Using Escape Analysis in Dynamic Data Race Detection

Multithreaded Programs

 Multithreaded programs can utilize multiple cores
or multiple processors.
» But at the cost of greater programming complexity. §#FESH S

Race Conditions

Some resources should never be used simultaneously.
Consider bathrooms.

I\/Iultlthreaded programming can get awkward. Thread interference occurs
when two threads access a shared resource without proper coordination.

Example: Suppose you have an account accessible from two ATMs.
You have an idea. While your sister withdrawals S100 from one ATM,
you withdrawal $100 from another. Will your scheme work?

Good Interleaving Bad Interleaving

Thread 1 Thread 2 Thread 1 Thread 2
tl = bal tl = bal
bal = t1 - 100 £2 = bal
t2 = bal bal = t1 - 100
pal = t2 - 100 bal = t2 - 100
Synchronization
Locks prevent interference.
Programmers use mutual Thread 1 Thread 2

exclusion locks to protect
shared resources in
multithreaded environments.

acquire lock
tl = bal

bal = t1 + 100
release lock

If your bank makes the ATMs
acquire a lock before
touching your balance, your
scam will always fail.

acquire lock
t2 = bal

bal = t2 — 100
release lock

Race Checkers

It’s easy to forget a lock. Thread 1 Thread 2
tl = bal
 Race checkers can find acquire lock
these mistakes. t2 = bal
* They must check every
i bal = t1 + 100
access to every variable bal = £2 — 100

to ensure proper
synchronization.

release lock

The writes to the balance are unordered!

Emma Harrington 15
Williams College
eh3@williams.edu

Improving Race Checker Performance

When there are many resources and accesses, checking
them can be expensive.
Thread-local resources can be ignored by race checkers.

AAAGACEEE

Dynamic Escape Analysis

Basic Rules

* Objects are either shared or local.
" Local objects are accessible from one thread.
" Shared objects are accessible from multiple threads.
e Storing a reference to a thread local object in a shared object makes
it and all objects reachable from it shared.

When my account is only accessible by the teller, there is no need to
check accesses on my balance.

ATM Teller

Thread-local

Shared Bank

Account

-~

Account J0C)
Balance

Name

Name Balance

If the teller now writes our account to the bank, our balance can be
reached by the ATM and the Teller so must be checked.

ATM Teller

Thread-local

Shared Bank

Account

Account

Name Balance

Name Balance

Implementation Details

* Build on top of the FastTrack race detector for Java [1].

* Evaluated on 13 benchmarks, including Java Grande Benchmarks [4].

e Static thread-local analysis (below) from IBM’s WALA framework |
This analysis identifies classes, where every instance is only
accessible from its creating thread, at compile time.

N

montecarlo2

Results

How common are local accesses?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

crypt
lufact

About half of the objects
and 40% of the accesses
are local and can be
safely ignored by dynamic

raytracer2

tsp race detectors.

hedc2
elevator

moldyn

mtrt2
sparsemm
series

philo

Does eliminating checks on local accesses speed up race detection?

On most of the benchmarks, identifying thread-local objects took
longer than simply checking accesses on them.

Can adding a static analysis improve performance?

Some classes are inherently thread-local. If we identify these classes at
compile time, we can ignore their instances at runtime.

The static escape analysis

5.00

T s FastTrack made my dynamic one

= Dynamic Analysis more effective.

=5 3.50

> Static and Dynamic

N~ 3.00

2 Analysis Seven out of the 13

- benchmarks ran faster

Q0] . .

= ase with the dynamic escape
g lysis tool applied on
g 0.50 ana y .pp)

C oo MM CEE CN - N um N=ER top of the static filter

o 8 g 3 E E £ 5 2 = : :

= S > with average gains of 8%.

o
7))

Future Work

 Use extra cores or the GPU to reduce the overhead by offloading the
heap traversal required by dynamic escape analysis.

* Build into the garbage collector, which already efficiently traverses
the heap.

References

[1] Flanagan, C., and Freund, S.N. FastTrack: Efficient and precise
dynamic race detectlon Commun. ACM 53, 11 (2010).

2] T.J. Watson Libraries for Analysis (WALA), 2012.

3] The Java Grande Multi-threaded Benchmarks.

Acknowledgements

Thanks to Professor Stephen N. Freund. This work was supported by
NSF Grants 1116825 and 1421051.

