
Correctness of Partial Escape Analysis

for Multithreading Optimization

Dustin Rhodes

UC Santa Cruz

dustin@soe.ucsc.edu

Cormac Flanagan

UC Santa Cruz

cormac@ucsc.edu

Stephen N. Freund

Williams College

freund@cs.williams.edu

Abstract

Compilers o�en use escape analysis to elide locking operations on

thread-local data. Similarly, dynamic race detectors may use escape

analysis to elide race checks on thread-local data. In this paper,

we study the correctness of these two related optimizations when

using a partial escape analysis, which identi�es objects that are

currently thread-local but that may later become thread-shared.

We show that lock elision based on partial escape analysis is

unsound for the Java memory model. We also show that race check

elision based on a partial escape analysis weakens the precision of

dynamic race detectors. Finally, we prove that race check elision

based on a partial escape analysis is sound with respect to this

weakened, but still useful, notion of precision.

CCS Concepts •�eory of computation →

Concurrency; Design and analysis of algorithms; •Computing

methodologies →Optimization algorithms;

Keywords Escape Analysis, Race Detection, Lock Elision

ACM Reference format:

Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. 2017. Correctness

of Partial Escape Analysis

for Multithreading Optimization. In Proceedings of FTFJP’17, Barcelona ,
Spain, June 18-23, 2017, 6 pages.

DOI: 10.1145/3103111.3104039

1 Introduction

When reasoning about heap-allocated objects, compilers and other

analyses must, in general, assume that concurrent threads can

make arbitrary changes to any object. �is uncertainty makes it

di�cult to reason about the possible behavior of code. For thread-

local objects (that is, objects only accessible by a single thread),

concurrent modi�cations are possible only a�er that object has

escaped out of its allocating thread. An object escapes its allocating

thread when it is assigned to a �eld of a thread-shared object. Many

compilers and analyses make use of an escape analysis to determine

which objects escape their allocating thread [7].

Escape analyses fall into two major categories. A total escape
analysis determines if an object is always thread-local (i.e. it never

escapes its allocating thread). On the other hand, a partial escape
analysis determines if an object has not yet escaped its allocating

thread [19]. We explore two applications for escape analysis:

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

FTFJP’17, Barcelona , Spain
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5098-3/17/06. . . $15.00

DOI: 10.1145/3103111.3104039

1) Synchronization elimination: Optimizing compilers, such

as Hotspot [14], use an escape analysis to elide expensive synchro-

nization operations on thread-local objects. We refer to lock elision

based on total and partial escape analyses as total and partial lock
elision respectively.

Total lock elision has been proved sound [4]. Partial lock elision

has also been proposed in the literature (see [19]); but we show that

partial lock elision is unsound in that it can introduce additional

behaviors that are not permi�ed under the Java memory model.

2) Dynamic race detection: Dynamic race detectors also lever-

age information about thread-local data. In particular, a dynamic

race detector typically performs a race check every time a thread of

the target program reads or writes to an object. �ese race checks

can be elided for accesses to thread-local objects. We refer to race

check elision based on total and partial escape analyses as total and

partial race check elision respectively. Eliminating race checks on

memory identi�ed as thread-local by a total escape analysis does

not change the precision of the detection analysis. However, as we

show in this paper, utilizing partial escape analysis does weaken the

precision guarantees provided by a dynamic race detector. Partial

race check elision never causes a race detector to miss the �rst data

race in a program, but may cause it to miss subsequent data races.

Contributions: In summary, this paper shows:

• partial lock elision is unsound for compilers (Section 3);

• partial race check elision may cause a race detector to miss

some races in an execution (Section 4); and

• partial race check elision will never cause a race detector

to miss the �rst race in an execution (Section 5).

2 Race Conditions: De�nition and Precision

Race detectors and other analyses use the concept of a trace to ana-

lyze a speci�c execution of a given program. We de�ne a program

trace α as a sequence of actions performed by the various threads.

�ese actions include reads and writes of object �elds, lock acquire

and releases, and forking a new thread.

�e happens-before relation <α for a trace α is the smallest

transitively-closed relation over the actions in the trace such that

the relation a <α b holds whenever action a occurs before action b
in the trace and one of the following holds:

• Program order: �e two actions are performed by the same

thread.

• Locking: �e two actions acquire or release the same lock.

• Fork: One action forks a new thread and the other action is

by that new thread.

If two actions in a trace are not related by the happens-before

relation, then they are considered concurrent. Two memory access

con�ict if they both access (read or write) the same address, and at

least one of the actions is a write. Using this terminology, a trace

has a race condition on a particular address if it has two concurrent

con�icting accesses to that address.

FTFJP’17, June 18-23, 2017, Barcelona , Spain Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund

Before Lock Elision A�er Lock Elision

�read1 �read2

1 Ref r0 = new Ref();

2 synchronized(r0){

3 r0 .f = 11;

4 r0 .f = 12;

5 }

6 p .o = r0;

7 int r2;

8 Ref r1 = null;

9 while(r1 == null){

10 r1 = p .o;

11 }

12 synchronized(r1){

13 r2 = r1 .f;

14 }

15 assert(r2 != 11);

�read1 �read2

16 Ref r0 = new Ref();

17

18 r0 .f = 11;

19 r0 .f = 12;

20

21 p .o = r0;

22 int r2;

23 Ref r1 = null;

24 while(r1 == null){

25 r1 = p .o;

26 }

27 synchronized(r1){

28 r2 = r1 .f;

29 }

30 assert(r2 != 11);

Figure 1. Example of Partial Lock Elision (p is a shared object and p .o is null initialized, no �elds are volatile)

Data races lead to unexpected behavior, as in Java [11, 17], or

unde�ned behavior, as in C++ [3]. As such, compilers are not

allowed to introduce data races when optimizing code.

For a race detector to be precise it must not miss data races. More

speci�cally, we say a dynamic race detector is

• trace precise if it correctly reports whether a program trace

has a race, and

• address precise if it correctly reports all addresses in a trace

that have race conditions.

�us, any address precise race detector is also trace precise, but the

converse does not hold.

We show that partial race check elision weakens the precision

of a dynamic race detector from address precise to trace precise;

in particular, one race in a trace may prevent subsequent races

on di�erent addresses from being detected. We prove, however,

that the �rst race in a trace is always detected and so partial race

check elision is still trace precise, which is su�cient for many

applications.

3 Partial Lock Elision is Unsound

A partial escape analysis marks the point at which an object escapes

its allocating thread. Partial lock elision uses this information to

remove all acquire and release actions on the object before it escapes,

as described in [19].

To illustrate why partial lock elision is unsound, consider the

program shown in Figure 1 (le�). �read 1 allocates a new Ref
object, initializes its f �eld with 11 and then 12 inside a synchro-

nized block, and then shares its address via p .o with �read 2.

�read 2 busy waits until p .o is non-null and then reads f inside

a synchronized block. Clearly, the two threads race on p .o. How-

ever, the accesses to �eld f are race-free due to synchronization,

and so �read 2 can never read the partially-initialized value of 11.

Consequently, the assertion on line 15 never fails.

Because the synchronization in �read 1 happens before the

reference escapes, partial lock elision as described in [19] removes

it, resulting in the code in Figure 1 (right). In this code, there is

no happens before edge between the writes to f by �read 1 and

the read by �read 2 because �read 1’s synchronization has been

removed. Since these actions are now in a race condition, the Java

memory model allows either value, 11 or 12, to be read by �read 2

allowing the assertion to fail. �us, partial lock elision (that is, lock

elision based on a partial escape analysis) introduces a data race

on f and an assertion violation that was not present in the original

program, so is clearly an unsound optimization.

4 Partial Race Check Elision is not Address

Precise

We now explore partial race check elision and show that using

partial information has consequences in this domain as well. A

total race check elision algorithm removes race checks on accesses

to memory that never escape its allocating thread. A partial race

check elision algorithm, on the other hand, removes race checks

on accesses to memory that has not escaped yet (see [6]).

To illustrate why partial race check elision is not address precise,

consider the program in Figure 2. Here, �read 1 creates a new Ref
object, writes to f, and then shares the object by writing its address

to p .o. �read 2 reads the address of the Ref from p .o and writes

to f. A trace of this program reveals two races: the �rst of which

occurs on p .o on lines 33 and 34. As p is a shared object this race

will be caught, since no race checks will be elided on these lines.

However, there is a second race in the program between the two

writes to f on lines 32 and 35. In this case, the �rst access on line

32 happens before r1 has escaped and so the corresponding race

check would be elided by partial race check elision. �e race check

on line 35 is not elided because by this time the Ref has escaped.

However, the race on f will not be detected due to the previously

elided race check. �at is, partial race check elision would cause a

Correctness of Partial Escape Analysis
for Multithreading Optimization FTFJP’17, June 18-23, 2017, Barcelona , Spain

�read 1 �read 2

31 Ref r1 = new Ref();

32 r1 .f = 11;

33 p .o = r1;

34 Ref r1 = p .o;

35 r1 .f = 12;

Figure 2. Example of Partial Race Check Elision (p is a shared

object)

dynamic race detector (such as [6]) to miss the race on f, and so

the detector would no longer be address precise.

5 Partial Race Check Elision is Trace Precise

In the example of Figure 2 above, the race on f is only missed due to

a previous race on p .o. �at is, partial race check elision can cause

a dynamic race detector to miss later races in a trace, but never

causes it to miss the �rst race, and so the optimized race detector

is still trace precise.

5.1 Idealized Language EscapeJava

We formalize our proof of this property in terms of the idealized

language EscapeJava shown in Figure 3. A program P consists of a

sequence class de�nitions D (containing methods and �elds) as well

as a main expression e . Expressions can create new objects (new),

read from �elds (e . f), assign to �elds (e . f = e), create temporary

variables (let x = e in e), call methods (e .m(e)), acquire and release

locks (acq e and rel e), and fork new threads (fork e).

Figure 3 also shows the semantics for this language. A running

program has a heap H and a thread set T . �e heap maps locations

to values and locks to the thread holding them (or to ⊥ if the lock

is not held). Values v are addresses p and null. A location l = p. f
is an object address p along with a �eld f . �e thread set maps

thread identi�ers to expressions. �is semantics includes actions a
that are emi�ed for every evaluation step.

A program starts with an empty heap ∅, and a thread set T =
[t := e] with a single thread e with thread identi�er t . A single

evaluation step

P ` H ,T →a H ,T

produces an action a. Taken in sequence these actions form a trace

α . We include P in the evaluation relation to facilitate method

look-up, and we assume method names are unique.

5.2 Partial Race Check Elision Algorithm

Figure 4 shows a partial race check elision algorithm. �is algo-

rithm performs a dynamic thread escape analysis, recording in G
all addresses reachable by multiple threads. �e judgement

P ` G,H ,T →a
b G ′,H ′,T ′

performs a single evaluation step

P ` H ,T →a H ′,T ′

and also extends the set G ′ of global (a.k.a. escaped) addresses

appropriately. �e �rst judgement above produces two actions a
and b. In this judgement action b is a no-op if the action a is a �eld

access whose race check can be elided; otherwise b is simply the

action a of the target program. Combining multiple steps of this

judgement yields a run of the race check elision algorithm

P ` G,H ,T −→α
β G ′,H ′,T ′

where α is the full trace of the target program, and the trace β is a

subsequence of α that elides accesses to thread-local objects.

Figure 4 contains rules for all actions that the semantics emits.

Acquire and release actions are never elided because of the un-

soundness of partial lock elision, as shown in Section 3. Reads and

writes are elided if the address being read/wri�en is not in G (they

have not escaped), but are kept if the address is in G (reachable by

multiple threads). A write to an object in G expands G to include

this new object as well as all objects reachable from it given the

current heap. Finally, a fork is never elided, and also expands the

global set to include all items reachable from the forked thread (as

they are also reachable from the forking thread).

�us, this race check elision judgement

1. runs the program,

2. performs a dynamic partial escape analysis, and

3. uses this information (inG) to elide accesses to thread-local

data.

5.3 Partial Race Check Elision is Trace Precise

�e key correctness property we want to show is that if

P ` ∅, ∅, [t := e] −→α
β G,H ,T

then α has a race if and only if β has a race. In other words, race

check elision never converts a racy trace α into a race-free trace β .

We start by formalizing the notion of reachability with respect

to a given heap. We say an address p′ is reachable from p in heap

H if:

• p′ = p, or

• for some �eld f , p′ is reachable from H (p. f)
Moreover, we say an address p is reachable from an expression

e in a heap H if p is reachable from some addresses q in e in heap

H . We use reachable(e,H) to denote the set of addresses reachable

from expression e in H .

We say a state G,H ,T is valid if G contains all references reach-

able by multiple threads in T with heap H .

De�nition 5.1. G,H ,T is valid if ∀t1, t2 ∈ Tid . if t1 , t2 then

reachable(T (t1),H) ∩ reachable(T (t2),H) ⊆ G

�e set of addresses an action accesses is de�ned as follows:

addr (t : write q. f v) = {q,v} ∩ObjAddr
addr (t : read q. f v) = {q,v} ∩ObjAddr

Additionally, each access has a target address.

tarдet(t : write q. f v) = q
tarдet(t : read q. f v) = q

Finally, the function tid extracts the thread of an action:

tid(t : a) = t

FTFJP’17, June 18-23, 2017, Barcelona , Spain Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund

P ∈ Proдram ::= D e

D ∈ Class ::= class c { f ,method}
method ∈ Method ::= m(x){e}
l ∈ Location ::= p. f
p,q ∈ ObjAddr
v ∈ Value ::= p | null
e ∈ Expression ::= new c() | x | v | e . f | e . f = e | e .m(e) | let x = e in e | acq e | rel e | fork e

E ∈ Context ::= E. f | E. f = e | p. f = E | E.m(e) | p.m(v,E, e) | acq E | rel E | let x = E in e
H ∈ Heap ::= (ObjAddr → Tid⊥) and (Location → Value)
T ∈ ThreadSet ::= Tid → e
t ∈ Tid ::= (�read identi�ers)

a,b ∈ Action ::= t : acq p | t : rel p | t : read l v | t : write l v | t : fork p t ′ | t : no-op
α , β ∈ Trace ::= a

P ` H ,T →a H ,T

P ` H ,T [t := E[p.m(v)]] →t :no-op H ,T [t := E[e[x := v, this := p]] if p containsm(x){e}
P ` H ,T [t := E[let x = v in e]] →t :no-op H ,T [t := E[e[x := v]]]
P ` H ,T [t := E[p. f = v]] →t :write p .f v H [p. f := v],T [t := E[v]]
P ` H ,T [t := E[p. f]] →t :read p .f v H ,T [t := E[v]] H [p. f] = v
P ` H ,T [t := E[acq p]] →t :acq p H [p := t],T [t := E[null]] H [p] = null
P ` H ,T [t := E[rel p]] →t :rel p H [p := null],T [t := E[null]]
P ` H ,T [t := E[fork p]] →t :fork p t ′ H ,T [t ′ := p.run(), t := E[null]] t ′ is fresh

P ` H ,T [t := E[new c()]] →t :no-op H ,T [t := E[p]] where p is fresh

Figure 3. EscapeJava: Syntax and Semantics

P ` G,H ,T →a
a G,H ,T

P ` H ,T →t :no-op H ,T ′

P ` G,H ,T →t :no-op
t :no-op G,H ,T ′

P ` H ,T →t :acq p H ,T ′

P ` G,H ,T →t :acq p
t :acq p G,H ,T ′

P ` H ,T →t :rel p H ,T ′

P ` G,H ,T →t :rel p
t :rel p G,H ,T ′

P ` H ,T →t :write p .f v H ′,T ′

p < G

P ` G,H ,T →t :write p .f v
t :no-op G,H ′,T ′

P ` H ,T →t :write p .f v H ′,T ′

G ′ = G ∪ reachable(H ,v)
p ∈ G

P ` G,H ,T →t :write p .f v
t :write p .f v G ′,H ′,T ′

P ` H ,T →t :fork p t ′ H ,T ′

G ′ = G ∪ reachable(H ,p)

P ` G,H ,T →t :fork p t ′
t :fork p t ′ G

′,H ,T ′

P ` H ,T →t :read p .f v H ,T ′

p < G

P ` G,H ,T →t :read p .f v
t :no-op G,H ,T ′

P ` H ,T →t :read p .f v H ,T ′

p ∈ G

P ` G,H ,T →t :read p .f v
t :read p .f v G,H ,T ′

Figure 4. Dynamic Escape Analysis and Race Check Elision Algorithm

Correctness of Partial Escape Analysis
for Multithreading Optimization FTFJP’17, June 18-23, 2017, Barcelona , Spain

We next prove that our analysis preserves validity.

Lemma 5.2 (Preservation). If G,H ,T is valid and P ` G,H ,T →a
b

G ′,H ′,T ′ then G ′,H ′,T ′ is valid.

Proof. Case analysis of P ` G,H ,T →a
b G ′,H ′,T ′ �

�e proof of our desired correctness property in one direction is

straightforward.

�eorem 5.3. If G,H ,T is valid and P ` G,H ,T −→α
β G ′,H ′,T ′

and β has a race then α has a trace.

Proof. Suppose β has a race between two concurrent con�icting

accesses b1 and b2, then b1 and b2 also appear in α . By case analysis

on P ` G,H ,T −→α
β G ′,H ′,T ′, no acquire, release, or fork actions

are elided so these actions remain the same in both α and β . �ere-

fore b1 and b2 are also concurrent and con�icting in α , and so α
has a race. �

To prove the other implication we must show that no accesses

involved in the �rst race in α have been elided in β .

�eorem 5.4. If G,H ,T is valid and P ` G,H ,T −→α
β G ′,H ′,T ′

and α has a race then β has a race.

Proof. Let a1,a2 be the �rst race in α where p = tarдet(a1) and

p = tarдet(a2). By induction on the length of α , without loss of

generality assume α = a1.α
′.a2 where a1.α

′
is race-free:

• If a1 ∈ β then p ∈ G so a2 ∈ β (since G is increasing by

Lemma 5.6 below) so β has a race.

• If a1 < β then we have:

α = a1.α
′.a2

p < G
p ∈ addr (a1)
p ∈ addr (a2)
α ′ is race-free

By lemma 5.5 below, a1 <α a2 and we have a contradiction.

�

We next prove two auxiliary lemmas required by the above proof:

First, if two actions a1 and a2 access the same address p, where p
is not in G at the time of a1, and no race occurs between a1 and

a2, then a1 and a2 are ordered by happens-before. Intuitively, this

ordering arises from the race-free transmission of p from tid(a1)
to tid(a2). �ere must exist some pair of actions a′

1
and a′

2
which

write p to a shared object and read p from that object in a race-free

manner. As a′
1

and a′
2

are ordered by happens-before, this same

ordering applies to a1 and a2.

Lemma 5.5. Suppose

G,H ,T is valid
P ` G,H ,T −→α

β G ′,H ′,T ′

α = a1.α
′.a2

p < G
p ∈ addr (a1)
p ∈ addr (a2)
α ′ is race-free

�en a1 <α a2

Proof. By induction on the length of α . Let t1 = tid(a1) and t2 =
tid(a2). We proceed by case analysis on how thread t2 recieved the

address p.

• If t1 = t2 then a1 <α a2 by program order.

• If α contains t1 : fork p t2 then a1 <α a2 by the fork

ordering.

• Otherwise t2 read p from some shared location q. f previ-

ously wri�en by some thread t3 (which may or may not be

t1). �us α ′ = α1.a
′
1
.α2.a

′
2
.α3 where

– a′
1
= t3 : write q. f p and

– a′
2
= t2 : read q. f p

then:

p < G,p ∈ addr (a1) Given

p ∈ addr (a′
1
) By Construction

Let α ′ = α1.a
′
1
.α2.a

′
2
.α3

a1.α1 is race-free Because α ′ is race-free

|α1 | < |α |
a1 <α a′

1
By induction on |α |

a′
1
<α a′

2
By α ′ is race-free

a′
2
<α a2 By program order

a1 <α a2 By transitivity

�

�eorem 5.4 relies on the fact thatG is monotonically increasing.

Lemma 5.6. If P ` G,H ,T →a
b G ′,H ′,T ′ then G ⊆ G ′.

Proof. By case analysis on P ` G,H ,T →a
b G ′,H ′,T ′. �

Our main correctness result is then a straightforward combina-

tion of the above two theorems.

�eorem 5.7 (Trace Precision). If G,H ,T is valid and

P ` G,H ,T −→α
β G ′,H ′,T ′

then α has a race if and only if β has a race.

Proof. By �eorem 5.4 and �eorem 5.3. �

6 Related Work

A memory model describes what behaviors are permi�ed by a

program, and consequently what optimizations and program trans-

formations a compiler may perform. Sequential consistency [1] is a

simple memory model but it prohibits many common and desirable

optimizations. �e Java Memory Model [11] is a weaker memory

model, and therefore enables more optimizations.

Ferrara [8] describes the consequences of the Java memory model

for static analysis, including total escape analysis. Unfortunately,

the allowed optimizations under the Java memory model are com-

plex, Sevcı́k and Aspinall [17] detail a variety of unsound compiler

optimizations dealing with race conditions.

Compilers use escape analysis for a variety of optimizations. �e

two most common being lock elision for thread-local locations and

allocating temporary objects on the stack as opposed to the heap.

Choi et al. [4, 14] provide the original total escape analysis imple-

mented in the Java Hotspot compiler. �ey describe a variety of

optimizations that can be performed with this analysis and provide

a proof of correctness for their total escape analysis and optimiza-

tions. �ey later improve on this work with a faster analysis that

does not lose precision [5].

A variety of papers extend this initial analysis to either add func-

tionality, improve speed, or improve precision [2, 9, 22]. Salcianu

FTFJP’17, June 18-23, 2017, Barcelona , Spain Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund

and Rinard [15] use a modi�ed total escape analysis for allocating

memory in a region based manner in order to aid garbage collection.

Stadler et al. [19] extend the total escape analysis computation into

a partial escape analysis. �eir analysis extends the total escape

analysis to be �ow sensitive in order to allow for optimizations

of objects that only escape on some paths. �ey call this analysis

a partial escape analysis. Unfortunately, this added precision is

unsound when applied to lock elision, as shown in Section 3. �ey

also make use of inlining to improve their partial escape analysis, a

technique also used by Shankar et al. [18].

In addition to compilers, many race detection algorithms use

escape analyses. Naik et al. [12] use a total escape analysis in their

static race detector, as do Voung et al. [21]. �eir analysis performs

multiple passes, with a �nal expensive lockset pass at the end to

compute a set of locations where races may occur. �eir earlier total

escape analysis pass removes any variables that do not escape into

another thread from the analysis. �is race check elision pass does

not reduce their precision beyond that of their other optimization

passes.

�is technique of using a fast, static escape analysis to improve

the speed of another, later analysis is also used by von Praun and

Gross [20]. �ey add a total escape analysis to the dynamic lock-

set algorithm Eraser [16]. �ey use this total escape analysis to

perform race check elision for memory that never escapes into mul-

tiple threads. �is optimization does not weaken their correctness

guarantees.

Nishiyama [13] uses partial escape analysis in a dynamic race

detector. He implements a low level lockset-based algorithm in the

Hotspot Java virtual machine. His analysis uses a partial escape

analysis based on a read barrier to produce a subset of objects that

must be instrumented. Objects are not included in the analysis

until the read barrier detects reads from multiple threads on the

same address. �e use of the read barrier, as opposed to a write

barrier, means this analysis is not trace precise.

Likewise, Christiaens and Bosschere make use of a similar partial

escape analysis to �lter results for a vector clock based dynamic

race detector [6]. �ey implement the vector clock checks at a

Java machine code level. �ey also implement a partial escape

analysis at this level that matches our own closely. In addition,

they integrate the analysis with the Java garbage collector in order

to remove previously global objects from the global set as they

become unreachable. �eir use of partial race check elision makes

the analysis trace precise, instead of address precise. Partial escape

analyses can also be implemented at a higher level than the Java

machine code as done by Harrington and Freund [10].

7 Conclusion

Compared to a total escape analysis, a partial escape analysis seems
be�er in that it characterizes more objects as “thread-local”, but

particular care is needed when using this “currently thread-local” in-

formation to drive optimizations. We show how partial lock elision

optimizations in the literature are in fact unsound. Conversely, we

also prove that partial race check elision optimizations are sound,

albeit with a weaker notion of precision.

Acknowledgment

�is work was supported, in part, by NSF Grants 1337278, 1421051,

1421016, and 1439042.

References

[1] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory Consistency

Models: A Tutorial. IEEE Computer 29, 12 (1996), 66–76.

[2] Bruno Blanchet. 1999. Escape Analysis for Object-Oriented Languages: Applica-

tion to Java. In OOPSLA. 20–34.

[3] Hans-Juergen Boehm and Sarita V. Adve. 2008. Foundations of the C++ concur-

rency memory model. In PLDI. 68–78.

[4] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and

Samuel P. Midki�. 1999. Escape Analysis for Java. In OOPSLA. 1–19.

[5] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar,

and Samuel P. Midki�. 2003. Stack allocation and synchronization optimizations

for Java using escape analysis. ACM Trans. Program. Lang. Syst. 25, 6 (2003),

876–910.

[6] Mark Christiaens and Koen De Bosschere. 2001. TRaDe: A Topological Approach

to On-the-Fly Race Detection in Java Programs. In Proceedings of the 1st Java
Virtual Machine Research and Technology Symposium, April 23-24, 2001, Monterey,
CA, USA. 105–116.

[7] Steve Dever, Steve Goldman, and Kenneth Russell. 2006. New Compiler Opti-

mizations in the Java HotSpot� Virtual Machine. In JavaOne Conference.
[8] Pietro Ferrara. 2008. Static Analysis Via Abstract Interpretation of the Happens-

Before Memory Model. In TAP. 116–133.

[9] David Gay and Bjarne Steensgaard. 2000. Fast Escape Analysis and Stack Allo-

cation for Object-Based Programs. In Compiler Construction, 9th International
Conference. 82–93.

[10] Emma Harrington and Stephen N Freund. 2014. Using Escape Analysis in

Dynamic Data Race Detection. Williams College Technical Report CSTR 201401
(2014).

[11] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. �e Java memory

model. In POPL. 378–391.

[12] Mayur Naik, Alex Aiken, and John Whaley. 2006. E�ective static race detection

for Java. In PLDI. 308–319.

[13] Hiroyasu Nishiyama. 2004. Detecting Data Races Using Dynamic Escape Analysis

Based on Read Barrier. In Proceedings of the 3rd Virtual Machine Research and
Technology Symposium. 127–138.

[14] Michael Paleczny, Christopher A. Vick, and Cli� Click. 2001. �e Java HotSpot

Server Compiler. In Proceedings of the 1st Java Virtual Machine Research and
Technology Symposium, April 23-24, 2001, Monterey, CA, USA.

[15] Alexandru Salcianu and Martin C. Rinard. 2001. Pointer and escape analysis for

multithreaded programs. In PPOPP. 12–23.

[16] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and �omas E.

Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded

Programs. ACM Trans. Comput. Syst. 15, 4 (1997), 391–411.

[17] Jaroslav Sevcı́k and David Aspinall. 2008. On Validity of Program Transforma-

tions in the Java Memory Model. In ECOOP. 27–51.

[18] Ajeet Shankar, Ma�hew Arnold, and Rastislav Bodı́k. 2008. Jolt: lightweight

dynamic analysis and removal of object churn. In OOPSLA. 127–142.

[19] Lukas Stadler, �omas Würthinger, and Hanspeter Mössenböck. 2014. Partial es-

cape analysis and scalar replacement for Java. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization. ACM, 165.

[20] Christoph von Praun and �omas R. Gross. 2001. Object Race Detection. In

OOPSLA. 70–82.

[21] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static race detection

on millions of lines of code. In SIGSOFT. 205–214.

[22] John Whaley and Martin C. Rinard. 1999. Compositional Pointer and Escape

Analysis for Java Programs. In OOPSLA. 187–206.

	Abstract
	1 Introduction
	2 Race Conditions: Definition and Precision
	3 Partial Lock Elision is Unsound
	4 Partial Race Check Elision is not Address Precise
	5 Partial Race Check Elision is Trace Precise
	5.1 Idealized Language EscapeJava
	5.2 Partial Race Check Elision Algorithm
	5.3 Partial Race Check Elision is Trace Precise

	6 Related Work
	7 Conclusion
	References

