
Science of Computer Programming 112 (2015) 227–260
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Cooperative types for controlling thread interference in Java

Jaeheon Yi a,1, Tim Disney a, Stephen N. Freund b,∗, Cormac Flanagan a

a UC Santa Cruz, Santa Cruz, CA, USA
b Williams College, Williamstown, MA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 June 2014
Received in revised form 3 August 2015
Accepted 4 August 2015
Available online 15 August 2015

Keywords:
Cooperability
Concurrency
Type systems

Multithreaded programs are notoriously prone to unintended interference between concur-
rent threads. To address this problem, we argue that yield annotations in the source code 
should document all thread interference, and we present a type system for verifying the 
absence of undocumented interference in Java programs. Under this type system, well-
typed programs behave as if context switches occur only at yield annotations. Thus, well-
typed programs can be understood using intuitive sequential reasoning, except where yield 
annotations remind the programmer to account for thread interference.
Experimental results show that yield annotations describe thread interference more 
precisely than prior techniques based on method-level atomicity specifications. In partic-
ular, yield annotations reduce the number of interference points one must reason about 
by an order of magnitude. The type system is also more precise than prior methods 
targeting race freedom, and yield annotations highlight all known concurrency defects 
in our benchmarks.
The type system reasons about program behavior modularly via method-level specifications. 
To alleviate the programmer burden of writing these specifications, we extend our system 
to support method specification inference, which makes our technique more practical for 
large code bases.

© 2015 Elsevier B.V. All rights reserved.

1. Controlling interference

Developing reliable multithreaded software is challenging due to the potential for nondeterministic interference between 
concurrent threads. Programmers use synchronization idioms such as locks to control thread interference but unfortunately 
do not typically document where interference may still occur in the source code. Consequently, every programming task 
(such as a feature extension, code review, etc.) may require the programmer to manually reconstruct the actual interference 
points by analyzing the synchronization idioms in the source code. This approach is problematic since manual reconstruction 
of interference points is tedious and error-prone. Moreover, interference points are fairly sparse in practice, and consequently 
programmers often simply assume that code is free of interference — a shortcut that may result in scheduler-dependent 
defects, which are notoriously difficult to detect or eliminate.

We propose to use yield annotations to document the actual interference points in the source code, thereby avoiding the 
need to manually infer interference points during program maintenance. Moreover, yield annotations enable us to decom-
pose the hard problem of multithreaded program correctness into two simpler correctness requirements:
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1 class TSP {
2 final Object lock;
3 volatile int shortestPathLength;
4

5 compound void searchFrom(Path path) {
6 if (path.length >= this..shortestPathLength)
7 return;
8

9 if (path.isComplete()) {
10 ..synchronized (this.lock) {
11 if (path.length < this.shortestPathLength)
12 this.shortestPathLength = path.length;
13 }
14 } else {
15 for (Path c: path.children())
16 this..searchFrom#(c);
17 }
18 }
19 }

Fig. 1. Traveling Salesperson Algorithm.

Cooperative-preemptive equivalence: Does the program exhibit the same behavior under a cooperative scheduler (that per-
forms context switches only at yield annotations) as it would under a traditional preemptive scheduler (that performs 
context switches at arbitrary program points)?

Cooperative correctness: Is the program correct when run under a cooperative scheduler?

In this paper, we present a static type and effect system for Java that verifies the correctness property of cooperative-
preemptive equivalence, which indicates that all thread interference is documented with yield annotations. The type system 
checks that the instructions of each thread consist of a sequence of transactions separated by yield annotations, where each 
transaction is serializable according to Lipton’s theory of reduction [33]. Consequently, any preemptive execution of a well-
typed program is guaranteed to behave as if executing under a cooperative scheduler, where context switches happen only 
at explicit yield annotations.

Cooperative scheduling provides an appealing concurrency semantics with the following properties:

1. Thread interference is always highlighted with yields. Yield annotations remind the programmer to allow for the effects of 
interleaved concurrent threads. In addition, unintended interference does not go unnoticed because our type system 
will reject programs with missing yields.

2. Sequential reasoning is correct by default for code fragments with no yield annotations. A programmer may safely ignore con-
currency when reasoning about yield-free fragments, which can drastically simplify correctness arguments. Moreover, 
any automatic program analysis for sequential code may be applied to those regions, including, for example, the many 
verification techniques based on axiomatic semantics, such as ESC/Java [20], SLAM [5], Blast [6], separation logic [40,
46], and many others. In contrast, previous systems based on identifying atomic methods provide little assistance in 
reasoning about non-atomic code fragments since they do not highlight exactly where in those fragments interference 
may occur [18,25,54].

A previous user study showed that these properties provide a distinct benefit to the programmer [49]. Specifically, the 
presence of yield annotations produces a statistically significant improvement in the ability of programmers to identify 
concurrency defects during code inspection.

We have developed a prototype implementation, called the Java Cooperability Checker (jcc), of our type system for 
verifying cooperative-preemptive equivalence. Experimental results on a range of Java benchmarks show that jcc requires 
yield annotations on only about 16 interference points (IPs) per KLOC. In comparison, previous non-interference specifica-
tions generate significantly more interference points: 134 IP/KLOC using atomic methods specifications; 50 IP/KLOC when 
reasoning about data races; and 25 IP/KLOC when reasoning about both data races and atomic methods.

1.1. Example

To illustrate the benefits of explicit yield annotations, consider the traveling salesperson algorithm shown in Fig. 1. The 
TSP class contains a method searchFrom that recursively searches through all extensions of a particular path, aborting 
the search whenever path.length becomes greater than shortestPathLength (the length of the shortest complete 
path found so far). As we describe below, the “..” notation indicates yield points, and the compound and # annotations 
mark the declaration and call of a method containing yield points, respectively.
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To exploit multicore processors, multiple threads may concurrently invoke searchFrom on the same TSP object. Thus 
the variable shortestPathLength is protected by lock for all writes, but reads are permitted without holding the lock 
to maximize performance. Consequently, the accesses of shortestPathLength on lines 6 and 12 may experience a data 
race. (A data race occurs when there are two or more accesses to a memory location, at least one of which is a write, 
that are not ordered by synchronization.) In contrast, the read on line 11 is race-free, since lock is held at that point. 
The shortestPathLength field is declared volatile to avoid non-sequentially consistent racy reads under the relaxed 
semantics of the Java Memory Model. Correctness of this algorithm relies on shortestPathLength only decreasing in 
value.

The code uses the notation “..” as a lightweight syntax for yield annotations. The “..” on line 6 indicates that inter-
ference may occur before the read of shortestPathLength on line 6 (because of concurrent writes). Similarly, thread 
interference may occur before the lock acquire at line 10. Effects of other threads may become visible at these points. 
For example, prior to acquiring the lock on line 10, another thread could acquire that lock and modify the shortest-
PathLength variable. Documenting that possibility indicates to the programmer that the value previously read from 
shortestPathLength may be stale by the time the lock is acquired. In contrast, the potentially racy write to the 
shortestPathLength on line 12 does not require a preceding yield, since our analysis can verify that observable in-
terference is not possible at that point.

To facilitate modular reasoning, the method searchFrom is declared compound, meaning that it contains internal 
yield points. The method call on line 16 is highlighted with a postfix “#” to indicate that the callee is compound, and so 
invariants over shared state that hold before the call may not hold after the call returns. That call is also a yielding call (as 
indicated by the notation “..”) because interference from other threads may become visible in between consecutive calls to 
that method at run time.

This example demonstrates the two key benefits of cooperative reasoning mentioned above:

1. Thread interference is always highlighted with yields. This program contains yield annotations exactly where interference 
is possible. If interference may occur at an unintended and thus unannotated point due to an oversight in design 
or a programming mistake, our type system will reject that program. Thus, concurrency errors manifest early in the 
development process as easily recognizable places requiring “unexpected” yield annotations.

2. Sequential reasoning is correct by default for code fragments with no yield annotations. Once the type system has verified 
the TSP class is well-typed, the programmer (or any automatic analysis tool) can use sequential reasoning to verify 
additional correctness properties of yield-free code fragments. In particular, the absence of any yields in the following 
test-and-set fragment from searchFrom enables a straight forward proof that shortestPathLength is decreasing:

11 if (path.length < this.shortestPathLength)
12 this.shortestPathLength = path.length;

This work uses the yield annotation syntax “..” in preference to the “yield” statements of prior work [3,4,8,28,58,59] to 
more precisely characterize why interference may occur. For example, the annotation at line 6 of Fig. 1 precisely documents 
that interference occurs on the read of shortestPathLength. In comparison, in the following code the yield statement 
suggests that one of the subsequent reads of path.length or shortestPathLength is interfering or racy, but it is not 
immediately obvious which one.

compound void searchFrom(Path path) {
yield;
if (path.length >= shortestPathLength)
. . .

}

Comparison to other approaches Several prior techniques have been proposed for controlling thread interference. Fig. 2 sum-
marizes the most closely related proposals, divided along two orthogonal dimensions: whether transactions are analyzed or 
enforced, and whether one specifies transactions (atomic blocks) or transactional boundaries (yields):

Atomicity: A method or code block is atomic if it does not contain any thread interference points [27,35,34,13]. Previous 
studies have shown that as many as 90% of methods are typically atomic [15].
Unfortunately, the notion of atomicity is rather awkward for specifying interference in non-atomic methods like 
searchFrom. Some particular code blocks in searchFrom, such as the synchronized block, can be marked 
atomic, as shown in Fig. 3. The result is rather verbose and inadequate, however, since atomicity focuses on 
delimiting blocks where interference does not occur but still suggests that interference can occur everywhere 
outside those blocks, such as on the access to path on line 18.
Moreover, the use of atomic blocks requires a bimodal reasoning style that combines sequential reasoning inside 
atomic blocks with preemptive reasoning (pervasive interference) outside atomic blocks. The programmer is re-
sponsible for choosing the appropriate reasoning mode for each piece of code according to whether it is inside or 
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Transaction Yield
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Fig. 2. Alternatives to preemptive semantics: one may analyze or enforce either transactions or yields (transactional boundaries).

1 Object lock;
2 volatile int shortestPathLength;
3

4 compound void searchFrom(Path path) {
5 atomic {
6 if (path.length >= shortestPathLength)
7 return;
8 }
9

10 if (path.isComplete()) {
11 atomic {
12 synchronized (lock) {
13 if (path.length < shortestPathLength)
14 shortestPathLength = path.length;
15 }
16 }
17 } else {
18 for (Path c: path.children())
19 searchFrom#(c);
20 }
21 }

Fig. 3. Traveling Salesperson Algorithm with atomic blocks.

outside an atomic block, with obvious room for error. In contrast, cooperative reasoning is uniformly applicable to 
all code under our proposed methodology.

Transactional memory: Transactional memory offers an enforcement model of execution for transactions, where the run-
time system guarantees that atomic blocks satisfy serializability via software or hardware mechanisms [12,24,31,
45,47,51,60]. However, finding a robust semantics for transactional memory has proven elusive, while performance 
issues hold back widespread adoption.

Automatic mutual exclusion: Automatic mutual exclusion (AME) inverts transactional memory by executing all code in a 
single transaction, unless otherwise specified [28]. We are inspired by AME’s feature of safety by default but focus 
on static analysis rather than run-time enforcement, since enforcement mechanisms may not be appropriate for 
legacy programs. Current AME implementations leverage transactional memory implementations, with the prob-
lems listed above. Observationally Cooperative Multithreading [52] is similar in spirit to AME but supports both 
lock-based and transactional implementations.

Section 9 contains a more detailed comparison with related work.

1.2. Contributions

This paper presents a type system and implementation for checking yield annotations for the Java programming language. 
Our experimental results validate that cooperability is an effective way to capture and reason about thread interference, and 
we show that the use of yield annotations dramatically reduces the number of interference points that must be considered 
by the programmer. We augment our type system with a method specification inference algorithm to synthesize the method 
specifications used by our checker. While the programmer must still annotate yield points, method specification inference 
drastically reduces the annotation overhead of our approach.
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Expression Form Non-yielding Yielding

Field Read e. f e..f
Field Write e. f = e e..f = e
Atomic Method Call e.m(e) e..m(e)
Non-Atomic Method Call e.m#(e) e..m#(e)
Lock Synchronization synchronized(l) { . . . } ..synchronized(l) { . . . }

Fig. 4. Non-yield and Yielding Expression Forms.

In summary, this work makes the following contributions:

• We demonstrate how documenting interference to ensure cooperability supports reasoning about thread interactions.
• We present a type system for verifying lightweight non-interference specifications in multithreaded software. We show 

that this type system satisfies the standard preservation property and ensures that well-typed programs are cooperative-
preemptive equivalent.

• We present an inference algorithm to infer the method specifications used by the type system.
• We describe an implementation for Java.
• For our benchmarks, the type system identified just 16 interference points (IP) per KLOC, a significant improvement 

over prior non-interference specifications based on atomic methods (134 IP/KLOC), data race freedom (50 IP/KLOC), or a 
combination of atomic methods and data race freedom (26 IP/KLOC). In addition, all known concurrency bugs in these 
programs were highlighted by yield annotations.

• Although our technique does require programmer-supplied annotations, we have not found adding them to be a pro-
hibitive burden. The type system only required roughly 35 annotations/KLOC to check these programs, and our method 
specification inference algorithm reduced that requirement to 21 annotations/KLOC.

Section 2 illustrates how cooperability facilitates programming. Sections 3 and 4 present our type system. Sections 5
and 6 presents jcc, our implementation for Java, and reports on our experience using it to check programs. Sections 7 and 
8 then extend our formal system and jcc to infer method specifications and show how inference reduces the annotation 
burden for programmers. Sections 9 and 10 discuss related work and conclude.

This work extends earlier work [58,59,57] and includes a more thorough discussion of cooperability and its bene-
fits: a formal development of the run-time semantics and correctness proof showing that well-typed programs exhibit 
cooperative-preemptive equivalence, as well as a new method specification inference algorithm to drastically reduce the 
annotation-overhead of using our checker.

2. Documenting interference

In a cooperative program, each thread should execute a sequence of serializable transactions separated by yields. A pro-
grammer must therefore identify yield points using the annotations described below, which we summarize in Fig. 4.

2.1. Yielding field accesses

The following syntax denotes a yielding read or write of a racy field f , where the yield (and hence potential interference) 
occurs just before the access to f :

e.. f // yield before racy read
e.. f = e′ // yield before racy write

The yielding read e.. f evaluates the subexpression e to an object reference and then reads the f field of the referenced ob-
ject, and the yield annotation indicates that interference is possible after evaluating e but before reading the field. Typically, 
f will be a volatile field to avoid the additional memory model complexities of data races on non-volatile fields.

Annotations of this form are used when a program manipulates a shared memory location that may have data races. For 
example, if a program uses a global counter stored in the volatile field p.x, then incrementing and printing that counter 
would need to be written as

p..x = p.x + 1;
print(p..x);

since the write is not in the same serializable transaction as the first read. Similarly, the second read must yield because 
the value written may be stale due to interference after the write.

2.2. Yielding lock acquires

A programmer may also document that interference may occur prior to acquiring a lock, as in

..synchronized (e) { . . . }
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1 class Bit {
2

3 boolean b;
4

5 this?mover:atomic boolean get() {
6 synchronized(this) {
7 return this.b;
8 }
9 }

10

11 this?mover:atomic void set(boolean t) {
12 synchronized(this) {
13 this.b = t;
14 }
15 }
16

17 atomic boolean testAndSet() {
18 synchronized(this) {
19 if (!this.get()) {
20 this.set(true);
21 return true;
22 } else {
23 return false;
24 }
25 }
26 }
27

28 compound void busyWait() {
29 while (!this..testAndSet()) { }
30 }
31 }

Fig. 5. A YieldJava class implementing a shared boolean flag.

which is a synchronized block that may encounter interference after the evaluation of the lock expression e, but before the 
lock acquire. Note that a lock release cannot interfere with any concurrently executing action by another thread and thus 
never needs to start a new transaction.

2.3. Yielding method calls

Next, consider an atomic method m() whose body performs a complete transaction. In order to sequentially compose 
two calls to such methods, a yield point must occur in between them. For this purpose, we also allow yield annotations on 
a method call, where the yield occurs after e and e′ have been evaluated and right before the call is performed:

e..m(e′) // yield before method call

To illustrate yielding calls, consider the Bit class in Fig. 5, which implements a thread-safe shared flag. While elementary 
in design, it illustrates more complex shared structures. The get() and set() methods each perform a single transaction 
when called without holding Bit’s lock. (These methods, and the others, include cooperability effect annotations, which we 
discuss below.)

A client using a Bit object flag would thus need to insert a yield point between consecutive calls to get and set, as 
shown on the left below. If the client synchronizes on flag’s lock around these operations, no yield is required, as shown 
on the right below. Indeed, this is how testAndSet() is implemented in order to ensure that it is an atomic operation 
with no internal yields.

if (!flag.get()) { synchronized(flag) {
flag..set(true); if (!flag.get()) {

} flag.set(true);
}

}

A second example of invoking a yielding method is the busyWait() method in Fig. 5, which repeatedly invokes the 
atomic testAndSet() method and documents that interference may occur between consecutive calls to that method.
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2.4. Non-atomic method calls

A method like busyWait() is non-atomic, or compound, because its body consists of multiple transactions separated 
by yield points. In that case, we require calls to busyWait() to use the postfix annotation “#”:

flag.busyWait#() // yields inside busyWait

This call-site annotation reminds the programmer that state properties holding before the call may not hold after the call, 
due to yields nested within the callee. For example, in the following, the assertion that a race-free global variable x contains 
the value written immediately before the call to busyWait may fail due to interference during that call:

x = 10;
flag.busyWait#();
assert x == 10;

2.5. Method cooperability specifications

To enable modular reasoning about cooperability, we use specifications on methods to describe their cooperability behav-
ior. These could be as simple as atomic, which indicates a method is a single transaction with no internal yield points, or 
compound, which indicates a method consists of a series of yield-separated transactions. A method could also be annotated 
as a mover, which indicates that the method does not interfere with concurrent operations of other threads.2

Specifications for methods can also describe behavior conditional on which locks are held at call sites. For example, 
the specification this?mover:atomic for get() indicates that the method executes a single transaction that either 
is a mover (if invoked when the receiver’s lock is held) or is atomic (if invoked when the receiver’s lock is not held). 
Conditional forms are essential for expressiveness when reasoning about code with reentrant locks. The set() method has 
a similar specification.

While conditional effects could be assigned to testAndSet() and busyWait(), we have instead annotated them 
with the more coarse, but still sound, specifications of atomic and compound to indicate that they consist of a single 
transaction and a sequence of transactions, respectively. In addition to illustrating the ability to coarsen effects, these coarser 
specifications also better capture the intended use case in which testAndSet() and busyWait() are called from client 
code without the receiver lock held.

3. Effects for cooperability

As we outline in the following sections, we reason about cooperability via a type and effect system characterizing the 
behavior of each program subexpression. We use two kinds of effects to capture an expression’s behavior: mover effects and 
atomicity effects.

3.1. Mover effects

A mover effect μ characterizes the behavior of a program expression in terms of how operations of that expression 
commute with operations of other threads:

μ ::= f | y | m | r | l | n

f: The effect f (for functional) describes expressions whose result does not depend on any mutable state. Hence, re-
evaluating a functional expression is guaranteed to produce the same result. Examples of functional expressions include 
numeric constants, accesses to immutable local variables, accesses to a final field of an immutable object reference, and 
so on. (Our type system requires all lock names to be functional to ensure that it does not confuse distinct locks.)

y: The effect y describes yield operations, denoted as “..”. These expressions mark transactional boundaries where the 
current transaction ends and a new one starts.

r: The effect r describes right-mover expressions such as lock acquires. In more detail, suppose a trace contains an acquire 
operation a that is immediately followed by an operation b of a different thread. Then the two operations a and b
commute and can be swapped without changing the overall behavior or final state of the trace, as illustrated by the 
commuting diagram below.

2 The term mover is comes from Lipton’s theory of reduction, as described in the next section.
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Fig. 6. Iterative closure (μ∗) and sequential composition (μ1;μ2) operations for mover effects, and the mover effect lattice.

This commuting relationship holds because once operation a acquires the lock, operation b can neither acquire nor 
release that lock.

l: The effect l describes left-mover expressions such as lock releases that commute to the left across a preceding operation 
of a different thread (such as operation b in the above diagram). Thus, if b in the above diagram is a lock release 
operation, then operation a can neither acquire nor release the lock. Hence the lock release operation can be moved to 
the left of a without changing the resulting state.

m: The effect m describes both-mover expressions such as race-free variable accesses that commute both left and right with 
operations by other threads. If operation a above were a race-free access, operation b could not be a conflicting access to 
that same variable, and so a can commute to the right. Similarly, if b were a race-free access, it could commute to the 
left since a could not be accessing the same variable.

n: The effect n describes non-mover code that may perform a racy access or contain right-movers followed by left-movers 
(as in a synchronized block).

Next, suppose the sequence of instructions α performed by a thread consists of: (1) zero or more right-movers, followed by 
(2) at most one non-mover, followed by (3) zero or more left-movers. Then, according to Lipton’s theory of reduction [33], 
instructions of other threads that are interleaved into α can be commuted out so that α executes serially, without inter-
leaved operations of other threads. We say that any sequence matching this reducible pattern of instructions is a reducible 
transaction, or simply a transaction.

To illustrate this notion, consider the following method:

synchronized void inc() {
int t = x;
x = t + 1;

}

This method acquires the lock on this (the operation acq in the first execution trace below), reads a variable x protected 
by that lock into a local variable t (t=x), updates that variable (x=t+1), and then releases the lock (rel). The diagram 
below shows the actions of this method interleaved with arbitrary actions b1, b2, and b3 of other threads. Because the 
acquire operation is a right mover and the write and release operations are left movers, there exists an equivalent serial 
execution where the operations of the method are not interleaved with operations of other threads:

The type system presented in the next section ensures that the instructions performed by each thread consist of reducible 
transactions separated by yield annotations. The type system works by composing the effects for individual operations 
according to the sequential composition (μ1; μ2) and iterative closure (μ∗) operations in Fig. 6.

Given two operations e1 and e2 with mover effects μ1 and μ2, the effect of executing e1; e2 is μ1; μ2. For example, 
executing a right-mover and then a left-mover results in r; l = n. Sequential composition is partial and may fail if the 
composed effect is not reducible (indicated with a “−”). For example, the sequential composition (l; r) is undefined because 
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Fig. 7. Combined effect lattice.

it does not match the reducible pattern from above and therefore does not represent the effect of any valid sequence of 
transactions.

Note that effect f is idempotent for sequential composition because functional expressions have no visible side effects 
and cannot impact the commuting behavior of larger program fragments containing them.

Composition with y is defined to capture how yielding may be used. For example, “y; n” is l, to ensure that “n; y; n” is 
permissible.

Mover effects are ordered by the relation � captured by the lattice in Fig. 6. Given an expression e with mover effect μ, 
the effect of the repeatedly executing e zero or more times is μ∗ = f � μ � μ; μ � μ; μ; μ � . . . where � is the join 
operation for that lattice and f is the effect of the empty sequence.

3.2. Atomicity effects

Each program expression also has an atomicity effect

τ ::= a | c

that is either a (for atomic) if the expression never yields or c (for compound) if the expression may yield. Ordering (�), 
iterative closure (τ ∗) and sequential composition (τ1; τ2) for atomicity effects are defined by:

a � c τ ∗ def= τ τ1;τ2
def= τ1 � τ2

3.3. Combined effects

A combined effect κ is a pair τμ of an atomicity effect τ and a mover effect μ. Note that not all combined effects are 
meaningful. In particular, ay and cf are contradictory: an atomic piece of code may not contain a yield, and code with yields 
cannot be considered functional. We define the ordering relation and the join, iterative closure, and sequential composition 
operations on combined effects in a point-wise manner, and the diagram in Fig. 7 summarizes the resulting lattice of 
combined effects.

κ ::= τ μ

τ1 μ1 � τ2 μ2 iff τ1 � τ2 and μ1 � μ2

τ1 μ1 � τ2 μ2
def= τ3 μ3 where τ3 = τ1 � τ2, μ3 = μ1 � μ2

τ1 μ1 ; τ2 μ2
def= τ3 μ3 where τ3 = τ1;τ2, μ3 = μ1;μ2

(τμ)∗ def= τ ∗μ∗

We note that when atomic is used in a source-level method specification, as in Fig. 5, it refers to the combined effect 
an. Thus composing two atomic method calls does not result in a reducible transaction because an; an is not defined. 
The mover source-level annotation refers to am, and compound refers to cn. While these are the most common explicitly 
mentioned in method specification effects, our Java implementation supports source-level syntax for all combined effects, 
as shown in Section 5.

3.4. Conditional effects

As outlined above, the effect of acquiring a lock m is ar, since an acquire is a right-mover containing no yields. If the lock 
m is already held by the current thread, however, then the re-entrant lock acquire is actually a no-op and is more precisely 
characterized as an atomic both-mover am.
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P ∈ Program = defn
defn ∈ Definition ::= class c { field meth }
field ∈ Field ::= c f

meth ∈ Method ::= a c m(c x) { e }
f ∈ FieldName = Normal ∪ Final ∪ Volatile

e, � ∈ Expr ::= x | null
| eγ f | eγ f = e
| eγ m(e) | eγ m#(e)
| new c(e) | eγ sync e
| fork e | let x = e in e
| if e e e | while e e

γ ∈ OptYield ::= . | ..
c,d ∈ ClassName
x, y ∈ Var

m ∈ MethodName
a ∈ Effect

Fig. 8. YieldJava syntax.

We introduce conditional effects (or simply, effects) to capture situations like this where the effect of an operation depends 
on which locks are held by the current thread. We use � to range over expressions that are functional (f) and which always 
denote the same lock. An effect a is then either a combined effect κ or a conditional effect � ? a1 :a2, which is equivalent to 
a1 if the lock � is held, and is equivalent to a2 otherwise. We extend the iterative closure, sequential composition, and join 
operations to conditional effects as follows:

a ::= κ | �? a1 :a2

(�? a1 :a2) � a = �? (a1 � a) : (a2 � a)

a � (�? a1 :a2) = �? (a � a1) : (a � a2)

(�? a1 :a2)
∗ = �? a∗

1 :a∗
2

(�? a1 :a2);a = �? (a1;a) : (a2;a)

a; (�? a1 :a2) = �? (a;a1) : (a;a2)

We extend the effect ordering to conditional effects in a manner similar to earlier type systems for atomicity [18]. To 
decide a1 � a2, we use an auxiliary relation �h

n , where h is a set of locks known to be held by the current thread, and n is 
a set of locks known not to be held by the current thread. We define a1 � a2 to be a1 �∅

∅ a2 and check a1 �h
n a2 recursively 

as follows:

κ1 � κ2

κ1 �h
n κ2

� /∈ n ⇒ a1 �h∪{l}
n a

� /∈ h ⇒ a2 �h
n∪{l} a

�? a1 :a2 �h
n a

� /∈ n ⇒ κ �h∪{l}
n a1

� /∈ h ⇒ κ �h
n∪{l} a2

κ �h
n �? a1 :a2

These rules allow us to order conditional effects in ways illustrated by the following examples:

�? am : cn � cn

am � �? am : (�? af :am)

�? (�? am : cm) :am � am

4. The language YIELDJAVA

Now that our language of conditional effects has been introduced, we incorporate those effects into a type system 
for the idealized language YieldJava, a multithreaded subset of Java with yield annotations. In this section, we present 
the YieldJava syntax, a type system to verify cooperability, and the theorems showing that our type system accepts only 
cooperable programs.

4.1. Syntax

The YieldJava syntax is summarized in Fig. 8. A program P is a sequence of class definitions. Each definition associates 
a name c with a collection of field and method declarations. A field declaration includes a type and a name. Field names 
are syntactically divided into three categories:

• Normal fields are mutable and are assumed to be race-free.
• Final fields are immutable and thus race-free.
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• Volatile fields are mutable and may have races.

We assume that data race freedom for Normal fields is verified separately by, for example, a race-free type system [9,23,
1]. Normal fields include thread-local fields as well as thread-shared fields that are correctly synchronized, for example, 
via locks. (Our implementation does support racy accesses to non-volatile fields, as described in Section 5.) In contrast to 
accesses to normal fields, accesses to volatile fields do not commute with steps from other threads. As in Java, we assume 
accesses to Volatile fields are synchronizing operations and exhibit sequentially consistent behavior.

Each method declaration a c m(c x) { e } defines a method m with return type c that takes parameters x of type c. 
The method declaration also includes an effect a, as described in Section 3. Method parameters and local variables, drawn 
from the set Vars, are immutable.

Several expression forms support optional yield annotations, as discussed previously in Section 2. For example, a field 
read expression eγ f comes in two forms, e. f and e.. f , depending on the optional yield annotation γ for documenting 
thread interference. Field writes eγ f = e and method calls eγ m(e) also include an optional yield, and calls to compound or 
non-atomic methods must be marked as eγ m#(e). YieldJava supports a synchronized block e1γ sync e2 that is analogous 
to Java’s synchronized statement

synchronized (e1) { e2 }

That operation also supports an optional yield. (We use this alternative syntax in the formal development for symmetry 
with the other optionally yielding operations.)

Finally, an object allocation new c(e) creates a new object of type c and initializes its fields to the values of the 
expression sequence e. We assume that all programs include an empty class Unit. The language includes the special 
constant null, which has any class type, including Unit.

Our code examples include minor extensions to YieldJava, such as int and boolean types with supporting constants 
and operations, an explicit return keyword, braces to delineate blocks of code, sequential composition via ’;’, and so on. 
These extensions pose no technical challenges, but including them in the formal development would introduce additional 
complexity orthogonal to cooperability.

4.2. Type system

The YieldJava type system ensures that each thread consists of reducible transactions separated by yields, and conse-
quently that thread interference is observable only at yield annotations. The core of the type system is a set of rules for 
reasoning about the effect of an expression, as captured by the judgment:

P ; E 
 e : c · a

Here, e is an expression of type c, and a is an effect describing the behavior of e. The program P is included to provide 
access to class declarations, and the environment E maps free variables in e to their types:

E ::= ε | E, c x

Figs. 9 and 10 present the complete set of rules for expressions, as well as auxiliary rules to reason about methods, classes, 
effects, and so on. We describe the most important rules below:

[exp var] All variables are immutable in YieldJava and thus have cooperability effect af, since a variable access is atomic 
and evaluates to a constant value.

[exp new] The object allocation rule first retrieves the definition of the class c from P and ensures the arguments e1..n match 
the field types from c. The effect of the whole expression is the composition of effects of evaluating e1..n composed with 
the effect am, reflecting that new is not functional (since re-evaluating an object allocation would not return the same 
object).

[exp ref] This rule handles a read e. f of a Normal or Final field. If f is Normal and thus race-free, the field access has effect 
am as it commutes with steps by other threads. If f is Final, the access has the more precise effect af.

[exp ref volatile] A racy read eγ f of a volatile field may be annotated with a yield point (if γ = “..”) or not (if γ = “.”). 
We use the auxiliary function �(γ ) to map γ to the corresponding effect:

� : OptYield → Effect
�(.) = af

�(. .) = cy

Thus, if the expression e has effect a, then the non-yielding racy access e. f has effect (a; af; an), the sequential com-
position of (1) the effect a of computing the object reference, (2) the effect af to indicate that no yield is present at the 
access site, and (3) the effect an for accessing the potentially racy field f . In contrast, the yielding racy access e.. f has 
effect (a; cy; an), where the middle effect now reflects that a yield is present.
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P ; E 
 e : c · a

[exp var]

P 
 E
E = E1, c x, E2

P ; E 
 x : c · af

[exp null]

P 
 E
class c { . . . } ∈ P

P ; E 
 null : c · af

[exp new]

class c { di xi
i∈1..n . . . } ∈ P

P ; E 
 ei : di · ai ∀i ∈ 1..n

P ; E 
 new c(e1..n) : c · (a1; · · · ;an;am)

[exp ref]

P ; E 
 e : c · a class c { . . .d f . . .} ∈ P
( f ∈ Normal ∧ a′ = am) ∨ ( f ∈ Final ∧ a′ = af)

P ; E 
 e. f : d · (a;a′)

[exp assign]

P ; E 
 e : c · a P ; E 
 e′ : d · a′
class c { . . .d f . . .} ∈ P f ∈ Normal

P ; E 
 (e. f = e′) : d · (a;a′;am)

[exp ref volatile]

P ; E 
 e : c · a
class c { . . .d f . . .} ∈ P f ∈ Volatile

P ; E 
 eγ f : d · (a;�(γ );an)

[exp assign volatile]

P ; E 
 e : c · a P ; E 
 e′ : d · a′
class c { . . . d f . . . } ∈ P f ∈ Volatile

P ; E 
 (eγ f = e′) : d · (a;a′;�(γ );an)

[exp call atomic]

P ; E 
 e : c · a
class c { . . . meth . . .} ∈ P

meth = a′ c′ m(di xi
i∈1..n) { e′ }

P ; E 
 a′[this := e, xi := ei
i∈1..n] ↑ a′′

P ; E 
 ei : di · ai ∀i ∈ 1..n a′′ � an

P ; E 
 eγ m(e1..n) : c′ · (a;a1; · · · ;an;�(γ );a′′)

[exp call compound]

P ; E 
 e : c · a
class c { . . . meth . . .} ∈ P

meth = a′ c′ m(di xi
i∈1..n) { e′ }

P ; E 
 a′[this := e, xi := ei
i∈1..n] ↑ a′′

P ; E 
 ei : di · ai ∀i ∈ 1..n

P ; E 
 eγ m#(e1..n) : c′ · (a;a1; · · · ;an;�(γ );a′′)

[exp sync]

P ; E 
lock �

P ; E 
 e : c · a

P ; E 
 �γ sync e : c · S(�,γ ,a)

[exp fork]

P ; E 
 e : c · a

P ; E 
 fork e : Unit · al

[exp while]

P ; E 
 ei : ci · ai ∀i ∈ 1..2
a′ = a1; (a2;a1)

∗
P ; E 
 while e1 e2 : Unit · a′

[exp if]

P ; E 
 e1 : d · a1
P ; E 
 ei : c · ai ∀i ∈ 2..3

a′ = a1; (a2 � a3)

P ; E 
 if e1 e2 e3 : c · a′

[exp let]

P ; E 
 e1 : c1 · a1
P ; E, c1 x 
 e2 : c2 · a2
P ; E 
 a2[x := e1] ↑ a′

2
P ; E 
 let x = e1 in e2 : c2 · (a1;a′

2)

Fig. 9. YieldJava type rules (I).

[exp sync] The rule for the synchronized statement �γ sync e first checks that � is a valid lock expression (P ; E 
lock �), 
meaning that � must have effect af to guarantee that it always denotes the same lock at run time (when evaluated in 
the same environment).
The rule then computes the effect S(�,γ ,a), where a is the effect of e, and γ specifies whether there is a yield point. 
The function S is defined as:

a S(�,γ ,a)

κ �?κ : (�(γ );ar;κ;al)

�? a1 :a2 S(�,γ ,a1)

�′ ? a1 :a2 �′ ? S(�,γ ,a1) : S(�,γ ,a2) if � �= �′

If the synchronized body e has a basic effect κ and the lock � is already held, then the synchronized statement also has 
effect κ , since the acquire and release operations are no-ops. Note that in this case the yield operation is ignored, since 
it is unnecessary.
If e has effect κ and the lock is not already held, then the synchronized statement has effect (�(γ ); ar; κ; al), since the 
execution consists of a possible yield point, followed by a right-mover (the acquire), followed by κ (the body), followed 
by a left-mover (the release).
If e has conditional effect � ? a1 :a2, where � is the lock being acquired by this synchronized statement, then we ignore 
a2 and recursively apply S to a1, since � is held within e.
Finally, if e has an effect that is conditional on some other lock �′ , then we recursively apply S to both branches.
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P 
 E

[env ε]

P 
 ε

[env x]

P 
 E x /∈ dom(E)

class c { . . .} ∈ P

P 
 (E, c x)

P ; E 
 a

[coop base]

P 
 E

P ; E 
 κ

[coop cond]

P ; E 
lock �

P ; E 
 ai ∀i ∈ 1..2
P ; E 
 �? a1 :a2

P ; E 
lock e

[lock exp]

P ; E 
 e : c · af

|e| ≤ MaxLockSize

P ; E 
lock e

P ; E 
 a ↑ a′

[lift base]

P 
 E

P ; E 
 κ ↑ κ

[lift lock]

P ; E 
 ai ↑ a′
i ∀i ∈ 1..2

P ; E 
lock � =⇒ a′′ = �? a′
1 :a′

2
P ; E �lock � =⇒ a′′ = a′

1 � a′
2

P ; E 
 (�? a1 :a2) ↑ a′′

P ; E 
 meth

[method]

P ; E,d x 
 e : c · a′
P ; E,d x 
 a

a′ � a

P ; E 
 a c m(d x) { e }

P 
 defn

[class]

fieldi = di f i ∀i ∈ 1..m
class di { . . . } ∈ P ∀i ∈ 1..m

P ; c this 
 methi ∀i ∈ 1..n

P 
 class c { field1..m meth1..n }

P 
 ok

[program]

P = defn1..n P 
 defni ∀i ∈ 1..n
ClassesOnce(P ) FieldsOnce(P )

MethodsOnce(P )

P 
 ok

Fig. 10. YieldJava type rules (II).

[exp let] This rule for let x = e1 in e2 infers effects a1 and a2 for e1 and e2, respectively. Care must be taken when 
constructing the effect for the let expression because a2 may refer to the let-bound variable x. For example, the body 
of the following let expression produces an effect that is conditional on whether the lock x is held.

let x = e1 in x.sync . . .

Thus, we apply the substitution [x := e1] to yield a corresponding effect a2[x := e1] that does not mention x. However, 
e1 may not have effect af, in which case a2[x := e1] may not be valid (because it could contain e1 a non-constant lock 
expression). As in previous work [18], we use the judgment

P ; E 
 a2[x := e1] ↑ a′
2

to lift the effect a2[x := e1] to a well-formed effect a′
2 that is greater than or equal to a2[x := e1]. For example, if 

a2 = (x ? am : an) and e1 = y. f , where f is a Normal field, then a2[x := e1] = (y. f ? am :an), which is not a valid effect 
because y. f is not a valid lock. Thus the above judgment lifts it to the valid effect a′

2 = an. The lifting judgment is 
defined in Fig. 10 via the following rules:

[lift base] Basic effects are always well-formed and remain unchanged when lifted.
[lift lock] If a conditional effect refers to a well-formed lock, this rule preserves the conditional test and recursively 

lifts the two component effects. If a conditional effect refers to an ill-formed lock expression, the rule eliminates the 
conditional test and instead joins together the two recursively lifted component effects.

[exp call atomic] This rule handles calls to atomic methods. The callee’s declared effect a′ may refer to this or parameters 
x1..n . Therefore, we substitute
• the actual receiver e for this and
• the actual arguments e1..n for the parameters x1..n

to produce the effect a′[this := e, xi := ei
i∈1..n], and ensure that the resulting effect is valid by lifting it to an effect a′′

that is well-formed in the current environment. Effect a′′ must be an atomic effect, that is, less than or equal to an.
The rule for a compound method invocation eγ m#(e1..n) is similar, but removes the requirement that the computed 

effect a′′ is atomic.
[exp fork] A fork expression fork e creates a new thread to evaluate e. Since a fork operation cannot commute past the 

operations of its child thread, fork operations are left movers.
[lock exp] The judgment P ; E 
lock e checks that e is a well-formed lock expression in environment E . The lock expression 

e must denote a fixed lock throughout the execution of the program to ensure soundness. Thus, we require that e has 
effect af.
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In addition, each lock expression e has a size |e|, which is the number of field accesses it contains. To ensure termi-
nation of the specification inference algorithm presented in the second half of this article, we require that the size of 
each lock expression be bounded by the constant MaxLockSize. The size restriction poses no limitation in practice since 
lock relationships are never complex enough to be problematic. Choosing a MaxLockSize of 4 proved sufficient in our 
experiments, with larger values yielding no real improvement in precision.

[method], [class], and [prog] These rules verify the basic well-formedness requirements of methods, classes, and programs. 
The [prog] rule uses several additional predicates to ensure no class is declared twice (ClassesOnce(P )), no field name 
is declared twice in a class (FieldsOnce(P )), and no method name is declared twice in a class (MethodsOnce(P )). These 
are defined more precisely in [22]. While these properties could be verified by a separate type system, we include them 
here so that all necessary conditions for type safety are verified by a single set of rules.

4.3. Correctness

Appendix A presents a formal operational semantics for YieldJava. A run-time state σ extends the program’s source code 
with dynamically allocated objects and dynamically created threads. We present two variants of our operational semantics: 
a preemptive semantics (→) that context switches at arbitrary program points, and a cooperative semantics (→c) that 
context switches only at yield annotations. As expected, the cooperative semantics is more restrictive than the preemptive, 
and thus (→c) ⊂ (→). Both satisfy the standard preservation property that evaluation preserves well-typing (under an 
appropriate extension of the type system to run-time states, denoted 
 σ ).

Theorem 4.1 (Preservation). If 
 σ and σ →σ ′ then 
 σ ′ .

Proof is by case analysis on the operational semantics rules and is presented in [56].
The more interesting correctness theorem is that a well-typed program exhibits equivalent behavior under both seman-

tics. We say a state σ is yielding if no thread in σ is in the middle of a transaction. If a well-typed yielding state σ can 
reach a yielding state σ ′ under the preemptive semantics, it can also reach that state under the cooperative semantics. 
Note that in any terminating execution, the initial and final states of that execution are yielding, and the following theorem 
guarantees equivalence under both semantics.

Theorem 4.2 (Cooperative-preemptive equivalence). Suppose 
 σ where σ is yielding. If σ →∗ σ ′ where σ ′ is also yielding, then 
σ →∗

c σ ′ .

We outline the proof of this theorem in Appendix B, where we also extend it to cover the technically more subtle case 
of when the program goes wrong.

With Theorem 4.2, we can reason about the correctness of well-typed programs under the simpler cooperative semantics 
(→c), since this correctness result also applies to executions under the preemptive semantics (→). Note that the converse 
to this theorem also holds, since (→c) ⊂ (→).

5. Implementation

We have developed an implementation called jcc that extends the YieldJava type system to support the Java language.3

jcc uses the standard Java modifiers final and volatile to classify fields as either Final or Volatile; all other fields 
are considered Normal. We introduce one new modifier, racy, to capture intentionally racy Normal fields. jcc assumes 
that correct field annotations are provided for the input program. Such annotations could be verified or generated using
Rcc/Java [1] or any other analysis technique. For our experiments, we leveraged that tool, as well as the FastTrack [17] data 
race detector, to identify racy fields.

jcc supports annotations on methods to describe their effects, as in YieldJava. The following three effect keywords are 
sufficient to annotate most methods:

atomic: an atomic non-mover method with effect an.
mover: an atomic both-mover method with effect am.
compound: a compound non-mover method with effect cn.

jcc supports annotations for all elements of the conditional effect lattice, such as (atomic left-mover) and 
(this ? mover : compound), as well. Method effect annotations appear alongside standard method modifiers, as 
in the following illustrative examples:

3 Our implementation does not currently support generic classes due to limitations in the front-end checker upon which jcc is built, but supporting 
generic types is not fundamentally problematic.
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Table 1
Effects for other access forms.

Access type Syntax Effect

racy read e1.. f # a1;cl

racy write e1.. f #= e2 a1;a2;cl

race-free array read e1[e2] a1;a2;am

race-free array write e1[e2] = e3 a1;a2;a3;am

racy array read e1[e2]# a1;a2;cl

racy array write e1[e2]#= e3 a1;a2;a3;cl

write-guarded read e1. f
a1;am

with lock held

write-guarded read e1.. f
a1;an

without lock held

write-guarded write e1. f = e2 a1;a2;an
with lock held

atomic void m1() { . . . }

atomic left-mover void m2() { . . . }

lock?mover:atomic void m3() { . . . }

lock?(atomic left-mover):(compound non-mover) void m4() { . . . }

As in YieldJava, field accesses and method invocations may be written using “..” in place of “.” to indicate interference 
points. Yielding synchronized statements use the syntax “..synchronized(e) { . . . }”.

Given a program with cooperability annotations, jcc reports a warning whenever interference may occur at a program 
point not corresponding to a yield, and whenever a method’s specification is not satisfied by its implementation.

5.1. Type system extensions

jcc extends YieldJava to support subtyping, subclassing, and method overriding. It allows the effect of an overriding 
method to change covariantly, and so requires that b � a in the following:

class C { a t m() { . . . } }
class D extends C { b t m() { . . . } }

In addition, although data races should in general be avoided, large programs often have some intentional races, which 
jcc supports via a racy annotation on Normal fields. A read from a racy field must be written as e.. f #. Here, the “..” 
syntax as usual indicates a yield point, and the trailing # identifies the racy nature of the read (and that the programmer 
needs to consider the consequences of Java’s relaxed memory model [36]). The overall effect of e.. f # is the composition of 
a yield and a non-mover memory access: (cy; an) = cl. Writes are similar. We summarize these extra rules, and those that 
follow, in Table 1.

The YieldJava checker handles array accesses similar to Normal fields. Note that in Java, array elements are never final
or volatile. Racy array accesses must be annotated with “#”, as in a[i]#, and are assumed to be yield points.

YieldJava also supports write-guarded fields (such as shortestPathLength from Fig. 1) for which a protecting lock 
is held for all writes but not necessarily for reads. In this case, a read while holding the protecting lock is a both-mover, 
since there can be no concurrent writes. However, a write with the lock held is a non-mover, since there may be concurrent 
reads that do not hold the lock.

5.2. Default field and method annotations

To reduce the burden of annotating code with cooperability effects, jcc uses carefully chosen defaults when annotations 
are absent. In particular, unannotated fields are race-free, and unannotated methods are atomic both-movers. Default anno-
tations help most for classes that were not designed to be shared (or are at least race free) and for code that contains no 
synchronization. They help less for code where synchronization is used.
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Table 2
Interference points and unintended yields.

Program Size 
(lines)

Annotation 
time (min)

Annotation 
count

Interference points Unintended 
yieldsNoSpec Race Atomic AtomicRace Yields

java.util.zip.Inflater 317 9 4 44 12 0 0 0 0
java.util.zip.Deflater 381 7 8 57 13 0 0 0 0
java.lang.StringBuffer 1276 20 9 235 39 10 3 1 1
java.lang.String 2307 15 5 258 34 6 2 1 0
java.io.PrintWriter 534 40 108 120 82 114 81 51 9
java.util.Vector 1019 25 43 214 41 37 17 7 1
java.util.zip.ZipFile 490 30 60 140 86 87 55 33 0
sparse 868 15 15 328 32 50 16 7 0
tsp 706 10 45 475 53 405 48 24 0
elevator 1447 30 62 492 76 223 42 22 0
raytracer-fixed 1915 10 46 629 124 104 38 26 2
sor-fixed 958 10 30 249 38 126 22 15 0
moldyn-fixed 1352 10 43 991 52 657 34 28 0

Total 13,570 231 478 4232 682 1819 358 215 13
per KLOC 17 35 312 50 134 26 16 1

6. Experimental evaluation

We applied jcc to benchmark programs including a number of standard library classes from Java 1.44; sparse, ray-
tracer, sor, and moldyn from the Java Grande suite [29]; tsp, a solver for the traveling salesperson problem [53]; and 
elevator, a real-time discrete event simulator [53]. These programs use a variety of synchronization idioms, and pre-
vious work has revealed a number of interesting concurrency bugs in these programs. Thus, these benchmarks show the 
ability of our annotations to capture thread interference under various conditions and to highlight unintended, problematic 
interference. Three of these programs (raytracer, sor, and moldyn) use broken barrier implementations [17]. We dis-
cuss those problems below and use versions with corrected barrier code (named raytracer-fixed, sor-fixed, and 
moldyn-fixed) in our experiments. We performed all experiments on an Apple MacBook Pro computer with a 2.6 GHz 
Intel Core i7 processor and 16 GB of memory. We used the Java 1.7.0 HotSpot 64-bit Server VM. The checker analyzed each 
benchmark in under 1 second.

Table 2 shows the size of each benchmark program, the number of annotations required to enable successful type 
checking, and the wall clock time required for one programmer to identify and add all annotations necessary for jcc to 
accept the program without warnings. The annotation count includes all racy field annotations, method specifications, and 
occurrences of “..” and “#”. The annotation burden was relatively low, but could still be expensive for large code bases. 
Each program was manually annotated and checked in about 10 to 30 minutes, and roughly one annotation per 30 lines of 
code was required. We did have some previous experience using these programs, which facilitated the annotation process, 
but since we intend jcc to be used during development, we believe our experience reflects the cost incurred by the intended 
use of our technique.

Overall, we found that inserting yield annotations requires a solid understanding of the synchronization protocols used 
by the target program and of where interference may occur, but was otherwise relatively straight-forward. Inserting method 
specifications was often as time consuming as inserting yield annotations, in part because potentially many method specifi-
cations would change whenever a yield annotation was added or removed. We discuss mitigating that overhead in the next 
section when we discuss method specification inference.

We show how to mitigate much of this overhead in Section 7, where we discuss type inference for method specifications.

6.1. Examples of defects

The primary purpose of yield annotations is to facilitate formal and informal reasoning about higher-level correctness 
properties. At the same time, yield annotations also facilitate recognizing concurrency errors. To explore this aspect, the 
final column in Table 2 shows the number of unintended yields in each program, where manual code inspection shows that 
thread interference is unintentional and erroneous. These unintended yields highlight all known concurrency bugs, including 
atomicity violations and data races [16,18] detectable with prior tools. (Those errors were known to us before annotating 
the programs.)

4 We used Java 1.4 classes because jcc was built as an extension to a Java front end [20] that does not support generic classes. Handling generic classes 
and features from later versions of Java pose no substantial theoretical challenges but would add complexity to our formal system and implementation.
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1 class RayTracerRunner implements Runnable {
2 int id;
3

4 compound public void run() {
5 // init
6 br.DoBarrier#(id);
7 // render
8 ..synchronized (scene) {
9 for(int i=0;i<JGFRayTracerBench.nthreads;i++)

10 if (id == i)
11 JGFRayTracerBench..checksum1 =
12 JGFRayTracerBench..checksum1
13 + checksum;
14 }
15 br.DoBarrier#(id);
16 // cleanup
17 }
18 }

Fig. 11. RayTracer.

6.2. StringBuffer and Vector

The yield annotation shown on line 12 in Fig. 13 highlights that other threads may concurrently modify sb, poten-
tially causing append() to crash, in violation of its specified thread-safe behavior under JDK 1.4. A constructor in the 
Vector class suffers from a similar defect. Similar pitfalls occur in Vector’s inherited methods removeAll(c) and 
retainAll(c) [18]. In this experiment, we did not verify the correctness of inherited code, but jcc readily catches those 
errors when that code is checked.

6.3. RayTracer

The raytracer benchmark uses a barrier br to coordinate several rendering threads, as shown in Fig. 11. After rendering, 
each thread acquires the lock scene before adding its local checksum to the global shared variable checksum1. However, 
each thread creates its own scene object, and thus acquiring scene fails to ensure mutual exclusion over the updates to 
checksum1. This is made clear by the explicit yields on the reads and writes of checksum1 on lines 11 and 12.

6.4. SOR and Moldyn

In sor (see Fig. 12), the computation threads synchronize on a barrier implemented as a shared two-dimensional array 
sync. Unfortunately, the barrier is broken, since the volatile keyword applies only to the array reference, not the array 
elements. Thus, the barrier synchronization code at the bottom of the main processing loop may not properly coordinate 
the threads, leading to races on the data array G. This problem is obvious when using jcc because racy annotations must 
be added in dozens of places, essentially to all accesses of sync and G. When the barrier is fixed, we obtain much cleaner 
code: the yield count decreases from 40 to 12. In particular, the accesses to G between barrier calls are free of yields, 
signifying that between barriers, sequential reasoning is applicable.

The moldyn benchmark uses a barrier object with a similar error in the use of volatiles and arrays. This bug leads to 
potential races on all data accesses intended to be synchronized by the barrier, and a large number (58) of yield annotations 
were necessary to document all such cases.

6.5. Non-interference specifications

Yield annotations provide a precise specification of exactly where thread interference may occur. In this section, we 
compare yield annotations with two established techniques for reasoning about thread interference based on identifying 
data races and atomic methods. Specifications for data races come in the form of race annotations on all accesses that 
may be involved in a data race. Specifications for atomic methods come in the form of either atomic or non-atomic
annotations on methods.

While these specifications for data races and atomic methods do not directly identify all IPs, IPs can be inferred by per-
forming additional analysis based on these specifications. This additional analysis is analogous to the reasoning performed 
by our type system but is less precise, as it is based on coarser specifications than the conditional effects used by our 
system.

To experimentally compare cooperability with these prior approaches we count the IPs in each benchmark under the 
following five approaches for specifying non-interference.



244 J. Yi et al. / Science of Computer Programming 112 (2015) 227–260
1 class SORRunner implements Runnable {
2 double G[][];
3 volatile long sync[][];
4

5 compound public void run() {
6 . . .

7 for (int p = 0; p < 2*num_iterations; p++) {
8 for (int i=ilow+(p%2); i < iupper; i=i+2) {
9 . . .

10 for (int j=1; j < Nm1; j=j+2){
11 G[i][j]# = omega_over_four *
12 ( G[i-1][j]# + G[i+1][j]# +
13 G[i][j-1]# + G[i][j+1]# ) +
14 one_minus_omega * G[i][j]#;
15 . . .

16 }
17 }
18

19 sync[id][0]# = sync[id][0]# + 1;
20 if (id > 0)
21 while (sync[id-1][0]# < sync[id][0]#) ;
22 if (id < JGFSORBench.nthreads-1)
23 while (sync[id+1][0]# < sync[id][0]#) ;
24 }
25 }
26 }

Fig. 12. Original SOR Algorithm.

NoSpec: If we have no information about thread interference, then there is a potential IP immediately before any field 
access or lock acquire, since those operations may conflict with operations of concurrent threads. Additionally, method calls 
are considered IPs, since interference could occur inside the callee. We exclude operations that never cause interference, 
such as accesses to local variables, lock releases, method calls, etc. from this count.

Race: If we have information about race-free fields, then we only count IPs on each racy field access, lock acquires, and 
method calls.

Atomic: If we know that certain methods are atomic and hence free of interference, then we consider IPs to occur at all 
field accesses, lock acquires, and method calls occurring inside a non-atomic method.

AtomicRace: If we have information about both racy fields and atomic methods, then we only count IPs at racy field 
accesses, lock acquires, and method calls inside non-atomic methods.

Yield: We use the yield annotation “..” and the compound method call annotation “#” to identify exactly those program 
points at which interference may occur.

Table 2 shows the number of interference points (IPs) in each benchmark under each non-interference specification. 
Benchmarks in which all methods are atomic, such as Inflater, have zero interference points under both the Atomic and 
Yield specifications. The results confirm that both Race (50 IP/KLOC) and Atomic (135 IP/KLOC) are useful non-interference 
specifications that reduce the number of interference points in comparison to the base-case NoSpec (312 IP/KLOC). Atom-
icRace (26 IP/KLOC) combines complementary benefits from both Atomic and Race, and is better than either of these 
approaches in isolation. Finally, Yield (16 IP/KLOC) provides a significant improvement over these prior approaches. Put dif-
ferently, these results indicate that for these benchmarks, the prior approaches for specifying non-interference significantly 
over-approximate the set of IPs.

We sketch two situations illustrating why yield annotations based on the reasoning performed by our type sys-
tem is more precise than AtomicRace. First, for the TSP algorithm in Fig. 1 under the AtomicRace specifications, both 
path.isComplete() and path.children() would be labeled as atomic and searchFrom would be labeled 
as non-atomic. Thus, AtomicRace requires an interference point before the calls to path.isComplete() and 
path.children() from within searchFrom. In contrast, our type system identifies that these two methods are more 
precisely characterized as both movers that do not interfere with other threads, and so no yield point is necessary at these 
calls.

This example illustrates that atomic method specifications are not sufficient to precisely identify IPs. Additional infor-
mation about which atomic methods are both-movers would help, but that extension would then force the programmer to 
perform additional reasoning to properly identify IPs. In contrast, Yield supports directly annotating those IPs in a syntacti-
cally explicit manner that requires no extra reasoning by the programmer
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1 public final class StringBuffer · · · {
2 (this ? mover : atomic) int length() { . . . }
3 (this ? mover : atomic) void getChars(. . .) { . . . }
4

5 compound synchronized StringBuffer append(StringBuffer sb) {
6 . . .

7 int len = sb.length();
8 int newcount = count + len;
9 if (newcount > value.length) {

10 expandCapacity(newcount);
11 }
12 sb..getChars(0, len, value, count);
13 count = newcount;
14 return this;
15 }
16 }

Fig. 13. StringBuffer.

Table 3
Programmer-inserted annotations in benchmarks when method specifications are all added manually, added in conjunction with defaults, and automatically 
inferred.

Program Size 
(lines)

Programmer-Inserted Annotations (count)

Yield 
Point

Non-Atomic 
Call

Racy 
Field

Method Specs. Total

Manual Defaults Inference Manual Defaults Inference

java.util.zip.Inflater 317 0 0 0 25 4 0 25 4 0
java.util.zip.Deflater 381 0 0 1 26 7 0 27 8 1
java.lang.StringBuffer 1276 1 0 0 45 8 0 46 9 1
java.lang.String 2307 1 0 1 59 3 0 61 5 2
java.io.PrintWriter 534 26 42 3 37 37 0 108 108 71
java.util.Vector 1019 4 3 0 75 36 0 82 43 7
java.util.zip.ZipFile 490 25 5 7 33 18 0 70 55 37
sparse 868 6 3 0 46 6 0 55 15 9
tsp 706 19 12 3 17 11 0 51 45 34
elevator 1447 21 11 1 64 24 0 97 57 33
raytracer-fixed 1915 25 5 3 88 12 0 121 45 33
sor-fixed 958 12 6 0 48 12 0 66 30 18
moldyn-fixed 1352 27 12 0 54 10 0 93 49 39

Total 13,570 167 99 19 617 188 0 902 473 285
per KLOC 12 7 1 45 14 0 66 35 21

As a second example, consider the method StringBuffer.append() in Fig. 13. This non-atomic method in turn 
calls two methods sb.length() and sb.getChars(), both of which are atomic (since the lock sb is not held at these 
call sites). Under AtomicRace, an interference point must be assumed before each of these calls to an atomic method from 
a non-atomic context. In contrast, our type system can verify that the lock acquire of this at the start of append() can 
move right to just before the sb.length() call, so no yield is required at the call to sb.length(). Thus, AtomicRace
requires two interference points in this method, whereas our type system requires just one.

These two examples illustrate why the notions of data races and atomic methods are not by themselves sufficient to 
identify interference points in a precise manner. Extending AtomicRace to include more precise method specifications for 
identifying mover methods and conditionally atomic methods would help, but then both the method specifications and 
the programmer’s manual analysis to reason about IPs begins to converge on the reasoning performed by our type system. 
Our system both automates the process of reasoning about IPs and ensure that they are syntactically explicit in the source 
program.

7. Method specification inference

While jcc demonstrates the feasibility of programming with cooperability, the need to fully annotate the source code 
does impose a burden on the programmer, particularly for large or frequently changing code bases. Table 3 shows, for each 
benchmark, how many annotations must be added for jcc to verify type safety. That table includes the number of annota-
tions for identifying “Yield Points”, “Non-Atomic Method Calls”, “Racy Field Declarations”, and “Method Specifications”. The 
number of programmer-inserted method specifications is reported for three scenarios:

• Manual: No default specifications or inference techniques are used.
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• Defaults: The default method specification of atomic both-mover from Section 5 is used when applicable.
• Inference: Type inference is used to infer all specifications.

We also report the sum of all programmer-inserted specifications for these three scenarios in the “Total” columns. That is, 
the “Manual Total” column sums the “Yield Point”, “Non-Atomic Call”, “Racy Field”, and “Manual Method Specs” required 
when default values and inference are not used. In that case, jcc requires about 66 annotation per KLOC for our benchmarks. 
When default method specifications are used, the number of annotations required drops to 35 per KLOC, of which about 
40% are method specifications, as reported in the “Default Total” column. (That column corresponds to the number of 
annotations in Table 2).

As mentioned earlier, using the default annotations for methods works well for synchronization-free and race-free meth-
ods, but not as well on methods that perform synchronization or contain yield points. For example, the defaults are not 
applicable to the searchFrom method (Fig. 1), the methods of the Bit class (Fig. 5), or the code fragments presented in 
the previous section (Figs. 11–13). Specifications for those remaining methods are often the most subtle to get right and are 
prone to change if code is modified (by, for example, inserting/removing new yield points or method calls). Moreover, deter-
mining what they should be accounted for a non-trivial fraction (about 30–60%) of the time spent annotating the programs 
in our study, even when the default annotations were used for common cases. Additionally, method specifications often had 
to be revised as additional yield points were added to satisfy the type checker.

To mitigate this annotation overhead for methods, we introduce an algorithm for inferring all method specifications not 
provided by the programmer, reducing the number of required annotations in the benchmarks from 35 per KLOC to 21 per 
KLOC. The inferred annotations can be inserted into the source code to enable subsequent modular checking of cooperability 
and provide documentation to the user, and they can be regenerated as needed if later changes to the code significantly 
changes the behavior of many methods. Our inference algorithm enables us to eliminate most of the time spent annotating 
methods in our benchmarks, and it also enables specifications to be recomputed automatically if code changes introduce or 
remove yield points.

Our algorithm infers the most precise cooperability specification for each method via a constraint-based effect infer-
ence technique. That is, syntax-directed typing rules generate a set of constraints containing fresh “effect variables” for the 
missing annotations. Those constraints are then solved via a least fixed-point computation over the effect lattice. As in our 
previous work on type inference for atomicity specifications [18], the presence of conditional effects containing lock ex-
pressions that must be immutable leads to significant complexity. To adhere to these immutability restrictions, constraints 
generated by our analysis include constructs to describe well-formedness requirements on conditional effects, and the con-
straint solver leverages the type system to enforce them.

When using method specification inference, the programmer is only responsible for inserting the annotations capturing 
racy fields, yield points, and non-atomic calls. Fields with potential races could be identified via existing sound, static 
analyses (such as [37]), but inferring yield points and non-atomic call sites remains for future work. Inferring yield points 
would complement our effect inference algorithm presented here, but it is a subtle inference problem since there is some 
choice in where yields are placed in the code (e.g., within the methods of a class versus at call sites to those methods). 
Thus, inferring yield points has an optimization aspect that will be better understood once we have more experience with 
jcc.

7.1. Language extensions for specification inference

To support type inference for method effects, we extend cooperability effects to include effect variables ϕ . An open effect
s is either an (explicit) conditional effect a or an effect variable ϕ .

μ ::= f | y | m | r | l | n (mover effect)
τ ::= a | c (atomicity effects)
κ ::= τμ (combined effect)
a ::= κ | l ? a1 :a2 (conditional effects)
ϕ ∈ EffectVar (effect variables)
s ::= a | ϕ (open effects)

We permit methods to be annotated by effect variables as well as explicit cooperability effects:

meth ::= s t m(arg∗) { e }

A program is explicitly-typed if it does not contain effect variables. The specification inference problem is, given a program P
with effect variables, to replace each effect variable with a conditional effect so that the resulting explicitly typed program 
is well-typed. The following subsections describe the constraint language, the type inference rules that generate constraints, 
and our constraint solving algorithm.



J. Yi et al. / Science of Computer Programming 112 (2015) 227–260 247
�a� = a
�r1;r2 � = �r1 �; �r2 �

�r1�r2 � = �r1 � � �r2 �

�r∗� = �r�∗
�l ? r1 : r2 � = l ? �r1 � : �r2 �

�r·θ � = θ(�r�)

�S(l, γ , r)� = S(l, γ , �r�)

�Lift(P , E, r)� = a such that P ; E 
 �r� ↑ a

A(a) = a
A(r1;r2) = A(r1);A(r2)

A(r1�r2) = A(r1)�A(r2)

A(r∗) = A(r)∗
A(r·θ) = A(r)·θ

A(l ? r1 : r2) = l ? A(r1) : A(r2)

A(S(l, γ , r)) = S(l, γ , A(r))
A(Lift(P , E, r)) = Lift(A(P ), E, A(r))

Fig. 14. Definitions of the meaning function �·� and assignment mappings for cooperability expressions.

7.2. Cooperability constraints

A constraint C relates a cooperability expression r and an open effect s:

C ::= r � s

Cooperability expressions include open effects as well as constructs for representing various operations on effects, such as 
sequential composition, join, iteration, and substitution.

r ::= s | r;r | r�r | r∗ | l ? r : r | r·θ | S(l, γ , r) | Lift(P , E, r)

We use bold symbols such as “�” and “;” to distinguish the syntactic constructs relating effect expressions from the cor-
responding semantic operations “�” and “;” on effects. The expression forms for sequential composition (r;r), join (r�r), 
iterative closure (r∗), conditional effects (l ? r : r), and synchronization (S(l, γ , r)) are analogous to the underlying operations 
on effects. The delayed substitution expression form r·θ , where θ = [x1 = e1, . . . , x2 = en] is a map from program variables 
to expressions, and the lifting expression form Lift(P , E, r) are described where used below.

An cooperability expression is closed if it does not contain effect variables. The meaning function �·� shown in Fig. 14
maps closed cooperability expressions to effects:

�·� : ClosedCoopExpr → Effect

7.3. Assignments

An assignment A maps effect variables to effects:

A : EffectVar → Effect

The ordering relation for assignments is the point-wise extension of the sub-cooperability relation:

A1 � A2 iff ∀ϕ. A1(ϕ) � A2(ϕ)

⊥ def= λϕ. af

We extend assignments in a compatible manner to arbitrary cooperability expressions, as shown in Fig. 14. We also extend 
assignments to programs, so that the program A(P ) is identical to P , except that each effect variable ϕ is replaced with its 
meaning A(ϕ).

An assignment A satisfies a constraint C = r � s (written A |= C ) if, after applying the assignment, the meaning of the 
left-hand side of the constraint is a sub-cooperability-effect of the right-hand side:

A |= r � s iff � A(r)� � A(s)

If A |= C for all C ∈ C̄ then A is a solution for C̄ , written A |= C̄ . A set of constraints C̄ is valid, written |= C̄ , if every 
assignment is a solution for C̄ . In particular, if A is a solution for C̄ , then A(C̄) is valid, and vice-versa.

7.4. Type inference rules

The YieldJava type inference judgments and rules are shown in Figs. 15–16. Mostly, these judgments extend the type 
checking judgments of the earlier type system to also generate atomicity constraints. For example, the main type inference 
judgment:

P ; E 
 e : t · r · C̄

now yields a set of constraints C̄ generated from type checking e with respect to program P and environment E . We 
highlight the most interesting extensions:
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P ; E 
 e : c · r · C̄

[inf var]

P 
 E
E = E1, c x, E2

P ; E 
 x : c · af · ∅

[inf null]

P 
 E
class c { . . . } ∈ P

P ; E 
 null : c · af · ∅

[inf new]

class c { di xi
i∈1..n . . . } ∈ P

P ; E 
 ei : di · ri · C̄i ∀i ∈ 1..n

P ; E 
 new c(e1..n) : c · (r1; · · · ;rn;am) · C̄1..n

[inf ref]

P ; E 
 e : c · r · C̄ class c { . . .d f . . .} ∈ P
( f ∈ Normal ∧ r′ = am) ∨ ( f ∈ Final ∧ r′ = af)

P ; E 
 e. f : d · (r;r′) · C̄

[inf assign]

P ; E 
 e : c · r · C̄ P ; E 
 e′ : d · r′ · C̄ ′
class c { . . .d f . . .} ∈ P f ∈ Normal

P ; E 
 (e. f = e′) : d · (r;r′;am) · (C̄ ∪ C̄ ′)

[inf ref volatile]

P ; E 
 e : c · r · C̄
class c { . . .d f . . .} ∈ P f ∈ Volatile

P ; E 
 eγ f : d · (r;�(γ );an) · C̄

[inf assign volatile]

P ; E 
 e : c · r · C̄ P ; E 
 e′ : d · r′ · C̄ ′
class c { . . . d f . . . } ∈ P f ∈ Volatile

P ; E 
 (eγ f = e′) : d · (r;r′;�(γ );an) · (C̄ ∪ C̄ ′)

[inf call atomic]

P ; E 
 e : c · r · C̄
class c { . . .meth . . .} ∈ P

meth = r′ c′ m(di xi
i∈1..n) { e′ }

θ = [this := e, xi := ei
i∈1..n]

r′′ = r;r1; · · · ;rn;�(γ );Lift(P , E, r′·θ)

P ; E 
 ei : di · ri · C̄i ∀i ∈ 1..n
C̄ ′ = C̄ ∪ C̄1..n ∪ {Lift(P , E, r′·θ)�an}

P ; E 
 eγ m(e1..n) : c′ · r′′ · C̄ ′

[inf call compound]

P ; E 
 e : c · r · C̄
class c { . . .meth . . .} ∈ P

meth = r′ c′ m(di xi
i∈1..n) { e′ }

θ = [this := e, xi := ei
i∈1..n]

r′′ = r;r1; · · · ;rn;�(γ );Lift(P , E, r′·θ)

P ; E 
 ei : di · ri · C̄i ∀i ∈ 1..n

P ; E 
 eγ m#(e1..n) : c′ · r′′ · (C̄ ∪ C̄1..n)

[inf sync]

P ; E 
lock � · C̄
P ; E 
 e : c · r · C̄ ′

P ; E 
 �γ sync e : c · S(�,γ , r) · (C̄ ∪ C̄ ′)

[inf fork]

P ; E 
 e : c · r · C̄

P ; E 
 fork e : Unit · al · C̄

[inf while]

P ; E 
 e1 : c1 · r1 · C̄1

P ; E 
 e2 : c2 · r2 · C̄2

r′ = r1;(r2;r1)∗
P ; E 
 while e1 e2 : Unit · r′ · C̄1..2

[inf if]

P ; E 
 e1 : d · r1 · C̄1

P ; E 
 ei : c · ri · C̄i ∀i ∈ 2..3
r′ = r1;(r2�r3)

P ; E 
 if e1 e2 e3 : c · r′ · C̄1..3

[inf let]

P ; E 
 e1 : c1 · r1 · C̄1

P ; E, c1 x 
 e2 : c2 · r2 · C̄2

r′
2 = Lift(P , E, r2·[x := e1])

P ; E 
 let x = e1 in e2 : c2 · (r1;r′
2) · C̄1..2

Fig. 15. AtomicJava type inference rules (I).

[inf sync] The cooperability effect for a synchronized expression “lγ sync e” is S(l, γ , r), where d is the cooperability ex-
pression for e. The semantics of S(l, γ , r) is defined in terms of the function S , that is, �S(l, γ , r)� = S(l, γ , �r�).

[inf let] This rule for let x = e1 in e2 infers cooperability expressions r1 and r2 for e1 and e2, respectively. Since r2 may 
mention x, we introduce the substitution θ = [x := e1] as in the earlier type checking rule [exp let], but here we need 
to use the cooperability expression form r2·θ to delay applying this substitution until after effect variables in r2 are 
resolved. (Similar delayed substitutions occur in [inf call atomic] and [inf call compound].)
Furthermore, e1 may not be af (in general, we cannot determine which expressions are constant until after type in-
ference), in which case r2·θ may not be a valid cooperability effect. Therefore, we use the cooperability expression 
Lift(P , E, r2·θ) to yield a cooperability effect for e2 that is well-formed in environment E .

[inf lock exp] The judgment P ; E 
lock e · C̄ ensures that e is a valid lock expression. This rule checks that e denotes a fixed 
lock throughout the execution of the program by generating the constraint that e has effect af.
As in the type system, the requirement that |e| ≤ MaxLockSize ensures that there is only a finite number of valid lock 
expressions at any program point, which in turn bounds the size of conditional effects and guarantees termination of 
our type inference algorithm.

The method specification inference system defines the top-level judgment

P 
 C̄

where C̄ is the generated set of constraints for the program P .
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P ; E 
lock e · C̄

[inf lock exp]

P ; E 
 e : c · r · C̄
|e| ≤ MaxLockSize

P ; E 
lock e · C̄ ∪ {r�af}

P ; E 
 s · C̄

[inf coop base]

P 
 E

P ; E 
 κ · ∅

[inf coop cond]

P ; E 
lock � · C̄
P ; E 
 ri · C̄i ∀i ∈ 1..2

P ; E 
 �? r1 : r2 · (C̄ ∪ C̄1..2)

[inf coop var]

P ; E 
 ϕ · ∅

P ; E 
 meth · C̄

[inf method]

E ′ = E,d x
P ; E ′ 
 e : c · r · C̄

P ; E ′ 
 s · C̄ ′

P ; E 
 s c m(d x) { e } · (C̄ ∪ C̄ ′ ∪ {Lift(P , E ′, r)�s})

P 
 defn · C̄

[inf class]

fieldi = di f i ∀i ∈ 1..m
class di { . . . } ∈ P ∀i ∈ 1..m
P ; c this 
 methi · C̄i ∀i ∈ 1..n

P 
 class c { field1..m meth1..n } · C̄1..n

P 
 C̄

[inf program]

P = defn1..n P 
 defni · C̄i ∀i ∈ 1..n
ClassesOnce(P ) FieldsOnce(P )

MethodsOnce(P )

P 
 C̄1..n

Fig. 16. AtomicJava type inference rules (II).

We demonstrate the type inference process with a version of the earlier-described Bit class that has not been explicitly-
annotated with method specifications. A version of that class definition containing effect variables for missing annotations 
and a simple client is shown in Fig. 17. For this program, the type system generates the constraints in Fig. 18, which also 
shows the typing rule and source location causing each constraint to be generated. That figure omits several trivial con-
straints that do not involve effect variables, e.g. af � af. Also, the constants true and false have effect af, as does the 
boolean operation !e.

As a technical requirement, we introduce the notion of a well-formed assignment. An assignment A is well-formed for C̄
if, for all constraints (Lift(P , E, r) �ϕ) in C̄ , A(P ); E 
 A(ϕ). In other words, A(ϕ) cannot refer to lock expressions that are 
not well-formed in the environment E .

With this definition, we can now state that if A is a well-formed solution to the constraints for a program P , then the 
explicitly-typed program A(P ) is well-typed.

Theorem 7.1 (Type inference yields well-typed programs). If P 
 C̄ and A |= C̄ and A is well-formed for C̄ then A(P ) 
 wf .

The proof is by induction over the derivation of P 
 C̄ . The well-formedness requirement on A ensures that the cooper-
ability effects for effect variables are well-formed in the scopes in which they appear.

7.5. Solving constraints

To solve a generated constraint system C̄ , we start with the minimal assignment ⊥ and iteratively increase this assign-
ment via the relation A →C̄ A′:

(r � ϕ) ∈ C̄

A →C̄ A[ϕ := A(ϕ) � � A(r)�]
If this rule is applied to some r � ϕ ∈ C̄ not satisfied by the assignment A, i.e. � A(r)� �� A(ϕ), it produces a larger assign-
ment A′ that does satisfy that constraint. If applied to some constraint that is already satisfied by A, the assignment is not 
changed.

We repeatedly apply this rule until a fixed point is reached. Specifically, we compute ⊥ →∗̄
C

A by iteratively applying the 
single-step rule until an A is reached where there does not exist an A′ such that A →C̄ A′ and A �= A′ . We show below that 
the fixed point algorithm always terminates and that, when a fixed point A is reached, it exhibits two key properties:

1. If A |= C̄ , then we have found a solution for C̄ and the program A(P ) is well-typed.
2. If A �|= C̄ , then there exists a constraint (r � a) ∈ C̄ in C̄ where � A(r)� �� a. In this case, A is not a solution for C̄ and 

the program A(P ) is not well-typed. Further, the program is not well-typed under any assignment.

Thus, the algorithm finds a solution for C̄ if and only if a solution exists.
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1 class Bit {
2

3 boolean b;
4

5 ϕ1 boolean get() {
6 synchronized(this) {
7 return this.b;
8 }
9 }

10

11 ϕ2 void set(boolean t) {
12 synchronized(this) {
13 this.b = t;
14 }
15 }
16

17 ϕ3 boolean testAndSet() {
18 synchronized(this) {
19 if (!this.get()) {
20 this.set(true);
21 return true;
22 } else {
23 return false;
24 }
25 }
26 }
27

28 ϕ4 void busyWait() {
29 while (!this..testAndSet()) { }
30 }
31 }
32

33 class Client {
34 final Bit flag;
35

36 ϕ5 void f() {
37 flag.set(false);
38 flag.busyWait#();
39 flag..set(false);
40 }
41 }

Fig. 17. A version of Bit and a client, both of which include effect variables.

For the constraints in Fig. 18, our algorithm yields the minimal solution below. We also express those effects in the more 
readable surface-level syntax from Section 5.

Bit.get : ϕ1 = (this? am :an) = this ? mover : atomic
Bit.set : ϕ2 = (this? am :an) = this ? mover : atomic

Bit.testAndSet : ϕ3 = (this? am :an) = this ? mover : atomic
Bit.busyWait : ϕ4 = (this? cy : cl) = this ? (compound yield) : (compound left)

Client.f : ϕ5 = (this? cy : cn) = this ? (compound yield) : compound

Note that the algorithm yields more precise effects for testAndSet and busyWait than those discussed for the original 
version of Bit in Fig. 5, because it assumes that the lock on a Bit object may be held on calls to those objects. As 
mentioned earlier, the programmer may choose to either retain these precise effects or coarsen them to more intuitive or 
suitable effects, such as atomic (an) and compound (cn), respectively, in these cases.

7.6. Correctness of the algorithm

We now show that the inference algorithm always terminates and is correct:
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Lift(P , E1,S(this, “.”, (af;am))) � ϕ1 [inf method], line 5

Lift(P , E2,S(this, “.”, (af;af;am))) � ϕ2 [inf method], line 11

Lift(P , E3,ϕ1·[this := this]) � an [inf call atomic], line 19

Lift(P , E3,ϕ2·[this := this]) � an [inf call atomic], line 20

Lift(P , E3,S(this, “.”, (af;(af;af;Lift(P , E3,ϕ1·[this := this])));
((af;af;af;Lift(P , E3,ϕ2·[this := this]);af)�af))) � ϕ3 [inf method], line 17

Lift(P , E4,ϕ3·[this := this]) � an [inf call atomic], line 29

Lift(P , E4, (af;(af;cy;Lift(P , E4,ϕ3·[this := this])));
(af;(af;(af;cy;Lift(P , E4,ϕ3·[this := this]))))∗) � ϕ4 [inf method], line 28

Lift(P , E5,ϕ2·[this := this.flag]) � an [inf call atomic], lines 37&39

Lift(P , E5, ((af;af);af;af;Lift(P , E5,ϕ2·[this := this.flag]));
((af;af);af;Lift(P , E5,ϕ2·[this := this.flag]));
((af;af);af;cy;Lift(P , E5,ϕ2·[this := this.flag]))) � ϕ5 [inf method], line 36

where
E1 = Bit this
E2 = Bit this,boolean t
E3 = Bit this
E4 = Bit this
E5 = Client this

Fig. 18. Constraints generated for the Bit program in Fig. 17, and the typing rule that generated each one.

Theorem 7.2 (Method specification inference). Given program P and constraints C̄ such that P 
 C̄ :

1. The transitive closure of →C̄ applied to ⊥ always reaches a fixed point.
2. If ∃A′. A′(P ) 
 wf and ⊥ →∗̄

C
A where A is a fixed point, then A |= C̄ .

3. If ⊥ →∗̄
C

A and A is a fixed point where A |= C̄ , then A(P ) 
 wf .

We begin by showing that our algorithm always terminates. This property, and those that follow, only hold for constraints 
generated by the type inference rules, which generate constraint sets exhibiting several key features that we highlight 
below. A crucial aspect of showing termination is ensuring that the constraint solver does not produce arbitrarily large 
lock expressions, which would in turn lead to infinite ascending chains in the assignment lattice. We bound the size of 
lock expressions appearing in A to exclude this possibility. A lock expression l is bounded if |l| < MaxLockSize. We extend 
that notion of bounded size to lock expressions appearing in effects and assignments as well. A cooperability expression or 
constraint is bounded if it is only conditional on bounded lock expressions, and if every delayed substitution occurs inside 
the construct Lift(P , E, ·).

Lemma 7.3. If r is a closed, bounded cooperability expression then �r� is also bounded.

Proof. The only difficulty is that �r� may apply delayed substitutions in r, resulting in non-bounded lock expressions. 
However, all delayed substitutions are within an enclosing Lift(P , E, ·) construct that will filter out these non-bounded lock 
expressions. �
Lemma 7.4. If A and r are bounded then A(r) is bounded.

Lemma 7.5 (Termination). For any bounded constraint system C̄ , the transitive closure of →C̄ applied to ⊥ always reaches a fixed 
point.

Proof. Since C̄ is bounded, every generated assignment is also bounded by the previous Lemmas. Any program, and thus 
any generated C̄ , contains only a finite number of distinct variables and field names. All bounded lock expressions in 
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the generated bounded assignments are derived from these names. Thus there are a finite number of possible bounded 
assignments. Also note that if A →∗̄

C
A′ then A � A′ . Since the relation is non-decreasing and there are a finite number of 

bounded assignments, we must reach a fixed point. �
Part 1 of Theorem 7.2 follows directly from Lemma 7.5. Since the type inference rules only generate bounded constraint 

systems, the algorithm will terminate for any set of constraints generated while checking a program.
We now turn our attention to showing that the constraint solver finds a valid solution if and only if the program is 

well-typed. We first state several key properties about the relation A →C̄ A′ .

Lemma 7.6 (Step). Suppose A →C̄ A′ . Then A � A′ . If in addition there exists A′′ such that A � A′′ and A′′ |= C̄ , then we also have 
that A′ � A′′ .

Lemma 7.7 (Contradiction). If A is a fixed point for →C̄ and A �|= C̄ , then there is no A′ such that A � A′ and A′ |= C̄ .

Also, the algorithm only computes well-formed assignments. (Recall that well-formed assignments do not cause variables 
to be referenced out of their scopes.)

Lemma 7.8 (Well-formed). If A is well-formed for C̄ and A →C̄ A′ then A′ is well-formed for C̄ .

Proof. The type inference rules produce constraints C̄ exhibiting the following two properties:

1. Each C ∈ C̄ has one of two forms: (r �a) or (Lift(P , E, r) �ϕ).
2. There is at most one lower bound (Lift(P , E, r) �ϕ) in C̄ for each ϕ .

If A →C̄ A′ , then A′ = A[ϕ := A(ϕ) � � A(Lift(P , E, r))�], where (Lift(P , E, r) � ϕ) ∈ C̄ is the unique lower bound on ϕ . Since 
A is well-formed, A(P ); E 
 A(ϕ). Also, � A(Lift(P , E, r))� = a, where A(P ); E 
 � A(r)� ↑ a. This implies that A(P ); E 
 a. The 
effect A′(ϕ) = A(ϕ) � a will also be well-formed in E , since it can only refer to lock expressions already present in A(ϕ)

and a. Thus, A′ is well-formed for C̄ . �
The previous lemmas are sufficient to show that the algorithm only produces correct results, and Lemma 7.6 also guar-

antees that the algorithm computes the most precise satisfying assignment.
The second part of Theorem 7.2 follows from Lemmas 7.6 and 7.7. To show the third part, suppose ⊥ →∗̄

C
A and A is a 

fixed point where A |= C̄ . Since ⊥ is well-formed for C̄ and ⊥ →C̄ . . . →C̄ A, Lemma 7.8 states that A is well-formed for C̄ . 
Theorem 7.1 then concludes that A(P ) 
 wf .

8. Implementation and evaluation of method specification inference

We have extended the jcc checker to perform method specification inference using the algorithm described in the pre-
vious section. jcc thus takes Java source code with yield and field annotations, but it does not require all methods to be 
annotated with their cooperability specifications. If all methods are annotated, jcc simply verifies that the code is cooperable 
and that the annotations are correct.

If some or all method annotations are missing, jcc inserts fresh effect variables in their place and proceeds to check 
the program via our constraint-based inference algorithm. If a solution for the effect variables is found, jcc outputs a 
fully-annotated version of the source. Otherwise, jcc reports a warning for each cooperability error identified.

Our implementation of the specification inference algorithm follows the formal development closely. We do, however, 
include on-the-fly simplification of computed effects and an additional constraint form to enable support for the inference 
of specifications in the case of overriding method declarations. These two extensions were previously developed as part of 
an earlier type system for atomicity [18] and are straight-forward to adapt to this setting. We configured MaxLockSize to 
bound lock expressions to contain no more than four field accesses. Larger values of MaxLockSize increased run times with 
no precision improvements, and smaller bounds degraded precision. Overall, the performance of the specification inference 
algorithm is quite fast.

Applying our inference algorithm to the previously presented benchmarks enabled us to verify cooperability without 
adding any method annotations. That is, our inference algorithm inferred an appropriate effect for every method in the 
target program. As described earlier in Table 3, our inference algorithm reduces the number of necessary manually-inserted 
annotations to 21 per KLOC in our benchmarks, significantly improving the usability of jcc.

In addition to removing the need for method specifications, a another benefit of the inference algorithm is that it 
facilitates the process of inserting yield annotations, since errors during the inference process typically reflect missing yields 
in the target program.
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Table 4
Method specification inference performance.

Program Size (lines) |C̄ | Time (sec)

java.util.zip.Inflater 317 40 0.07
java.util.zip.Deflater 381 42 0.06
java.lang.StringBuffer 1276 87 0.10
java.lang.String 2308 103 0.12
java.io.PrintWriter 534 97 0.19
java.util.Vector 1019 144 0.19
java.util.zip.ZipFile 490 66 0.18
sparse 868 90 0.14
tsp 706 52 0.14
elevator 1447 150 0.17
raytracer-fixed 1915 237 0.18
sor-fixed 958 96 0.14
moldyn-fixed 1352 116 0.90

Total 13,571 1320 2.58
per KLOC 97 0.19

The third column in Table 4 shows the number of constraints generated for each target program, and the fourth shows 
the jcc running time. The run times were quite good, with jcc configured to use method specification inference still taking 
less than a second on each program.

Since it is guaranteed to find the most precise method effects possible, jcc in some cases annotated methods with effects 
more precise than a programmer may assign, as highlighted in Section 7.5. One possible way to mitigate this in the future 
if it proves problematic would be to have the algorithm attempt to infer effects from the most widely-used subset of the 
effect lattice first, only reverting to using the full effect lattice if that fails.

9. Related work

Cooperative multithreading is a thread execution model in which context switches between threads may occur only 
at yield statements [3,4,8]. That is, cooperative multithreading permits concurrency but disallows parallel execution of 
threads. In contrast, cooperability guarantees behavior equivalent to cooperative multithreading, but actually allows execu-
tion in a preemptive manner, enabling full use of modern multicore hardware.

Automatic mutual exclusion (AME) is an execution model ensuring mutual exclusion by default [28]; yield statements 
demarcate where thread interference is permitted. A key difference is that AME enforces serializability at run time via 
transactional memory techniques; in contrast, jcc guarantees serializability statically. Observationally Cooperative Multithread-
ing similarly uses run-time systems to safely run threads with explicit yields in parallel [52].

The Panini project [32,44] explores an alternative approach to minimizing thread interference points in the design of a 
new programming language. This language supports both objects and capsules, where each object is local to a capsule, and 
at most one thread is active in each capsule at a time. Thus, thread interference can only happen when one capsule calls a 
procedure of a different capsule.

In prior work, we explored a simpler type system for cooperability [58], and dynamic analyses for checking cooperability 
and inferring yield annotations for legacy programs [59]. Others have explored task types, a data-centric approach to obtain-
ing pervasive atomicity [30], a notion closely related to cooperability. Atomic sets are a useful, but complementary, technique 
for specifying groups of fields that must always be updated atomically. In contrast to cooperability, that approach enforces 
atomicity requirements by automatically inserting synchronization operations.

There is extensive literature on how to find and fix data races efficiently. Dynamic detectors may track the happens-
before relation [17], implement the lockset algorithm [50], or combine both [39]. Static race detectors may make use of a 
type system [9,1], implement a static lockset algorithm [38,42], or use model checking [43]. Data races often reflect prob-
lems in synchronization, and expose a weak memory model to programmers, compromising software reliability, and race 
freedom remedies this issue by guaranteeing behavior equivalent to executing with sequentially consistent memory [2].

Atomicity is an analysis approach that checks if atomic blocks are serializable. Both static [18,25,54] and dynamic 
tools [15,55,19,14] have been developed to check atomicity, as well as transactional memory techniques that enforce serial-
izability at run time [26,12,51,24]. While the notion of atomicity is very beneficial when reasoning about atomic methods, 
it is less helpful in documenting thread interference in non-atomic methods [58]. Moreover, atomicity introduces a form of 
bimodal reasoning, combining sequential reasoning inside atomic blocks with traditional multithreaded reasoning outside 
atomic blocks. In contrast, cooperative concurrency provides a uniform semantics for reasoning about the correctness of all 
code in a multithreaded system.

Deterministic parallelism generalizes atomicity to guarantee that the result of executing multiple threads is invariant across 
thread schedules. There are various approaches to ensure deterministic parallelism, including static analyses [7], dynamic 
analyses [48,10], and run-time enforcement [41,11]. One interesting area for future work is to extend our system to reason 
about determinism for cooperative programs.
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10. Summary

Reasoning about multithreaded software correctness is notoriously difficult under the preemptive semantics provided by 
multicore architectures. This paper proposes an approach where the programmer writes software with traditional synchro-
nization idioms, and also explicitly documents intended sources of thread interference with yield annotations. Any annotated 
program verified by our type system behaves as if it is executing under a cooperative semantics where context switches 
between threads happen only at specified yield points.

This cooperative semantics provides a nicer foundation for reasoning about program behavior and correctness. In partic-
ular, intuitive sequential reasoning is now valid, except at yield annotations, and prior user studies have shown that yield 
annotations makes it significantly easier for programmers to identify defects during code reviews [49].

An important problem for future work is developing an inference system for identifying where to insert yield annotations 
into existing, unannotated program. That would complement our work on method specification inference and dramatically 
reduce the overhead of using our technique. Other interesting avenues for future work are to incorporate cooperative reason-
ing into a proof system, such as rely-guarantee reasoning, or to extend cooperability to reason about determinism properties.
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Appendix A. Formal semantics of YIELDJAVA

Syntax extensions for run-time terms To characterize the run-time behavior of YieldJava programs, we extend the syntax of 
expressions to include object addresses ρ and the in-sync construct, as shown in Fig. A.1. We assume that addresses 
are divided into distinct sets, one for each type of object. The membership relation ρ ∈ Addrc indicates that the object at 
address ρ is of type c. The expression in-sync ρ e describes an expression e that is executing while holding the lock ρ .

Run-time semantics for YieldJava A run-time state σ = 〈P , H, M〉 is a combination of a program P , an object map H , and 
a thread map M . An object map H is a partial map from addresses to objects. An object is a sequence of field values for a 
given class, along with a lock o indicating which thread is holding the lock for that object, if any. (As in Java, every object 
has a lock implicitly associated with it at run time.) A thread map M is a partial map from threads to thread state. A thread 
state T is either:

• an expression e,
• ready e, which describes a newly created thread ready to execute an expression e, or
• wrong, which occurs when a thread tries to dereference null.

Fig. A.2 presents the formal transition rules for the evaluation of YieldJava programs. Each rule describes a transition 
step →t that could be taken by the thread t . We use an evaluation context E , an expression with a “hole” [ ], to indicate 
the next subexpression to evaluate. No transition rule applies for a thread t if that thread’s expression is either a value or 
wrong.

For simplicity, we adopt the following notation to access constituent parts of a state. If σ = 〈P , H, M〉, then:

• σ [c] refers to the class definition ‘class c { ... }’ for the class named c in P ,
• σ [ρ] refers to the object stored at address ρ in H , that is, H[ρ], and
• σ [t] refers to the thread state for thread t in M , that is, M[t].

Updates to the state are similarly written as follows:

• The state σ [ρ �→ { f = v }o] is the same as σ except ρ is mapped to the given object state. Similarly, σ [ρ. f �→ v]
preserves all components of σ , except for the single updated field.

• The state σ [t �→ T ] is the same as σ , except thread t maps to T .

We define two semantics using the single-step transition rules. In the preemptive semantics →, the steps of the various 
threads are interleaved non-deterministically, and a thread can perform a step at any time (provided that thread is not 
blocked). This nondeterminism means that reasoning about the behavior of programs under the preemptive semantics is 
very difficult.

In the cooperative semantics →c , context switches between threads can happen only at yield operations, which are 
indicated by dots (“. .”), or on thread termination. In more detail, a thread t is yielding in σ (or simply yielding if the context 
is clear) if for σ(t) = T ,
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e ∈ Expr ::= · · · | in-sync ρ e
v ∈ Value ::= ρ | null
ρ ∈ Addr =

⋃

c ∈ ClassName

Addrc

σ ∈ State = Program × (Addr ⇀ Object) × (Thread ⇀ ThreadState)

obj ∈ Object ::= { f = v }o

o ∈ Lock ::= ⊥ | Thread

T ∈ ThreadState ::= e | ready e | wrong
t ∈ Thread = {1,2,3, . . .}

Fig. A.1. YieldJava run-time constructs and state.

Evaluation contexts

E ::= [ ] | new c(v,E, e) | Eγ f | Eγ f = e | vγ f = E
| Eγ m(e) | Eγ m#(e) | vγ m(v,E, e) | vγ m#(v,E, e)
| let x = E in e | if E e e | Eγ sync e | in-sync ρ E

Transition rules

σ [t �→ E[ργ f ]] →t σ [t �→ E[v]] if σ(ρ) = { · · · , f = v, · · · }o
[red read]

σ [t �→ E[ργ f = v]] →t σ [t �→ E[v],ρ. f �→ v] [red write]

σ [t �→ E[ργ m(v1..n)]] →t σ [t �→ E[e[this := ρ, xi := v i∈1..n
i ]]] [red invoke]

if ρ ∈ Addrc and σ [c] = class c { · · · a d′ m(d x) { e } · · · }

σ [t �→ E[ργ m#(v1..n)]] →t σ [t �→ E[e[this := ρ, xi := v i∈1..n
i ]]] [red invoke compound]

if ρ ∈ Addrc and σ [c] = class c { · · · a d′ m(d x) { e } · · · }

σ [t �→ E[new c(v1..n)]] →t σ [t �→ E[ρ],ρ �→ { f i = vi
i∈1..n }⊥] [red new]

if ρ /∈ dom(σ ) and ρ ∈ Addrc and σ [c] = class c { t f · · · }

σ [t �→ E[ργ sync e ],ρ �→ { f = v }⊥] →t σ [t �→ E[in-sync ρ e],ρ �→ { f = v }t ] [red sync]

σ [t �→ E[ργ sync e ],ρ �→ { f = v }t ] →t σ [t �→ E[e],ρ �→ { f = v }t ] [red sync reentrant]

σ [t �→ E[in-sync ρ v],ρ �→ { f = v }t ] →t σ [t �→ E[v],ρ �→ { f = v }⊥] [red in-sync]

σ [t �→ E[fork e]] →t σ [t �→ E[null], t′ �→ ready e] if t′ /∈ Dom(σ ) [red fork]

σ [t �→ ready e] →t σ [t �→ [e]] [red ready]

σ [t �→ E[let x = v in e]] →t σ [t �→ E[e[x := v]]] [red let]

σ [t �→ E[if v e2 e3]] →t σ [t �→ E[e2]] if v �= null [red if-nonnull]

σ [t �→ E[if null e2 e3]] →t σ [t �→ E[e3]] [red if-null]

σ [t �→ E[while e1 e2]] →t σ [t �→ E[if e1 (e2; while e1 e2) null]] [red while]

σ [t �→ E[e]] →t σ [t �→ wrong] [red wrong]

if e ∈ {nullγ f , nullγ f = v, nullγ m(v), nullγ m#(v), nullγ sync e′ }

Transition relations

(preemptive semantics) σ → σ ′ if σ →t σ ′

(cooperative semantics) σ →c σ ′ if σ →t σ ′and σ(t) is cooperatively enabled

Fig. A.2. YieldJava semantics.
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P ; E 
 e : c · a

[exp addr]

P 
 E
E = E1, c ρ, E2

P ; E 
 ρ : c · af

[exp insync]

P ; E 
lock ρ
P ; E 
 e : c · a

P ; E 
 in-sync ρ e : c · SI(ρ,a)

P 
 E

[env addr]

P 
 E ρ /∈ dom(E)

P 
 c ρ ∈ Addrc

P 
 (E, c ρ)

P ; E 
 T

[Thread Ok]

P ; E 
 e : c · a

P ; E 
 e

[Thread Ready]

P ; E 
 e : c · a

P ; E 
 ready e

[Thread Wrong]

P ; E 
 wrong

P ; E 
 obj : c

[Object]

class c { di f i
i∈1..n . . . } ∈ P

P ; E 
 vi : di · ai ∀i ∈ 1..n

P ; E 
 { f i = vi
i∈1..n }o : c


 σ

[state]

P 
 ok

E = c1 ρ1, . . . , cm ρm

P 
 E
P ; E 
 obj j : c j ∀ j ∈ 1..m
P ; E 
 Tk ∀k ∈ 1..n


 〈P , [ ρ j �→ obj j
j∈1..m ], [ tk �→ Tk

k∈1..n ]〉
Fig. A.3. YieldJava type rules for run-time terms.

1. T = ready e
2. T ∈ Value,
3. T = wrong,
4. T = E[ρ.. f ],
5. T = E[ρ.. f = v],
6. T = E[ρ..sync e ],
7. T = E[ρ..m(v)], or
8. T = E[ρ..m#(v)].

The thread t is cooperatively enabled in a state σ if for all t′ in Dom(σ ) \ {t}, we have t′ is yielding in σ . Thus, t can only take 
a cooperative step if all other threads are yielding. This means that if t takes a cooperative step, then every other thread is 
either at a yield operation, is not enabled (either terminated at a value or wrong), or has not started yet. A state is yielding
if all threads are yielding in that state.

Type system extensions for run-time terms The additional typing rules shown in Fig. A.3 extend the YieldJava type system to 
include run-time states. Environments are also extended to include run-time object addresses:

E ::= ε | E, c x | E, c ρ

The rule [State] ensures all three components of a state are well-formed. This rule constructs an environment E contain-
ing addresses for all objects in the object map and verifies that each object is well-typed via [Object].

We similarly verify that each thread state is well-formed via the rules for judgment form P ; E 
 T . If a thread state is 
an expression e or the construct ready e, then rules [Thread Ok] and [Thread Ready] simply check that e is a well-formed 
expression. If a thread state is wrong, rule [Thread Wrong] concludes that the state is well-formed.

The most important new rule for expressions is the rule [exp insync] for in-sync ρ e. That rule captures the cooper-
ability effect of evaluating e with the lock ρ held followed by releasing ρ . (That is, it captures the effect of running the 
remainder of a critical section on ρ up to and including the release at the end of the section.) Given the effect a of e, rule 
[exp insync] uses the following function to determine the overall effect of the term:

a SI(ρ,a)

κ κ;al

ρ ? a1 :a2 SI(ρ,a1)

ρ ′ ? a1 :a2 ρ ′ ? SI(ρ,a1) : SI(ρ,a2) if ρ �= ρ ′

Briefly, if a is a combined effect κ , then the overall effect is κ sequentially followed by al, the effect for a lock release 
operation. If a is an effect conditional on holding lock ρ , then we simplify a by considering only the conditional branch 
of a reflecting its behavior when ρ is held. However, if a is a conditional effect on a different lock ρ ′ , then we recursively 
simplify both conditional branches of a.
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Appendix B. Cooperative-preemptive equivalence

In this appendix, we prove that for a well-typed program, the preemptive and cooperative semantics coincide: if a 
program, starting from a yielding state, can reach a yielding state σ under →, then it can reach σ under →c as well.

The proof depends on the following reduction theorem [18]. This theorem is stated in terms of an arbitrary transition 
system, and requires some additional notation: For any state predicate S ⊆ State and transition relation T ⊆ State × State, 
the left restriction of T to S , or S/T , is the transition relation T with each pair’s first component contained in S . Similarly, 
the right restriction of T to S , or T \S , is the transition relation T with each pair’s second component contained in S . The 
composition of two transition relations T and U , or T ◦ U , is the set of all transitions (p, r) such that there exists a state 
q with transitions (p, q) ∈ T and (q, r) ∈ U . For transition relations T and U , we say that T right-commutes with U , and U
left-commutes with T , if we have T ◦ U ⊆ U ◦ T .

Each thread executes in a series of transactions, each of which consists of a sequence of right-movers, followed by at 
most one non-mover, followed by a sequence of left-movers. A thread may also go wrong at any point. We use the following 
three predicates to describe the current state of each thread i:

• Ri is the set of states where the thread i is in the right-mover part of some transaction;
• Li is the set of states where the thread i is in the left-mover part of some transaction; and
• Wi is the set of states where the thread i has gone wrong.

Those sets are used in the reduction theorem below that relates the following three transition relations:

• ↪→i is the transition relation that describes the behavior of the thread i.
• ↪→ is the transition relation where, at each state, one may choose a thread i and use the transition ↪→i .
• ↪→c is the transition relation that describes the serial behavior of a program, in which at most one thread may be in a 

transaction at any time. (All others would thus be completed or at yield points.)

The following reduction theorem then shows that if the transition relation ↪→ and the sets Ri , Li , and Wi satisfy certain 
constraints, then each transaction is serializable, that is, that the standard semantics (↪→) and the serialized semantics (↪→c ) 
are essentially equivalent. The necessary conditions are:

1. A thread i can be in at most one of Ri , Li , or Wi .
2. A step by thread i cannot cause a transition from Li to Ri . Thus a thread never changes from being in the left-mover 

part of an transaction to being in the right-mover part.
3. No steps are possible for thread i once it enters Wi .
4. Steps by distinct threads i and j are disjoint, meaning that steps by different threads cannot have the same overall 

effect on program state.
5. A step taken by thread i while in Ri right-commutes with steps taken by any other thread j.
6. A step taken by thread i while in Li left-commutes with steps taken by any other thread j.
7. A step taken by thread i cannot change whether any another thread j is in R j , L j , or W j . That is, a thread cannot 

affect the which partition any other thread currently belongs to.

Provided these conditions are met, if a program in state p in which no threads are in transactions evaluates to a similar 
state q, then q can also be reached by an execution in which context switches only occur outside transactions (at yield 
points). Moreover, if a wrong state q is reachable from p, where no thread in q is in the left-mover part of a transaction, 
then a wrong state is also reachable from p under the cooperative semantics.

Theorem B.1 (Reduction Theorem). For all threads i, let Ri , Li , and Wi be sets of states, and ↪→i be a transition relation. Suppose for 
all i that the following is true:

1. Ri , Li , and Wi are pairwise disjoint,
2. (Li/ ↪→i \Ri) is false,
3. Wi/ ↪→i is false,

and for all j �= i,

4. ↪→i and ↪→ j are disjoint,
5. (↪→i \Ri) right-commutes with ↪→ j ,
6. (Li/ ↪→i) left-commutes with ↪→ j , and
7. if p ↪→i q, then R j(p) ⇔R j(q), L j(p) ⇔L j(q), and W j(p) ⇔W j(q).

We define Ni , N , W , ↪→, and ↪→c as follows:
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• Ni = ¬(Ri ∨Li)

• N = ∀i. Ni
• W = ∃i. Wi
• ↪→= ∃i. ↪→i
• ↪→c= ∃i. ((∀ j �= i. N j)/ ↪→i)

Now suppose p ∈N and p ↪→∗ q. Then the following statements are true.

1. If q ∈N , then p ↪→∗
c q.

2. If q ∈W and ∀i. q /∈Li , then ∃q′. p ↪→∗
c q′ and q′ ∈W .

Proof. Refer to [21]. �
We now turn our attention to the specific case of YieldJava. Consider a fixed program P . Any well-typed state σ with 

an object map [ρ j �→ obj j
j∈1..m] has a corresponding object environment Eσ = c1 ρ1, . . . , cn ρn where ρ j ∈ Addrc j .

Given a state σ , if σ(i) = e, then we define the effect α(σ , e) to be a, where P ; Eσ 
 e : c · a. An examination of the 
typing rules demonstrates that α is a well-defined partial function.

Let W T be the set of well-typed states for P :

W T = {σ | 
 σ }
We define the following sets of states:

Ni = W T ∩ {σ | i /∈ Dom(σ ) ∨ i is yielding in σ }
W i = W T ∩ {σ | σ(i) ≡ wrong}
Ri = W T ∩ {σ | α(σ ,σ (i)) �� cl} \ Ni
Li = W T ∩ {σ | α(σ ,σ (i)) � cl} \ Ni

We also define two auxiliary sets of states N and W :

• N = ∀i. Ni . That is, N is the set of well-typed states where all threads yielding.
• W = ∃i. W i . That is, W is the set of well-typed states for which some thread is wrong.

A state σ is non-blocking if whenever a transaction reachable from σ starts executing its left-mover part, then that transac-
tion can terminate, i.e. σ →∗ σ ′ where Li(σ

′), then σ ′ →∗
i σ ′′ such that ¬Li(σ

′′).
Those definitions now enable us to show that Theorem B.1 applies to YieldJava:

Theorem B.2 (Cooperability). Let σ be a state such that 
 σ . Suppose σ ∈ N, and there exists state σ ′ such that σ →∗ σ ′ . Then the 
following statements are true:

1. If σ ′ ∈ N, then σ →∗
c σ ′ .

2. If σ is non-blocking and σ ′ ∈ W , then there exists a state σ ′′ such that σ →∗
c σ ′′ and σ ′′ ∈ W .

Proof. The first part of this theorem follows from the Reduction Theorem. That is, we show that for all threads i, the seven 
preconditions for instantiating the Reduction Theorem hold:

1. Ri , Li , and W i are pairwise disjoint,
2. Li/ →i \Ri is false,
3. W i/ →i is false,
4. →i and → j are disjoint for all j �= i,
5. (→i \Ri) right-commutes with → j for all j �= i,
6. (Li/ →i) left-commutes with → j for all j �= i,
7. if p →i q, then R j(p) ⇔ R j(q), L j(p) ⇔ L j(q), and W j(p) ⇔ W j(q), for all j �= i.

Detailed proofs for these seven requirements appear in [56]. Once they are shown to hold, we apply the Reduction Theorem 
by substituting the following:

• the set W i for Wi ,
• the set Ri for Ri ,
• the set Li for Li ,
• the relation →i for ↪→i ,
• the relation →c for ↪→c ,
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• the state σ for p,
• the state σ ′ for q.

We prove the second part of this theorem as follows. For any non-blocking state π , let L(π) = {i | Li(π)}. We show 
by induction on |L(π)| that for any non-blocking state π with W (π), there exists a π ′ such that π →∗ π ′ , W (π ′), and 
L(π ′) = ∅. The base case trivially holds when L(π) = ∅. For the inductive case, pick i ∈ L(π). Since π is non-blocking, 
π →∗

i π ′′ where W (π ′′) and L(π ′′) = L(π) \ {i}. By induction, π ′′ →∗ π ′ and hence π →∗ π ′ where W (π ′) and L(π ′) = ∅.
From the above result we have that σ →∗ σ ′′′ where W (σ ′′′) and L(σ ′′′) = ∅. We apply part 2 of the Reduction Theorem 

to then conclude that ∃σ ′′. σ →∗
c σ ′′ and W (σ ′′). �

Theorem 4.2 (Cooperative-preemptive equivalence), stated in Section 4.3, follows immediately from the first part of 
Theorem B.2 and applies to any well-typed terminating program.

For well-type programs that may not terminate, the second part of Theorem B.2 applies and shows that if the program 
may go wrong under the preemptive semantics, then it also may go wrong under the cooperative semantics. To prove 
this property, the theorem requires that the initial state σ of the program is non-blocking. This non-blocking property 
is necessary, as otherwise the wrong state may not be reached under the cooperative semantics since the transaction 
containing the error may not ever be run under a cooperative scheduler.
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