged as NoCheck. Improving these
items would enable RedCard to reason about more subtle code.

Run-time Performance. We now examine how RedCard improves the run-
time performance of the FastTrack precise dynamic race detector [18]. Fast-
Track loads unmodified Java class files and instruments synchronization and
memory operations to generate an event stream. It processes those events as
the program executes.FastTrack tracks happens-before orderings between syn-
chronization and memory accesses using an adaptive epoch-based representation.

FastTrack’s representation of the happens-before relation is quite time and
space efficient compared to other precise detectors, but it must check every access
and maintain shadow state for every location. Table 2 shows the base running
time of our target programs, as well as the slowdown incurred by FastTrack.
When running FastTrack and our other analysis tools, all classes loaded by the
benchmark programs were instrumented, except those from the standard Java
libraries. The timing measurements include the time to load, instrument, and
execute the target program startup time. On average, using FastTrack led to
a slowdown of 7.5x. Memory accesses are far more common than synchronization

3 RC+Proxy may yield better results than Dynamically NonRedundant because
that estimate does not take possible proxy relationships into account.

20

Slowdown (x Base Time) Shadow
Original Unrolled Locations

Program
Thread
Count

Base
Time
(sec)

F
a
st

T
r
a
c
k

R
e
d
C

a
r
d

R
C

+
P
r
o
x
y

“ R
C

+
P
r
o
x
y

F
a
st

T
r
a
c
k

”
R

e
d
C

a
r
d

R
C

+
P
r
o
x
y

B
a
se

C
o
u
n
t

(x
1
0
5
)

R
C

+
P
r
o
x
y

(%
o
f
B

a
se

)

colt 11 16.0 1.1 1.1 1.1 (0.96) 1.1 1.0 5.1 90.0
crypt 7 1.2 35.4 35.1 13.1 (0.37) 35.0 20.6 1,262.8 13.8
lufact 4 5.6 8.2 7.7 7.7 (0.94) 8.1 8.2 40.1 99.9
moldyn 4 7.5 10.5 7.9 4.7 (0.45) 12.8 6.8 4.7 56.2
montecarlo 4 5.8 9.1 8.2 8.3 (0.91) 8.2 8.0 1,825.2 100.0
mtrt 5 0.4 11.8 10.9 9.5 (0.81) 10.7 9.6 23.0 97.5
raja 2 0.4 6.8 7.2 6.4 (0.94) 7.1 6.5 9.6 59.0
raytracer 4 5.8 14.2 12.5 6.0 (0.42) 12.0 5.9 2,098.6 43.7
sparse 4 5.9 19.9 19.9 19.6 (0.99) 20.6 20.8 159.7 100.0
series 4 150.1 1.0 1.0 1.0 (1.00) 1.0 1.0 20.0 100.0
sor 4 2.3 6.2 6.1 5.9 (0.94) 6.5 6.7 40.0 100.0
tsp 5 0.6 7.3 7.1 7.1 (0.97) 11.1 10.8 1.6 100.0
elevator* 5 5.0 1.2 1.2 1.2 (1.00) 1.2 1.2 <0.1 86.5
philo* 6 9.3 0.6 0.5 0.6 (1.02) 0.6 0.7 <0.1 77.3
hedc* 6 4.7 1.3 1.3 1.3 (0.99) 1.4 1.3 0.4 100.0
jbb* 5 73.9 1.2 1.2 1.2 (1.00) 1.2 1.2 925.0 82.1

Geo. Mean 7.5 7.1 5.7 (0.76) 7.7 6.4 74.8

Table 2. Performance results. Programs marked with * are not compute-bound and
are excluded from the mean slowdowns.

operations in Java programs, and the vast majority of FastTrack’s overhead
is caused by monitoring field and array accesses.

The fourth column in Table 2 shows the slowdown of FastTrack when
used in conjunction with RedCard. That redundancy analysis reduced Fast-
Track’s average slowdown from 7.5x to 7.1x. Including shadow proxy analysis
further reduced the average slowdown to 5.7x, thereby eliminating approximately
25% of FastTrack’s run-time overhead, as computed as the ratio of the run-
ning time of FastTrack configured to use RedCard with proxies and Fast-
Track’s original running time in the parenthesized column. The improvements
are not linear in the number of checks removed, due to other factors that can
impact overall performance, such as lock contention on FastTrack’s internal
data structures and memory caching effects.

We had expected that the unrolled variants would exhibit greater perfor-
mance improvements since RedCard eliminated more checks in them. However,
they were actually about 15-20% slower on average. The primary cause of the
slowdown appears to be the HotSpot JIT compilation engine, which was less
able to optimize the unrolled code’s larger methods and more complex control
structures. We believe a tighter integration of the transformations, analysis, and
JIT compilation strategy would mitigate these factors.

21

The last two columns in Table 2 evaluate RedCard’s impact on the shadow
memory maintained by FastTrack. The “Base Count” columns shows the num-
ber of distinct memory locations accessed by each program (and hence, the num-
ber of shadow locations FastTrack must allocate and maintain). A “shadow
proxy-aware” FastTrack can avoid allocating shadows for all proxied mem-
ory locations, as described in Section 5. For the target programs, this led to a
roughly 25% average reduction in the number of allocated shadows. There is high
variance among the benchmarks. Some programs in which no interesting proxy
relationships were found show little change in the memory footprint, but others,
such as crypt, moldyn and raytracer, show dramatic improvement, especially
in how many shadow locations were allocated for tracking accesses to arrays.

Comparison to Chord. We also performed preliminary experiments to com-
pare RedCard’s ability to find redundancy to that of Chord, a sound static
analysis for identifying accesses that may be involved in a data race [30]. Chord
and other sound static analyses can often identify specific data structures or
memory references guaranteed to be free of races, they may be used to verify or
infer NoCheck annotations. Chord uses a collection of complex whole-program
analyses to reason about reachability, aliasing, locking, and thread ordering. As
such, Chord requires much more global reasoning than RedCard’s span-modular
redundancy analysis, particularly when used in the intra-procedural mode.

To gauge how well RedCard is able to reason about redundancy when com-
pared to static analyses like Chord, we checked each benchmark program with
Chord and labeled all accesses potentially involved in races as Check. All other
accesses were labeled NoCheck. While the average reduction in checks across all
benchmarks was roughly on par with RedCard, Chord’s ability to reason about
individual programs varied greatly. Less than 1% of the run-time checks were
eliminated in some programs that use arrays heavily (crypt, moldyn, raytracer,
sparse, series, sor). For other programs, greater than 99% of the run-time
checks were eliminated (lufact and mtrt). We believe this bi-modal behavior
is caused by several factors: Chord’s handling of arrays is less precise than ours,
and it seemed able to recognize that heavily used data structures in lufact
and mtrt are thread-local and thus required no checking. Adding a thread-local
analysis to RedCard may allow it to similarly remove many of these checks.

8 Related Work

Precise dynamic data race detectors typically represent the happens-before re-
lation with vector clocks (VCs) [28], as in the Djit+ race detector [32]. VCs are
expensive to maintain, however. The FastTrack race detector uses an adap-
tive epoch-based representation to reduce the space and time requirements of
VCs [18]. Other optimizations include dynamic escape analyses [8,38] or “accor-
dion” vector clocks that reduce space overheads for programs with short-lived
threads [10]. Different representations of the happens-before relation have also
been explored [14]. Despite these improvements, the overhead of precise detectors
can still be prohibitively high.

22

Similar notions of redundancy and release-free spans have been used in other
settings. For example, the IFRit race detector uses the same insight about lock
releases in its notion of interference-free regions [13], which were originally de-
signed to facilitate compiler optimizations for race-free programs [12]. The IFRit
race detector monitors execution and reports a data race when multiple con-
currently executing interference-free regions access the same variable. IFRit is
faster than FastTrack, but is not precise and may miss some races. In contrast,
RedCard can identify redundancies for any dynamic race detector, without in-
troducing any false positives of false negatives. That is, any accesses identified as
redundant can be skipped by any race detector without changing the guarantees
provided by that detector.

Another study uses similar concepts to verify programmer-specified owner-
ship policies [27], but that analysis is more restricted in its ability to reason
about aliasing and function calls, and it requires programmers to specify when
a thread has exclusive access to memory locations, rather than inferring it. Ra-
man et al. developed a race condition algorithm for the very different context
of structured parallelism, as in Cilk or X10 [33]. Their technique applies check
hoisting and check elimination optimizations similar in spirit to RedCard to
this domain. Their experimental results find fewer opportunities for optimiza-
tion than RedCard, most likely due to either limitations in the precision in their
analysis or the nature of programs written for such systems.

Many static analysis techniques for identifying races have also been explored,
including systems based on types [1,3,23], model checking [7,29,42] and dataflow
analysis [15], as well as scalable whole-program analyses [30,40]. While static race
detection provides the potential to detect all race conditions over all program
paths, decidability limitations imply that any sound static race detector may
produce false alarms. As mentioned previously, these static analyses can often
identify specific data structures or memory references guaranteed to be free of
races and may thus be used to verify or infer NoCheck annotations. However,
soundness of the static analysis is essential to avoid missing data races. Many of
the mentioned static analyses are either unsound by design or unsound in their
implementations to reduce the number of spurious warnings (see, e.g., [1, 15]).
Their focus on identifying race-free accesses rather than redundant race checks
also lead to different design choices in terms of precision and scalability.

Gross et al. present a global static analysis to improve the precision and
performance of a LockSet-based detector [38]. In contrast to RedCard’s focus
on redundant checks, their analysis, while it does eliminate some redundant
checks on field accesses in a fairly restrictive way, is primarily designed to identify
objects on which no races can occur. As such, their algorithm requires global
aliasing information, as well as a static approximation of the happens-before
graph for the whole program. Moreover, their reliance on an imprecise race
detector leads their system to both miss races and report spurious warnings.
They also do not support arrays.

Choi et al. present a different global analysis for removing run-time race
checks for accesses guaranteed to be race-free [8]. Despite the primary focus on

23

identifying race-free accesses, it does include elements closer in spirit to Red-
Card. In particular, the analysis eliminates some redundant checks via a simple
intra-procedural analysis. However, their notion of redundancy is less general
than ours. They cannot, for example, track redundancy across method calls,
reason about array accesses, or model synchronization operations as precisely as
RedCard. In addition, their analysis is tailored for use with a variant of the
imprecise LockSet algorithm. RedCard can be used to optimize any detector.

Various alias analyses have used notions similar to our available paths. For
example, Fink et al. compute must and must-not aliases via access paths as part
of an analysis to verify type-state protocols [16]. RedCard goes beyond that
approach by supporting synchronization operations, a more precise model of ar-
rays, and reasoning about race conditions. At first glance, RedCard seems to
perform similar reasoning to analyses for redundant load elimination optimiza-
tions in compilers for concurrent languages, as in [4, 24, 39] for example. Our
notion of redundancy, however, focuses on which locations have been accessed,
and not on whether a value read from memory may be subsequently reused, as
illustrated in Section 3. This leads to a more general notion of redundancy more
amenable to analysis by tools specifically designed to reason about it.

Acknowledgments. This work was supported by NSF grants 0905650, 1116883
and 1116825. We thank James Wilcox for his assistance on the experiments.

References

1. M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race
detection for Java. TOPLAS, 28(2):207–255, 2006.

2. S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting data races on
weak memory systems. In ISCA, pages 234–243, 1991.

3. R. Agarwal and S. D. Stoller. Type inference for parameterized race-free Java. In
VMCAI, 2004.

4. R. Barik and V. Sarkar. Interprocedural load elimination for dynamic optimization
of parallel programs. In PACT, pages 41–52, 2009.

5. C. Boyapati and M. Rinard. A parameterized type system for race-free Java pro-
grams. In OOPSLA, pages 56–69, 2001.

6. CERN. Colt 1.2.0. http://dsd.lbl.gov/~hoschek/colt/.

7. A. Chamillard, L. A. Clarke, and G. S. Avrunin. An empirical comparison of
static concurrency analysis techniques. Technical Report 96-084, Department of
Computer Science, University of Massachusetts at Amherst, 1996.

8. J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridhara. Ef-
ficient and precise datarace detection for multithreaded object-oriented programs.
In PLDI, 2002.

9. J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging parallel
programs with flowback analysis. TOPLAS, 13(4):491–530, 1991.

10. M. Christiaens and K. D. Bosschere. TRaDe: Data Race Detection for Java. In
International Conference on Computational Science, pages 761–770, 2001.

11. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, pages
337–340, 2008.

24

12. L. Effinger-Dean, H.-J. Boehm, D. R. Chakrabarti, and P. G. Joisha. Extended
sequential reasoning for data-race-free programs. In MSPC, pages 22–29, 2011.

13. L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm. IFRit:
interference-free regions for dynamic data-race detection. In OOPSLA, pages 467–
484, 2012.

14. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and transaction-aware
Java runtime. In PLDI, pages 245–255, 2007.

15. D. R. Engler and K. Ashcraft. RacerX: Effective, static detection of race conditions
and deadlocks. In SOSP, pages 237–252, 2003.

16. S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate
verification in the presence of aliasing. TOSEM, 17(2), 2008.

17. C. Flanagan and S. N. Freund. Type-based race detection for Java. In PLDI, pages
219–232, 2000.

18. C. Flanagan and S. N. Freund. FastTrack: Efficient and precise dynamic race
detection. Commun. ACM, 53(11):93–101, 2010.

19. C. Flanagan and S. N. Freund. Redcard: Redundant check elimination for dynamic
race detectors. Technical Report UCSC-SOE-13-05, UC Santa Cruz, 2013.

20. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In
POPL, pages 191–202, 2002.

21. E. Fleury and G. Sutre. Raja, version 0.4.0-pre4. Available at http://raja.-

sourceforge.net/, 2007.
22. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,

pages 72–83, 1997.
23. D. Grossman. Type-safe multithreading in Cyclone. In TLDI, 2003.
24. A. L. Hosking, N. Nystrom, D. Whitlock, Q. I. Cutts, and A. Diwan. Partial redun-

dancy elimination for access path expressions. Softw., Pract. Exper., 31(6):577–600,
2001.

25. Java Grande Forum. Java Grande benchmark suite. Available at
http://www.javagrande.org, 2008.

26. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

27. J.-P. Martin, M. Hicks, M. Costa, P. Akritidis, and M. Castro. Dynamically check-
ing ownership policies in concurrent C/C++ programs. In POPL, pages 457–470,
2010.

28. F. Mattern. Virtual time and global states of distributed systems. In Workshop
on Parallel and Distributed Algorithms, 1989.

29. M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding
and reproducing heisenbugs in concurrent programs. In OSDI, 2008.

30. M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In
PLDI, 2006.

31. H. Nishiyama. Detecting data races using dynamic escape analysis based on read
barrier. In Virtual Machine Research and Technology Symposium, pages 127–138,
2004.

32. E. Pozniansky and A. Schuster. MultiRace: Efficient on-the-fly data race detection
in multithreaded C++ programs. Concurrency and Computation: Practice and
Experience, 19(3):327–340, 2007.

33. R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and E. Yahav. Efficient data race
detection for async-finish parallelism. In RV, pages 368–383, 2010.

34. M. Ronsse and K. D. Bosschere. RecPlay: A fully integrated practical record/replay
system. TCS, 17(2):133–152, 1999.

25

35. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A
dynamic data race detector for multi-threaded programs. TOCS, 15(4):391–411,
1997.

36. Standard Performance Evaluation Corporation. SPEC benchmarks.
http://www.spec.org/, 2003.

37. C. von Praun and T. Gross. Object race detection. In OOPSLA, pages 70–82,
2001.

38. C. von Praun and T. Gross. Static conflict analysis for multi-threaded object-
oriented programs. In PLDI, pages 115–128, 2003.

39. C. von Praun, F. T. Schneider, and T. R. Gross. Load elimination in the presence
of side effects, concurrency and precise exceptions. In LCPC, pages 390–405, 2003.

40. J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on millions of
lines of code. In FSE, pages 205–214, 2007.

41. T.J. Watson Libraries for Analysis (WALA). Available at http://wala.source-

forge.net/, 2012.
42. E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued

logic. In POPL, pages 27–40, 2001.
43. Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient detection of data race

conditions via adaptive tracking. In SOSP, pages 221–234, 2005.

26

A Formal Development (Supplemental Material)

This Appendix presents supplementary details of the RedJava semantics, type
system, and main correctness theorems presented in Sections 2 and 3. Arrays,
quantified access paths, and proxies are omitted from the development for sim-
plicity. They pose no major technical challenge and are relatively straight-forward
to include, but they do introduce additional notational complexity.

A.1 Semantics

We specify the operational semantics of RedJava using the abstract machine in
Figure 6. The machine evaluates a program by stepping through a sequence of
states. Each state Σ consists of two components: a heap H and a collection of
threads T . The heap maps locations to values, where each location ρ.f combines
an object address ρ with a field name f . The heap also maps each object address
ρ to the thread identifier (or Tid) of the thread holding the object’s lock (or ⊥ if
it is not held). The thread set T maps each thread identifier t ∈ Tid to a thread
state 〈σ, s〉 that combines a statement s with a (thread-local) store σ mapping
variables in s to values.

In the context of a set of definitions D, the relation

D ` H•〈σ, s〉 −→a H ′•〈σ′, s′〉

models the effect of a single step by thread 〈σ, s〉 on the heap H and the thread’s
local state. The Action a captures the heap operation performed by the step.
For example, if thread t accesses location ρ.fk, a would be t : acc(ρ.fk). The
special action t :ε indicates that a step has no heap effect.

Figure 6 defines the evaluation rules for each statement form. In these rules,
evaluation context E captures the sequential execution of statements within a
thread, and the heap H[ρ.f := v] is identical to H except that it maps the
location ρ.f to the value v. Similar update operations are used on the other
state components. For example, H[ρ := t] updates H to indicate that the lock
for the object at location ρ is held by t. The term σ(e) evaluates an expression
e using local store σ for the values of variables.

To invoke a method x = y.m(z), we first look up the method m in the
program definitions. (For simplicity, we do not model dynamic lookup in the
formal semantics.) We then construct a substitution θ that maps 1) m’s local
variables, which are the free variables of s, other than the return result variable
r, to fresh names, 2) the parameters z′ to the arguments z, 3) the self-reference
this to y, and 4) the return variable r to x. If s is the method body of m,
θ(s) may be inserted into the evaluation context surrounding the call without
variable capture. Moreover, the result of the call is placed in x, as expected.

The relation D ` Σ −→a Σ′ describes a single step of multithreaded program
execution. That rule selects an arbitrary thread t to take a step and updates the
global state Σ accordingly. As above, a captures the memory or synchronization
operation performed by the step. We use the notation t: to represent an arbitrary
action by thread t.

27

F
ig

u
re

6
:

R
u
n
-tim

e
S
ta

te
s

a
n
d

T
ra

n
sitio

n
R

e
la

tio
n

S
ta

te
s

T
ra

c
e
s

Σ
∈

S
ta

te
::=

H
•
T

H
∈

H
ea

p
=

(L
oca

tio
n
7→

V
a

lu
e
)∪

(A
d

d
ress

7→
T

id
⊥

)
l∈

L
oca

tio
n

::=
ρ
.f

u
,t
∈

T
id

::=
1
|

2
|
...

T
∈

T
h

rea
d

s
=

T
id
7→
〈σ
,s〉

σ
∈

S
to

re
=

V
a

r
7→

V
a

lu
e

E
∈

E
va

lC
txt

::=
[

]
|
E

;s

α
∈

T
ra

ce
::=

A
ctio

n

a
,b
∈

A
ctio

n
::=

t
:
a
c
c
(ρ
.f
k
)

|
t

:
a
c
q
(ρ

)
|
t

:
r
e
l
(ρ

)
|
t

:
ε

D
`
Σ
−→

a
Σ
′

D
`
H
•
T

[t
:=
〈σ
,s〉]

−→
a

H
•
T

[t
:=
〈σ
′,s
′〉]

if
D
`
H
•〈σ

,s〉
−→

a
H
′•〈σ

′,s
′〉

a
n
d
a

=
t

:

D
`
H
•〈σ

,s〉
−→

a
H
′•〈σ

′,s
′〉

D
`
H
•〈σ

,E
[s
k
i
p
;s]〉

−→
t:ε

H
•〈σ

,E
[s]〉

D
`
H
•〈σ

,E
[i
f

be
s
1
s
2]〉
−→

t:ε
H
•〈σ

,E
[s

1]〉
if
σ

(e)
=

t
r
u
e

D
`
H
•〈σ

,E
[i
f

be
s
1
s
2]〉
−→

t:ε
H
•〈σ

,E
[s

2]〉
if
σ

(e)
=

f
a
l
s
e

D
`
H
•〈σ

,E
[w
h
i
l
e

be
s]〉

−→
t:ε

H
•〈σ

,E
[i
f

be
(s;w

h
i
l
e

be
s)

s
k
i
p
]〉

D
`
H
•〈σ

,E
[x

=
y
.f
k
]〉

−→
t:a

c
c
(ρ
.f

k
)

H
•〈σ

[x
:=

v
],E

[s
k
i
p
]〉

if
σ

(y
)

=
ρ

a
n
d
H

(ρ
.f

)
=
v

D
`
H
•〈σ

,E
[y
.f
k
=
x

]〉
−→

t:a
c
c
(ρ
.f

k
)
H

[ρ
.f

:=
v
]•〈σ

,E
[s
k
i
p
]〉

if
σ

(y
)

=
ρ

a
n
d
σ

(x
)

=
v

D
`
H
•〈σ

,E
[a
c
q
x

]〉
−→

t:a
c
q
(ρ

)
H

[ρ
:=

t]•〈σ
,E

[s
k
i
p
]〉

if
σ

(x
)

=
ρ

a
n
d
H

(ρ
)

=
⊥

D
`
H
•〈σ

,E
[r
e
l
x

]〉
−→

t:r
e
l
(ρ

)
H

[ρ
:=
⊥

]•〈σ
,E

[s
k
i
p
]〉

if
σ

(x
)

=
ρ

a
n
d
H

(ρ
)

=
t

D
`
H
•〈σ

,E
[x

=
n
e
w
C

]〉
−→

t:ε
H
•〈σ

[x
:=

ρ
],E

[s
k
i
p
]〉

if
ρ

is
fresh

D
`
H
•〈σ

,E
[x

=
e]〉

−→
t:ε

H
•〈σ

[x
:=

v
],E

[s
k
i
p
]〉

if
σ

(e)
=
v

D
`
H
•〈σ

,E
[x

=
y
.m

(
z
)
]〉
−→

t:ε
H
•〈σ

,E
[θ

(s)]〉
if
m
(
z
′)

spec
{
s;r

e
t
u
r
n
r
}
∈
D

a
n
d
θ

m
a
p
s

F
V

(s)\
{
r}

to
fresh

n
a
m

es
a
n
d
θ

m
a
p
s
z
′,t

h
i
s
,r

to
z
,y
,x

,
resp

ectiv
ely.

28

The relation −→α denotes the reflexive-transitive closure of −→a, where the
trace α is a sequence of actions a1·a2 · · · an. Given this definition,D ` Σ0 −→α Σ
models the arbitrary interleaving of the various threads of a multithreaded pro-
gram D, starting from the initial execution state Σ0. For a program D s1|| . . . ||sn,
this initial execution state is Σ0 = H0•T0, where

– H0 maps all locations to null and all addresses to ⊥; and
– T0 maps each thread t ∈ 1..n to 〈σ, st〉, where σ assigns a distinct global

address to each free variable in s1..n. Thus, free variables in s1..n implicitly
denote potentially thread-shared objects.

A.2 Race Conditions and Dynamic Race Detection

As mentioned above, the happens-before relation for trace α is the smallest
reflexive, transitive relation <α on α such that a <α b if a occurs before b in α
and either:

1. a and b are performed by the same thread; or
2. a releases some lock and b acquires that lock.

Any well-formed trace has a race condition if and only if it has a detected race
condition.

Restatement of Theorem 1 (Race Detection). Suppose α is a well-formed
trace. Then α has a race condition iff α has a detected race condition.

Proof. We show that if α has a data race, then it has a detected data race. (The
other direction is trivial.) Consider any race in α between conflicting accesses a
and b to some location ρ.f by distinct threads ta and tb. Since α is well-formed,
a must be preceded by (or equal to) a checked access a′ = ta : acc(ρ.fCheck) with
no intervening release by ta. A similar such b′ = tb : acc(ρ.fCheck) exists for b.

Suppose a′ and b′ do not race. Then

a′ <α b
′

which means that, for some lock m,

a′ <α ta :rel(m) <α b′

Moreover,
a′ <α a <α ta :rel(m) <α b′ <α b

because a′ <α a (with no intervening releases) and b′ <α b. Thus, there is no
race between a and b and we reach a contradiction. Therefore, a′ and b′ do cause
a race condition, and it is a checked race condition since both actions are marked
as Check. ut

29

Figure 7: Type Rules for Run-time States.

D;α ` Σ D;α `t H•〈σ, s〉

[State]

` D
D;α `t H•T (t) ∀t ∈ Tid

D;α ` H•T

[Thread]
σ′ extends σ with a mapping for the
Skolem variables in Π

H;σ′;α `t Π
D ` s : Π ; Π ′

D;α `t H•〈σ, s〉

H;σ;α `t Π

[Context]

H;σ;α `t π ∀π ∈ Π
H;σ;α `t Π

H;σ;α `t π

[Path]
α = α1 · t :acc(σ(y).f Check) · α2

α2 contains no releases by t

H;σ;α `t y.f

[Alias Constraint]
H;σ;α `t y.f

σ(x) = H(σ(y.f))

H;σ;α `t x = y.f

[Boolean Constraint]

σ(be) = true

H;σ;α `t be

A.3 Type System

Run-Time States. We extend our type system to run-time states Σ via the
judgment D;α ` Σ defined in Figure 7. Here, the trace α provides information
about previous accesses within current spans.

The related judgment D;α `t H•〈σ, s〉 checks a particular thread 〈σ, s〉 in the
context of heap H and trace α. The context Π may refer to Skolem variables,
so this rule first extends the local store σ to a store σ′ containing arbitrary
values for those variables. It then uses the judgment H;σ;α `t Π to check if the
available paths and constraints in Π are satisfied by heap H, local store σ′, and
history trace α.

Context Implication. As described in Section 3.1, the RedJava type system
relies upon the context implication relation Π ` π for verifying indicate that
a path, alias constraint, or equality constraint π is satisfied by the context Π.
Any decision procedure may be used to implement this relation, provided that
it is sound. The following property formalizes this soundness assumption, essen-
tially requiring that any context Π ′ implied by Π is true in any run-time state
conforming to Π.

Property 1 (Sound Context Implication). Suppose H;σ;α `t Π. If Π v
Π ′ then H;σ;α `t Π ′.

30

In addition, we require that the implication decision procedure be transitive.

Property 2 (Transitive Context Implication). If Π v Π ′ and Π ′ v Π ′′

then Π v Π ′′.

A.4 Correctness

We now address the correctness guarantee provided by our analysis. Our first
main correctness result is a preservation theorem showing that if our analysis
can verify the NoCheck annotations in a run-time state Σ, then it can also verify
any successor state Σ′ with respect to an appropriately extended trace, provided
that trace is race-free.

Restatement of Theorem 2 (Preservation). If D;α ` Σ and Σ −→a Σ′

and α · a is race-free, then D; (α · a) ` Σ′.

Proof. Suppose the action a is performed by thread t. From rule [State] and
the definition of our transition relation, we have the following:

` D
D;α `i H•T (i) ∀i ∈ Tid
Σ = H•T [t := 〈σ, s〉]
Σ′ = H ′•T [t := 〈σ′, s′〉]
D ` H•〈σ, s〉 −→a H ′•〈σ′, s′〉

In addition, for any thread T (i) = 〈σi, si〉, rule [Thread] requires that there is
an extension σ′i of σi such that:

H;σ′i;α `i Πi

D ` si : Πi ; Π ′i

for some Πi and Π ′i. We now show that D; (α · a) ` H ′•T (i) for all i 6= t.

– If a = t :ε or a = t :rd(ρ.f) , then H ′ = H and this follows immediately.
– If a = t : wr(ρ.f), then H and H ′ may differ at ρ.f . However, if α · a is

race-free, then any access to ρ.f in α by thread i is followed by a release by
the same thread. Neither y.f or x = y.f will be in Πi for any y such that
σ′i(y) = ρ. So, H ′;σ′i; (α · a) ` Πi. Thus, D; (α · a) ` H ′•T (i) for all i 6= t.

– If a = t :acq(ρ) or a = t :rel(ρ), then heaps H ′ and H agree on the values
stored at all locations. Items in Πi may refer to variables mapping to heap
locations but never to the status of the lock H(ρ). Thus, it follows that
H ′;σ′i; (α · a) `i Πi for all i 6= t.

By Lemma 1 below, D; (α · a) `t H ′•〈σ′, s′〉. Hence, D; (α · a) ` Σ′ then follows
by rule [State]. ut

We now show that any step taken by a thread from a well-formed thread
state leads to another well-formed state.

31

Lemma 1 (Thread-Step Preservation). Suppose ` D and a is an action
by thread t. If D;α `t H • 〈σ, s〉 and D ` H • 〈σ, s〉 −→a H ′ • 〈σ′, s′〉, then
D; (α · a) `t H ′•〈σ′, s′〉.

Proof. Since D;α `t H•〈σ, s〉, there exists Π1, Π2, and σ′′ containing Skolem
bindings such that:

H; (σ] σ′′);α `t Π1

D ` s : Π1 ; Π2

Given that D ` H•〈σ, s〉 −→a H ′•〈σ′, s′〉, we also have that

D ` H•〈(σ] σ′′), s〉 −→a H ′•〈(σ′] σ′′), s′〉

since the extra Skolem bindings do not influence evaluation. By Lemma 2 (be-
low), there exist Π3 and Π4 and σ′′′ containing bindings for fresh Skolem vari-
ables such that:

D ` s′ : Π3 ; Π4

Π4 v Π2

H ′; (σ′] σ′′] σ′′′); (α · a) `t Π3

and hence D; (α · a) `t H ′•〈σ′, s′〉. ut

Lemma 2. If ` D and a is an action by thread t and

D ` s : Π1 ; Π2

H;σ;α `t Π1

D ` H•〈σ, s〉 −→a H ′•〈σ′, s′〉

then there exist Π3 and Π4 and σ′′ containing bindings for fresh Skolem variables
such that:

D ` s′ : Π3 ; Π4

Π4 v Π2

H ′; (σ′] σ′′); (α · a) `t Π3

Proof. Proof is by induction on the structure of s.

– s = s1; s2 where s1 6= skip: In this case, s′ = s′1; s2 where

D ` s1 : Π1 ; Π5

D ` s2 : Π5 ; Π2

D ` H•〈σ, s1〉 −→a H ′•〈σ′, s′1〉

By the inductive hypothesis, there exist Π3 and Π6 and σ′′ such that

D ` s′1 : Π3 ; Π6

Π6 v Π5

H ′; (σ′] σ′′); (α · a) `t Π3

By Lemma 5, there exists Π4 such that D ` s2 : Π6 ; Π4 with Π4 v Π2.
Thus, D ` s′ : Π3 ; Π4 by [Seq].

32

– s = skip; s′: In this case

H ′ = H
σ′ = σ
a = t :ε
D ` skip : Π1 ; Π1

D ` s′ : Π1 ; Π2

H;σ;α `t Π1

Let Π3 = Π1 and Π4 = Π2 and σ′′ = ∅ (the empty store). Then:

D ` s′ : Π3 ; Π4 since Π3 = Π1

Π4 v Π2 since Π4 = Π2

H;σ; (α · t :ε) `t Π3 via Lemma 3 and Π3 = Π1

– s = if be s1 s2: Suppose σ(be) = true. (The case when it is false is similar.)

s′ = s1

H ′ = H
σ′ = σ
a = t :ε
D ` s1 : Π1 ∪ {be} ; Π ′1
D ` s2 : Π1 ∪ {¬be} ; Π ′2
Π2 = Π ′1 uΠ ′2 = { π ∈ Π ′1 ∪Π ′2 | Π ′1 ` π and Π ′2 ` π }

Let Π3 = Π1 ∪ {be} and Π4 = Π ′1 and σ′′ = ∅. Then:

D ` s′ : Π3 ; Π4 since Π3 = Π1 ∪ {be} and Π4 = Π ′1
Π4 v Π2 since ∀π ∈ Π2. Π

′
1 ` π

H;σ; (α · t :ε) `t Π3 via Lemma 4 and Lemma 3

– s = while be s1: In this case,

s′ = if be (s1; s) skip
H ′ = H
σ′ = σ
a = t :ε
Π1 v Πinv

Π2 = Πinv ∪ {¬be}
D ` s1 : Πinv ∪ {be} ; Π ′

Π ′ v Πinv

Let Π3 = Πinv and Π4 = Π2 and σ′′ = ∅. Then:

D ` s : Π ′ ; Π4 via [While]

D ` s1; s : Πinv ∪ {be} ; Π4 via [Seq]

D ` skip : Πinv ∪ {¬be} ; Π4 via [Skip]

D ` s′ : Π3 ; Π4 via [If]

33

Also,

H;σ; (α · t :ε) `t Π1 via Lemma 3
H;σ; (α · t :ε) `t Π3 via Property 1

– s = rel x: In this case

s′ = skip
σ(x) = ρ
H(ρ) = t
H ′ = H[ρ := ⊥]
σ′ = σ
a = t :rel(x)
Π2 = Π1 \All = {be ∈ Π1}

Let Π3 = Π4 = Π2 and σ′′ = ∅. Then D ` s′ : Π3 ; Π4 via [Skip], and
H ′;σ; (α · a) `t Π3 holds since Π3 contains only boolean expressions that
are true in σ.

– s = acq(x): In this case

s′ = skip
σ(x) = ρ
H(ρ) = ⊥
H ′ = H[ρ := t]
σ′ = σ
a = t :acq(x)
Π2 = Π1

Let Π3 = Π4 = Π2 and σ′′ = ∅. Then D ` s′ : Π3 ; Π4 via [Skip]. Also,
H ′;σ; (α ·a) `t Π3 holds via Lemma 3 and the fact that no item in Π3 refers
to H(ρ).

– s = (x = new C): In this case

s′ = skip
H ′ = H
σ′ = σ[x := ρ]
ρ is fresh
a = t :ε
Π2 = Π1[x := w]

Let Π3 = Π4 = Π2 and σ′′ = [w := σ(c)]. Then D ` s′ : Π3 ; Π4 via [Skip].
– s = (x = e): In this case

s′ = skip
σ(e) = v
H ′ = H
σ′ = σ[x := v]
a = t :ε
Π2 = Π1[x := w] ∪ {x = e[x := w]}

34

Let Π3 = Π4 = Π2 and σ′′ = [w := σ(x)]. Then: D ` s′ : Π3 ; Π4

via [Skip].
Also, H ′; (σ′] σ′′);α `t Π3. Lemma 3 then implies that H;σ′; (α · a) `t Π3.

– s = (x = y.fk): In this case,

s′ = skip
σ(y) = ρ
H(ρ.f) = v
H ′ = H
σ′ = σ[x := v]
a = t :acc(ρ.fk)
k = NoCheck ⇒ Π1 ` y.f
Π2 = Π1[x := w] ∪ {x = (y.f)[x := w], (y.f)[x := w]}

Let Π3 = Π4 = Π2 and σ′′ = [w := σ(x)]. Rule [Skip] shows that D ` s′ :
Π3 ; Π4.
Then H;σ′]σ′′; (α ·a) `t Π3 follows by Lemma 3. We now consider the two
cases for k:
• Suppose k = Check. Then H; (σ′] σ′′); (α · a) `t (y.f)[x := w] since

(σ′] σ′′)((y.f)[x := w]) = ρ.f and a is a checked access to ρ.f by t.
Thus,

H; (σ′] σ′′); (α · a) `t Π1[x := w] ∪ {x = (y.f)[x := w], (y.f)[x := w]}

• Suppose k = NoCheck. Then Π1 ` y.f , and so α contains a previous
checked access to ρ.f in the current span with no later releases. Hence

H; (σ′] σ′′); (α · a) `t Π1[x := w] ∪ {x = (y.f)[x := w], (y.f)[x := w]}

– s = (y.fk = x): In this case,

s′ = skip
σ(x) = v
σ(y) = ρ
H ′ = H[ρ.f = v]
σ′ = σ
a = t :acc(ρ.fk)
k = NoCheck ⇒ Π1 ` y.f
Π2 = Π1 \ f ∪ {x = y.f, y.f}

Let Π3 = Π4 = Π2 and σ′′ = ∅. Rule [Skip] shows that D ` s′ : Π3 ; Π4.
We must show that H;σ; (α ·a) `t Π2. Since H;σ;α `t Π1, it must be that:

H;σ;α `t p ∀p ∈ Π1

H;σ;α `t c ∀c ∈ Π1

H;σ;α `t be ∀be ∈ Π1

The following all hold:

35

• For all p ∈ Π1 \ f , it must be that H ′;σ;α `t p because Π1 \ f ⊆ Π1

and the rule [Path] is insensitive to the heap H.
• For all c ∈ Π1 \ f , it must be that H ′;σ;α `t c because no c in Π1 \ f

will refer to an f field of any object in H ′.
• For all be ∈ Π1 \ f , it must be that H ′;σ;α `t be because σ(be) = true.

Thus, H ′;σ;α `t Π1 \ f via rule [Context]. Lemma 3 then shows that
H ′;σ; (α · a) `t Π1 \ f .
Also, σ(x) = v and H ′(σ(y.f)) = H ′(ρ.f) = v. Thus, we can show that
H ′;σ; (α · a) `t (x = y.f).
We now consider the two cases for k:
• Suppose k = Check. Then H ′;σ; (α · a) `t y.f since σ(y.f) = ρ.f and a

is a checked access to ρ.f by t. Thus,

H ′;σ; (α · a) `t Π1 \ f ∪ {x = y.f, y.f}

• Suppose k = NoCheck. Then Π1 ` y.f , and so α contains a previous
checked access to ρ.f in the current span with no later releases. Hence

H ′;σ; (α · a) `t Π1 \ f ∪ {x = y.f, y.f}

Therefore, H ′;σ; (α · a) `t Π2.
– s = (x = y.m(z)): In this case, rule [Call] and the reduction rule for method

calls require that:

m(z′) requires P ensures Q modifies K { s′′; return r } ∈ D
θs = [z′ := z, this := y, r := x]
∀p ∈ θs(P). Π1 ` p
Π2 = (Π1 \K)[x := w] ∪ θs(Q)
θd maps FV(s′′) \ {r} to fresh variables
θd maps z′, this, r to z, y, x, respectively
H ′ = H
σ′ = σ
a = t :ε
s′ = θd(s′′)

From rule [Method]:

m is unique in D
s does not mutate this, x
K contains all fields that may be modified while evaluating s′′

K contains All if a lock may be released while evaluating s′′

FV(P) ⊆ {this, z′}
FV(Q) ⊆ {this, z′, r}
D ` s′′ : P ; Q′

∀q ∈ Q. Q′ ` q

36

Let

Π3 = θd(P) ∪Π1[x := w]
Π4 = (Π1 \K)[x := w] ∪ θd(Q′)
σ′′ = [x := σ(x)]

Then, H; (σ] σ′′);α `t Π1[x := w]. Also, θs and θd agree on FV(P), and
Π1 v θs(P). So, Π1 v θd(P), and H; (σ] σ′′); (α · a) `t Π1[x := w] ∪ θd(P)
follows by Lemma 3.
We next show that D ` θd(s′′) : Π3 ; Π4. Given D ` s′′ : P ; Q′, it
follows that:

D ` θd(s′′) : θd(P) ; θd(Q′) via Lemma 6
D ` θd(s′′) : θd(P) ∪Π1[x := w]

; θd(Q′) ∪ (Π1[x := w]) \K via Lemma 7

Finally, we show that Π4 v Π2. Treating Q′ and Q as contexts containing
only paths, we have

Q′ v Q
θd(Q′) v θd(Q)
θd(Q′) v θs(Q) since θd and θs agree on all variables in FV(Q) ∪ FV(Q′)
(Π1 \K)[x := w] ∪ θd(Q′) v (Π1 \K)[x := w] ∪ θs(Q)

ut

We now state several technical lemmas used in the arguments above. First,
any context well-formed under a run-time heap H, thread store σ, and trace α
is also well-formed when α is extended with any non-span-ending operation.

Lemma 3. If H;σ;α `t Π and a is a non-release action of thread t then
H;σ; (α · a) `t Π.

Proof. Proof is by case analysis for a and the definition of well-formed contexts.
ut

In addition, extending a well-formed context with a true boolean expression
yields a well-formed context.

Lemma 4. If H;σ;α `t Π and σ(be) = true then H;σ;α `t Π ∪ {be}.

Proof. This follows from the definition of well-formed contexts. ut

The type system also enjoys the following monotonicity and substitution
properties.

Lemma 5 (Monotonicity). If D ` s : Π1 ; Π2 and Π3 v Π1, then there
exists Π4 such that D ` s : Π3 ; Π4 and Π4 v Π2.

Proof. Proof is by induction on the derivation of D ` s : Π1 ; Π2. ut

37

Lemma 6 (Substitution). If D ` s : Π1 ; Π2 and θ : Var → Var is a
permutation on variables, then D ` θ(s) : θ(Π1) ; θ(Π2)

Proof. Proof is by induction on the derivation of D ` s : Π1 ; Π2. ut

The following technical lemma is used in the proof that typing is preserved
by the evaluation step for method invocation.

Lemma 7 (Extension). Suppose

D ` s : Π1 ; Π2

FV(Π3) is disjoint from the variables modified while evaluating s
K contains all fields that may be modified while evaluating s
K contains All if a lock may be released while evaluating s

Then D ` s : Π1 ∪Π3 ; Π2 ∪ (Π3 \K).

Proof. Proof is by induction on the derivation of D ` s : Π1 ; Π2. ut

Given Theorem 2, we can now prove that any verified program state Σ gener-
ates only well formed traces α. This shows that a race detector can safely ignore
NoCheck accesses in any verified program, with no loss in precision.
Restatement of Theorem 3 (Soundness). If D; ε ` Σ and Σ −→α Σ′, then
α is well-formed.

Proof. Proof is by induction on α using Lemma 8.

Lemma 8. If α is well-formed and D;α ` Σ and Σ −→a Σ′, then (α · a) is
well-formed.

Proof. If a is not an unchecked access, then α · a is trivially well-formed. If a is
an unchecked access t :acc(ρ.fNoCheck) then we must show that

α = α1 · t :acc(ρ.fCheck) · α2

for some α1 and α2 such that α2 contains no actions of the form t : rel(x),
under the assumption that α is race-free. Assume a is a read action. (Writes are
similar.) From the reduction rule,

Σ = H•T
T (t) = 〈σ, E [x = y.fNoCheck]〉
σ(y) = ρ

Then,

D;α `t 〈σ, E [x = y.fNoCheck]〉

via rule [State], and rule [Thread] requires that

D ` E [x = y.fNoCheck] : Π ; Π ′

H;σ′;α `t Π

38

where σ′ extends σ with a mapping for the Skolem variables in Π.
Lemma 9 (below) then shows that

D ` x = y.fNoCheck : Π ; Π ′′

Rule [Read] requires that Π ` y.f . Property 1 then requires that H;σ′;α `t
{y.f}, which means that H;σ′;α `t y.f . Thus,

α = α1 · t :acc(ρ.fCheck) · α2

where α2 contains no actions of the form t : rel(x), and α · a is therefore well-
formed. ut

The following lemma states that any statement appearing in the evaluation
context of a larger well-typed statement is also typeable from the same pre-
context.

Lemma 9. If D ` E [s] : Π ; Π ′ then there exists Π ′′ such that D ` s : Π ;

Π ′′.

Proof. By induction on the structure of E . ut

39

