Using Escape Analysis in Dynamic Data Race Detection

Multithreaded Programs

 Multithreaded programs can utilize multiple cores
or multiple processors.
» But at the cost of greater programming complexity. §#FESH S

Race Conditions

Some resources should never be used simultaneously.
Consider bathrooms.

I\/Iultlthreaded programming can get awkward. Thread interference occurs
when two threads access a shared resource without proper coordination.

Example: Suppose you have an account accessible from two ATMs.
You have an idea. While your sister withdrawals S100 from one ATM,
you withdrawal $100 from another. Will your scheme work?

Good Interleaving Bad Interleaving

Thread 1 Thread 2 Thread 1 Thread 2
tl = bal tl = bal
bal = t1 - 100 £2 = bal
t2 = bal bal = t1 - 100
pal = t2 - 100 bal = t2 - 100
Synchronization
Locks prevent interference.
Programmers use mutual Thread 1 Thread 2

exclusion locks to protect
shared resources in
multithreaded environments.

acquire lock
tl = bal

bal = t1 + 100
release lock

If your bank makes the ATMs
acquire a lock before
touching your balance, your
scam will always fail.

acquire lock
t2 = bal

bal = t2 — 100
release lock

Race Checkers

It’s easy to forget a lock. Thread 1 Thread 2
tl = bal
 Race checkers can find acquire lock
these mistakes. t2 = bal
* They must check every
i bal = t1 + 100
access to every variable bal = £2 — 100

to ensure proper
synchronization.

release lock

The writes to the balance are unordered!
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Improving Race Checker Performance

When there are many resources and accesses, checking
them can be expensive.
Thread-local resources can be ignored by race checkers.

AAAGACEEE

Dynamic Escape Analysis

Basic Rules

* Objects are either shared or local.
" Local objects are accessible from one thread.
" Shared objects are accessible from multiple threads.
e Storing a reference to a thread local object in a shared object makes
it and all objects reachable from it shared.

When my account is only accessible by the teller, there is no need to
check accesses on my balance.
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If the teller now writes our account to the bank, our balance can be
reached by the ATM and the Teller so must be checked.

ATM Teller

Thread-local

Shared Bank

Account

Account

Name Balance

Name Balance

Implementation Details

* Build on top of the FastTrack race detector for Java [1].

* Evaluated on 13 benchmarks, including Java Grande Benchmarks [4].

e Static thread-local analysis (below) from IBM’s WALA framework |
This analysis identifies classes, where every instance is only
accessible from its creating thread, at compile time.
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Results

How common are local accesses?
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About half of the objects
and 40% of the accesses
are local and can be
safely ignored by dynamic
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Does eliminating checks on local accesses speed up race detection?

On most of the benchmarks, identifying thread-local objects took
longer than simply checking accesses on them.

Can adding a static analysis improve performance?

Some classes are inherently thread-local. If we identify these classes at
compile time, we can ignore their instances at runtime.

The static escape analysis
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Future Work

 Use extra cores or the GPU to reduce the overhead by offloading the
heap traversal required by dynamic escape analysis.

* Build into the garbage collector, which already efficiently traverses
the heap.
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