
Using Escape Analysis in Dynamic Data Race Detection
Williams College Technical Report CSTR201401

Emma Harrington
Williams College

Stephen N. Freund
Williams College

1. INTRODUCTION
Data race conditions occur when multiple threads concur-
rently access a memory location and at least one access is a
write. Race conditions are easy to introduce and hard to de-
tect because they may not always lead to incorrect behavior.
Dynamic analysis tools can detect data races automatically,
but their use comes at a performance cost since precise de-
tectors must check every access to every variable.

In many multithreaded programs, this cost can be mitigated
by leveraging the observation that some objects are only
accessible from their creating thread and thus cannot be
involved in a race. We show that by tracking whether ob-
jects are thread-local, dynamic race detectors can skip many
checks and thereby improve performance, especially when a
static analysis identifies some thread-local objects at com-
pile time.

2. BACKGROUND
Dynamic race detectors find data races. Anyone who has
shared files with a coworker is familiar with these bugs.
Imagine that one day you and I are working on the same file.
While you work on the old version, I update the file. Un-
aware of the changes, you update the file again and overwrite
my work. Every time we work on the same file we create
a “race condition,” where we can inadvertently step on each
other’s work. Frustrated by our lost work and fearing that
other losses have gone unnoticed, we decide to protect each
file with a mutual exclusion lock. Using the terminology of
concurrent programming, if I acquire a lock and access the
corresponding file, you must wait until I finish and release
the lock before you access the file.

In concurrent software, the danger of conflicting accesses
comes from multiple threads, each of which is executed like
a standalone program with its own instructions and control
structure but with access to data shared by all the threads.
To avoid races, programmers writing concurrent programs
use a locking discipline like that above to coordinate their
program’s threads.

While locks can help avoid errors, it is all too easy for a pro-
grammer to forget to acquire a necessary lock or to acquire
the wrong one, allowing one thread to overwrite another’s
work in hard to detect ways. Fortunately, programmers can
use dynamic race detectors to alert them when data is not
properly protected. These detectors, however, degrade per-
formance because they must track every access to every vari-

able and verify that the access is race free.

In our research, we explore ways to speed up dynamic race
detectors by eliminating checks on accesses to thread-local
objects, which are guaranteed to be free from races. An
object is thread-local if it is only accessible from its creating
thread because references to it have not “escaped” to other
threads. Like files only available to a single author, thread-
local objects cannot be involved in races and can be ignored
by race detectors.

Many studies focus on statically identifying unnecessary checks
like those on thread-local objects [6, 3]. Unfortunately, static
escape analyses are inherently imprecise due to the funda-
mental limitation of what computers can compute. Static
analyses, therefore, conservatively label fewer objects thread-
local than will be thread-local at runtime [7]. Our approach
is unique because we implement a dynamic escape analysis
to precisely eliminate all checks on thread-local objects. We
then develop a hybrid static and dynamic escape analysis
that aims to achieve the best of both worlds, by continu-
ing to filter out all thread-local accesses while saving work
at runtime by identifying objects that are thread-local on
every program execution and hence can always be ignored
safely.

3. APPROACH
Our research questions are:

1. How common are local accesses?

2. Does eliminating checks on local accesses speed up race
detection?

3. Does a hybrid static and dynamic escape analysis re-
ally get the best of both worlds?

To answer the first question, we extended the RoadRun-
ner dynamic analysis framework for Java [5] with an escape
analysis to identify which objects are accessible from mul-
tiple threads. We then subtracted the number of accesses
made on these shared objects from the total number of ac-
cesses in the program to determine how many accesses are
made to thread-local objects. These thread-local accesses
represent checks that a dynamic escape analysis could filter
out for a precise race detector. Hence, the number of these
accesses serves as a good approximation of the potential of
our approach.

The second question is whether stripping checks on accesses
to thread-local objects can speed up race detection. To be



faster, the time spent by the dynamic escape analysis to
determine whether accesses to objects can be safely ignored
must be less than that spent by race checks on those accesses.
To test this, we added a dynamic escape analysis to the
FastTrack dynamic race detector [4]. As described in Section
4, there were some performance gains, but it was clear that
dynamic escape analysis was fairly expensive.

To improve on the runtimes of the purely dynamic tool,
we investigated moving some of the escape analysis to com-
pile time. Our static filter uses the thread-local analysis in
the WALA static analysis framework [2] to determine which
classes are always thread-local and hence safely ignored by
FastTrack. This filter can be applied directly to FastTrack
or in conjunction with our dynamic escape analysis. By us-
ing it with the dynamic escape analysis, we can reduce the
runtime overhead without sacrificing the precision of the es-
cape analysis.

4. RESULTS
We tested our approach on eleven benchmarks, including
the multi-threaded Java Grande Benchmark series [1] and
others [6]. We first estimated the potential of our approach
by determining the number of objects that remain local to
their parent thread in the benchmark programs. As shown
in Figure 1, about half of the objects in the benchmarks re-
main local to their creating thread throughout their lifetime
(shown in black).

Figure 1: Local vs shared objects.

In the benchmarks, the local vs. shared accesses have a
similar breakdown. While shared objects are accessed dis-
proportionately often, about 40% of accesses are local and
can be safely ignored by FastTrack. For some of the bench-
marks, almost all of the state and accesses are local. This
suggests that certain types of multithreaded programs may
have mostly local state interspersed with a few shared ob-
jects. A dynamic escape analysis could dramatically reduce
the overhead of race detection on these quasi-concurrent pro-
grams.

We tested dynamic escape analysis as a filter to FastTrack.
With dynamic escape analysis, three of the ten benchmarks
in the test suite saw speedups of up to 24% compared to
the FastTrack tool run in the same configuration. However,
other benchmarks ran slower because the analysis to identify
thread-local objects took longer than simply checking the
accesses for races.

The static escape analysis made our dynamic one more ef-
fective: seven out of the ten benchmarks saw speedups after

adding the dynamic escape analysis on top of the static filter
with gains as high as 33% and 8% on average.

5. CONTRIBUTIONS AND FUTURE WORK
The contributions of our work are:

1. We establish that race detectors spend a significant
amount of time checking accesses to thread-local data
that are inherently race free.

2. We demonstrate the potential of using dynamic escape
analysis to identify objects that are only accessible
from their creating thread and then filter out accesses
to these thread-local objects from the race detector.

3. We show how a dynamic escape analysis can be aug-
mented with a static one to maintain precision while
moving work to compile time.

In future work, we want to further reduce the overhead of
tracking the shared status of objects. To identify shared
objects, we want to piggyback on the similar activities per-
formed by the garbage collector, which must identify garbage
objects reachable from no threads. The interaction between
concurrency and garbage collection is discussed in [7].

We also want to experiment with using concurrency to re-
duce the overhead of the dynamic escape analysis. In a sim-
ple test, we harnessed extra processors to perform traversals
of newly shared objects, moving this work off the cores run-
ning the target program. For our benchmark programs, the
overhead associated with spawning new threads, however,
trumped the potential gains from added concurrency. Since
new threads on the main CPU suffer from high overhead, in
future work, we could switch to lighter weight threads of the
GPU, which could offer the same boon of extra processing
at a lower start-up cost.

6. SUMMARY
With the rise of multi-core computers, concurrent software
has become more widespread and tools for detecting their
bugs more important. Ideally these tools will be both pre-
cise and speedy, reporting all bugs with no false positives
and minimal overhead. Tools like FastTrack [4] are precise
but costly because they must check every access to every
variable in the target program. While some tools trade off
precision for speed, a growing body of work focuses on elimi-
nating unnecessary checks. We add to this research by elim-
inating unnecessary checks through dynamic escape analysis
and comparing this approach to a simple static analysis and
a hybrid combination of the two.

7. ACKNOWLEDGEMENTS
This work was supported by NSF Grants 1116825 and 1421051.

8. REFERENCES
[1] The Java Grande Multi-threaded Benchmarks.

[2] T.J. Watson Libraries for Analysis (WALA), 2012.

[3] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 258–269, 2002.



[4] C. Flanagan and S. N. Freund. Fasttrack: efficient and
precise dynamic race detection. Commun. ACM,
53(11):93–101, 2010.

[5] C. Flanagan and S. N. Freund. The roadrunner
dynamic analysis framework for concurrent programs.
In Proceedings of the 9th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, pages 1–8, 2010.

[6] C. Flanagan and S. N. Freund. Redcard: Redundant
check elimination for dynamic race detectors. In
Proceedings of European Conference on Object-Oriented
Programming, pages 255–280, 2013.

[7] T. Kalibera, M. Mole, R. E. Jones, and J. Vitek. A
black-box approach to understanding concurrency in
dacapo. In Proceedings of the 27th Annual ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 335–354, 2012.


