
The ROADRUNNER Dynamic Analysis
Framework for Concurrent Programs

Cormac Flanagan
Computer Science Department

University of California at Santa Cruz
Santa Cruz, CA 95064

Stephen N. Freund
Computer Science Department

Williams College
Williamstown, MA 01267

Abstract
ROADRUNNER is a dynamic analysis framework designed to facil-
itate rapid prototyping and experimentation with dynamic analyses
for concurrent Java programs. It provides a clean API for commu-
nicating an event stream to back-end analyses, where each event
describes some operation of interest performed by the target pro-
gram, such as accessing memory, synchronizing on a lock, forking
a new thread, and so on. This API enables the developer to focus
on the essential algorithmic issues of the dynamic analysis, rather
than on orthogonal infrastructure complexities.

Each back-end analysis tool is expressed as a filter over the
event stream, allowing easy composition of analyses into tool
chains. This tool-chain architecture permits complex analyses to be
described and implemented as a sequence of more simple, modular
steps, and it facilitates experimentation with different tool compo-
sitions. Moreover, the ability to insert various monitoring tools into
the tool chain facilitates debugging and performance tuning.

Despite ROADRUNNER’s flexibility, careful implementation
and optimization choices enable ROADRUNNER-based analyses
to offer comparable performance to traditional, monolithic analy-
sis prototypes, while being up to an order of magnitude smaller in
code size. We have used ROADRUNNER to develop several dozen
tools and have successfully applied them to programs as large as
the Eclipse programming environment.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging–monitors, testing tools; D.2.4 [Soft-
ware Engineering]: Software/Program Verification–reliability

General Terms Languages, Algorithms, Reliability

Keywords concurrency, dynamic analysis

1. Introduction
Concurrent programs are notoriously prone to defects caused by
interference between threads. These are difficult errors to detect via
traditional testing alone because scheduling nondeterminism leads
to exponentially-many possible thread interleavings, each of which
may induce an error. The recent advent of multi-core processors
only exacerbates this problem by exposing greater concurrency.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PASTE’10, June 5–6, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0082-7/10/06. . . $10.00

The difficulty of validating multithreaded software via tradi-
tional testing has motivated much research on dynamic analysis
tools for detecting a variety of errors, including race conditions [5,
6, 8, 10, 21, 24, 27, 31], deadlocks [1, 16], and violations of desired
atomicity [9, 13, 28, 29] and determinism properties [4, 23]. The
overhead of developing such tools, however, is rather large. For ex-
ample, the Atomizer dynamic atomicity checker [9] contained over
8,500 lines of code, which was split between extensions to an ex-
isting Java front end and a run-time library.

To facilitate research on dynamic analysis tools for concur-
rent programs, we have developed a robust and flexible frame-
work called ROADRUNNER that substantially reduces the overhead
of implementing dynamic analyses. ROADRUNNER manages the
messy, low-level details of dynamic analysis and provides a clean
API for communicating an event stream to back-end analysis tools.
Each event describes some operation of interest performed by the
target program, such as accessing memory, acquiring a lock, fork-
ing a new thread, etc. This separation of concerns allows the de-
veloper to focus on the essential algorithmic issues of a particular
analysis, rather than on orthogonal infrastructure complexities.

ROADRUNNER is written entirely in Java, with no modifications
to the underlying Java Virtual Machine. It adds instrumentation
code to the target program’s bytecode at load time, avoiding any
need to re-compile or otherwise modify the target. The system
is roughly 20,000 lines of code in size, and is available from
www.cs.williams.edu/~freund/rr. In the remainder of this
section, we outline the ROADRUNNER architecture and its benefits.

ROADRUNNER facilitates writing dynamic analyses. Writing
a ROADRUNNER back-end analysis tool only requires defining
methods to handle various events of interest. Each event handler
takes as an argument an event object describing the operation being
performed by the target program. The ROADRUNNER framework
provides support for associating analysis (or shadow) state with
memory locations, locks, and threads; for reporting error messages;
for identifying the source location for a particular event; and so on.

In our experience, ROADRUNNER-based analyses are substan-
tially simpler to implement than traditional, monolithic analyses.
As one example, re-implementing the Atomizer [9] on top of
ROADRUNNER required only 245 lines of new code, versus the
8,500 lines of code for the original implementation.

To date, we have used ROADRUNNER to develop several dozen
dynamic analysis tools, many of which are summarized in Figure 1.
Their number and modest size (for even the most complex) pro-
vides evidence of ROADRUNNER’s flexibility and utility. In addi-
tion, due to careful implementation and optimization choices, the
performance of ROADRUNNER-based analyses is competitive with
other specialized research prototypes built to study individual anal-
yses in this domain (e.g., [9, 21, 24]).



Tool Name Size (lines) Description
Utility Tools

EMPTY 78 Processes all events as no-ops
COUNT 105 Counts the number of each type of event
TIMER 120 Profiles the time taken by each event handler
PRINT 177 Prints the event stream in a human-readable form
CONTENTION 62 Identifies where threads block due to lock contention
FAULTINJECTION 109 Randomly filters synchronization operations out of event stream to induce errors

Analysis Tools
THREADLOCAL 48 Filters accesses to thread-local data
READONLY 56 Filters accesses to read-only data
PROTECTINGLOCK 69 Filters lock operations for locks protected by other locks
LOCKSET [24] 327 Detects races using the LockSet algorithm
ERASERWITHBARRIER [22, 24] 457 Detects races using LockSet + a barrier analysis
HAPPENSBEFORE [19] 486 Detects races using VectorClocks
DJIT+ [22] 582 Detects races using an optimized VectorClock algorithm
MULTIRACE [22] 923 Detects races using a hybrid LockSet/VectorClock analysis
GOLDILOCKS [8] 1,416 Detects races using an extended LockSet algorithm
FASTTRACK [10] 758 Detects races using an Epoch/VectorClock analysis
VELODROME [12] 1,088 Detects serializability errors
ATOMIZER [9] 245 Detects atomicity violations using Lipton’s theory of reduction
SINGLETRACK [23] 1,655 Detects determinism errors
JUMBLE [11] 1,326 Adversarial memory implementation to utilize relaxed memory model nondeterminism
SIDETRACK [30] 500 Detects generalized serializability errors

Figure 1. Representative tools implemented for ROADRUNNER. Size is measured in lines of code, excluding blank lines and comments.

ROADRUNNER facilitates composing dynamic analyses. ROAD-
RUNNER tools can be composed (via command-line configuration)
into a tool chain, where events are dynamically dispatched down
this tool chain until they are handled by the appropriate tool. Thus,
each dynamic analysis is essentially a filter over event streams,
and ROADRUNNER makes it easy to create new analyses via the
composition of simpler analyses.

As an illustration, the Eraser algorithm [24] can be expressed in
terms of three simpler analyses: a ThreadLocal analysis, which
filters out accesses to thread-local data; a ReadOnly analysis,
which filters out accesses to read-only data; and a LockSet analy-
sis, which tracks the set of locks consistently used to protect each
variable and reports a potential race if one of these sets becomes
empty. The following command line configuration composes these
three tools and applies them to the target program Target.class:

rrrun -tool=ThreadLocal:ReadOnly:LockSet Target

Each of these tools can be independently re-used. For example,
we can significantly improve the performance of a relatively slow
HappensBefore race detector [19] by composing it with the above
ThreadLocal and ReadOnly filters, so that HappensBefore ana-
lyzes only shared, mutable memory locations:

rrrun -tool=ThreadLocal:ReadOnly:HappensBefore Target

As another example, the Atomizer serializability checker must rea-
son about locations with potential race conditions, but may ig-
nore race-free locations. Tool composition enables us to write the
Atomizer tool without worrying about race conditions. We simply
prefix Atomizer in the tool chain with any race detector, which
allows us to easily experiment with analysis configurations, as in:

rrrun -tool=ThreadLocal:ReadOnly:LockSet:Atomizer Target
rrrun -tool=FastTrack:Atomizer Target

ROADRUNNER facilitates debugging dynamic analyses. ROAD-
RUNNER’s pipe-and-filter architecture enables one to insert addi-
tional diagnostic tools into the tool chain to facilitate debugging.
The following utility tools have proven particularly useful:

1. PRINT: print out the event stream at various places in the tool
chain (for correctness debugging);

2. TIME: time the overhead of various tools in the chain (for
performance debugging);

3. COUNT: count the distribution of events at various points in the
chain (to identify which event handlers to optimize); and

4. RECORD: record an event stream for later replay, to circumvent
scheduling non-determinism during debugging.

Note that these tools, once written, can be used in combination with
any others, thereby avoiding the cross-cutting clutter of inserting
code to perform these operations in the analysis event handlers.

ROADRUNNER facilitates comparing dynamic analyses. Per-
forming controlled comparisons between different dynamic analy-
ses is quite difficult. Analyses written by different authors are of-
ten implemented and evaluated for different languages, computing
platforms, or virtual machines. Some also change the run time’s
virtual machine, whereas others run on an unmodified version.

ROADRUNNER addresses this problem by making it easier to re-
implement a collection of published algorithms in a uniform frame-
work, thereby obtaining clear precision and performance compar-
isons. For example, ROADRUNNER has been used to implement
and experimentally compare six different dynamic race detection
algorithms [10], resulting in a deeper understanding of their rela-
tive strengths. Such controlled experiments are an essential part of
the scientific process.

2. ROADRUNNER API
This section outlines the ROADRUNNER API and describes how to
write tools that monitor the stream of events generated by the tar-
get program while maintaining instrumentation state (that is, tool-
specific shadow information about each thread, lock, and memory
location used by the target). We first focus on implementing a single
tool using this API and will then extend our presentation to include
tool composition in Section 2.3 below.

Figure 2 summarizes the core classes in the ROADRUNNER
API. Each analysis tool is defined by extending the Tool class. The
Tool class defines methods to handle each type of event that may
be generated by the target program, including:



• non-volatile memory (field and array) accesses;
• volatile memory (field and array) accesses;
• lock acquire and release;
• thread creation and start, join, and interrupt operations;
• wait and join operations; and
• method entry and exit.

We show four representative event handlers (lines 4–7) for thread
creation, lock acquires and releases, and accesses to non-volatile
memory. Each event handler method takes a specific subclass of
Event. These event classes are also described in Figure 2. Before
discussing events and event handlers in more detail, we first intro-
duce several auxiliary ROADRUNNER data structures.
Thread and Lock Shadows. The Java Virtual Machine allocates
a Thread object for each thread in the target program. ROADRUN-
NER associates a ShadowThread object with each Thread object.
Each ShadowThread object (see Figure 2, line 36) contains a ref-
erence to the underlying Thread, a unique integer identifier tid,
and a reference to the ShadowThread for the parent (or forking)
thread, if any. Similarly, ROADRUNNER allocates a corresponding
ShadowLock object (line 45) for every Java object used as a lock.

Tools often need to associate tool-specific information with each
thread and lock. We could just add new fields to the ShadowThread
and ShadowLock classes as necessary, but this clearly leads to
poorly defined abstractions and pollution of our core APIs. Letting
tools subclass these classes also leads to problems, since efficiently
implementing tool composition becomes difficult.

To permit extensibility while avoiding these problems, we intro-
duce the Decoration class (line 57). Essentially, the Decoration
class provides a generic map from Keys to Values. This map can
be implemented as a hash table, but that would not provide ade-
quate performance. Instead, we require the Key to be a subclass
of Decoratable. The Decoration map can then store the Value
for a Key in the Key itself. Specifically, each Decoration has a
unique small integer, which is used to index into an Object array
declared in the Decoratable superclass. This pattern provides a
fast implementation of the get and set methods in Decoration.

The ShadowThread and ShadowLock classes extend the class
Decoratable and provide a generic makeDecoration method
whereby tools can add Decorations for any desired type T to those
structures. We illustrate the use of these Decoration fields in the
LockSet example below.
Variable Shadows. Tools also need to record information about
each memory location used by the target program (that is, each
static field, instance field, and array element). While Decorations
work well for threads and locks, they are ill-suited for memory
locations. There are orders of magnitude more memory locations
than locks or threads, and these memory locations are accessed
orders of magnitude more frequently.

Instead, ROADRUNNER maintains a shadow location corre-
sponding to each memory location, and this shadow location stores
a ShadowVar object reference. When a location is first accessed,
the tool’s makeShadowVar method is called to compute the shadow
location’s initial value. ShadowVar is an empty interface that sim-
ply serves to annotate types intended to be stored in these shadow
locations. The class ShadowThread implements the ShadowVar
interface because some tools (such as the ThreadLocal tool de-
scribed below) store ShadowThreads in shadow locations.
Events. The Event superclass (line 13) stores a ShadowThread
object for the thread performing the operation. Subclasses of Event
then contain additional information describing that particular kind
event. For example, AcquireEvent (line 19) contains the source
location of the acquire (in the info field) and a ShadowLock object
describing the object whose lock is being acquired.

Figure 2: Core ROADRUNNER API

1 Tool Abstract Class
2

3 abstract class Tool {
4 void create (NewThreadEvent e) { }
5 void acquire (AcquireEvent e) { }
6 void release (ReleaseEvent e) { }
7 void access (AccessEvent e) { }
8 abstract ShadowVar makeShadowVar(AccessEvent e);
9 }

10

11 Events
12

13 class Event {
14 ShadowThread thread;
15 }
16

17 class NewThreadEvent extends Event { ... }
18

19 class AcquireEvent extends Event {
20 AcquireInfo info; // loc
21 ShadowLock lock;
22 }
23

24 class AccessEvent extends Event {
25 ShadowVar shadow;
26 boolean putShadow(ShadowVar newShadow)
27 }
28

29 class FieldAccessEvent extends AccessEvent {
30 FieldAccessInfo info; // loc, class/field desc.
31 Object target; // reciever
32 }
33

34 Thread, Lock, and Variable Shadows
35

36 class ShadowThread extends Decoratable
37 implements ShadowVar {
38 Thread thread;
39 int tid;
40 ShadowThread parent;
41

42 static <T> Decoration<ShadowThread,T> makeDec(T init)
43 }
44

45 class ShadowLock extends Decoratable {
46 Object lock;
47

48 static <T> Decoration<ShadowLock,T> makeDec(T init)
49 }
50

51 interface ShadowVar { }
52

53 Decorations
54

55 class Decoratable { ... }
56

57 class Decoration<Key extends Decoratable,Value> {
58 Decoration(Value initial)
59 Value get(Key k)
60 void set(Key k, Value v)
61 }

For each memory access, ROADRUNNER calls the tool’s access
method, passing an AccessEvent that contains the current value
of the shadow location in the shadow field, as well as a method
putShadow for updating that shadow location (lines 24–27). Ad-
ditional subclasses of AccessEvent, such as FieldAccessEvent
(line 29), record details about different types of accesses.



Figure 3: LockSet Tool

61 class Set implements ShadowVar {
62 static Set empty()
63 Set add(ShadowLock lock)
64 Set remove(ShadowLock lock)
65 Set intersect(Set other)
66 boolean isEmpty()
67 }
68

69 class LockSet extends Tool {
70

71 static Decoration<ShadowThread,Set> locksHeld =
72 ShadowThread.makeDec(Lockset.empty());
73

74 void acquire(AcquireEvent e) {
75 Set ls = locksHeld.get(e.thread);
76 locksHeld.set(e.thread, ls.add(e.lock));
77 }
78

79 void release(ReleaseEvent e) {
80 Set ls = locksHeld.get(e.thread);
81 locksHeld.set(e.thread, ls.remove(e.lock));
82 }
83

84 ShadowVar makeShadowVar(AccessEvent e) {
85 return locksHeld.get(e.thread);
86 }
87

88 void access(AccessEvent e) {
89 Set ls = (Set)e.shadow;
90 Set held = locksHeld.get(e.thread);
91 Set newLs = ls.intersect(held);
92 e.putShadow(newLs);
93 if (newLs.isEmpty()) error();
94 }
95 }

2.1 LockSet Tool Example
To illustrate the ROADRUNNER API in more detail, we show how
to implement Eraser’s LockSet analysis on top of ROADRUNNER.
This analysis tracks the locks currently held by each thread and
the set of locks consistently held on all accesses to each memory
location.

The Set class in Figure 3 represents a set of ShadowLock
objects. That class provides methods to create an empty Set, to
add and remove specific ShadowLocks from a Set, to intersect
two Sets, and to check for emptiness. Our implementation uses
a functional representation of these sets.

The LockSet class creates a decoration locksHeld to store the
locks held by each thread (line 71). This set is initially empty and is
updated by the acquire and release event handlers. (Java locks
are reentrant, but to simplify tool implementations, ROADRUNNER
does not generate events for re-entrant lock acquires and releases,
since they are no-ops.)

The LockSet class stores a Set in each shadow location. When
a location is first accessed, the method makeShadowVar initializes
the shadow location with the set of locks held by the accessing
thread. At each memory access, the access event handler retrieves
the current lock set ls from the shadow location and the set held
of locks held by the current thread, and computes the intersection
of these two sets. The result is stored back in the shadow location
and, if that set is empty, LockSet reports an error.

2.2 ROADRUNNER Synchronization Models
All threads in the target program may generate events. Since the
thread triggering an event is also the thread that executes the tool’s
event handler code, it is possible that multiple event handlers may

be running concurrently. Thus, it is important to design tools to
avoid concurrency errors in the event handlers, such as race condi-
tions on a tool’s data structures. Different mechanisms may be used
to ensure thread-safety:

1. Event Serialization: ROADRUNNER can be configured to serial-
ize events so that only a single handler is active at a time. While
useful for preliminary design and exploration, as well as debug-
ging, this approach incurs a major performance penalty since it
essentially removes all concurrency from the target program.

2. Tool-Internal Concurrency Control: A programmer may add
synchronization to the internal implementation of a tool to
provide finer-grained concurrency control.

3. Optimistic Concurrency Control for ShadowVars: Tool-internal
concurrency control can lead to performance bottlenecks if syn-
chronization is performed on “hot paths” through event han-
dlers. For example, acquiring locks to guard against races on
shadow locations in the access handler is very expensive, since
that handler is called for every memory access.
To avoid this scenario, ROADRUNNER provides an optimistic
concurrency control mechanism for updating shadow locations.
The putShadow method of an AccessEvent e performs an
atomic-compare-and-swap operation: if the current value in the
shadow location is the same as e.shadow, then this method
replaces the shadow location with its argument and returns true.
However, if the shadow location is not the same as e.shadow
(meaning that it was changed by another thread after the event
object e was initialized), then the method fails and returns false.
In this case, ROADRUNNER also updates e.shadow with the
current shadow value to facilitate a subsequent retry.
Thus, if two access event handlers attempt to concurrently mod-
ify the same shadow location, only one will succeed, and the
other can recognize the conflict and reprocess the event. Using
this feature, the access method in LockSet can be optimized
as follows:

void access(AccessEvent e) {
Set held = locksHeld.get(e.thread);
Set newLs;
do {

Set ls = (Set)e.shadow;
newLs = ls.intersect(held);

} while (!e.putShadow(newLs));
if (newLs.isEmpty()) error();

}

2.3 Tool Composition
We now extend the core ROADRUNNER API to support the tool
composition model, which was designed to be easy-to-use and to
provide reasonable efficiency. (In many cases, composing small
tools yields analyses that are comparable in performance to a sin-
gle large tool.) Our implementation reflects the following design
choices:

1. We have designed ROADRUNNER to make sequential, linear
tool composition as efficient as possible, since we have found
linear compositions, or tool chains, to be most common. 1

2. Programs often manipulate millions of memory locations. The
overhead of maintaining a separate shadow memory location
for each tool is prohibitively expensive. Thus, ROADRUNNER
only provides a single “shadow location” for each memory

1 Parallel composition (specified on the command-line as ‘-tool=A|B’)
is also supported, but it has not been optimized and is more useful for
exploratory work than for high-performance implementations.



location, and each tool should modify that shadow location only
if it is the location’s “current owner.” The first tool in the chain
is the initial owner, and ownership passes down the tool chain
when the owning tool explicitly notifies the next tool in the
chain that it wishes to relinquish ownership.

3. Tool chains end with a LastTool to terminate event dispatch.
All other tools may assume that there is a next tool in line.

Figure 4 extends our initial presentation of the Tool class with
elements to support sequential composition. In particular, each tool
contains a pointer next to the next tool in the tool chain.

ROADRUNNER requires each subclass of Tool to conform to
the following design guidelines:

1. Event handlers must invoke the same handler on the next tool,
unless the tool is filtering out that particular event. Figure 5
illustrates this idiom for acquire and release.

2. To identify which tool owns a shadow location, each tool must
have an associated shadow type T <: ShadowVar, and must
only store references of that shadow type in shadow locations.
The shadow types of all tools in the tool chain must be distinct.

3. The makeShadowVar() method must return an object of this
shadow type T .2

4. For an access event e where the tool owns the shadow location
(that is, the shadow value has type T ), the handler may either:
• Retain ownership of the memory location by continuing to

store a T object in the location’s shadow. In this case, the
event should not be passed to the next tool.

• Relinquish ownership by invoking this.advance(e),
which updates the shadow location with a value created
by the next tool in the chain and then calls that tool to han-
dle the event. Once ownership is relinquished, the shadow
location will never again contain a T object, and this tool
must not modify it on subsequent accesses.

5. For an access event e where the shadow value does not have
type T , the handler should dispatch to next.access(e).

The LockSet tool defined in Figure 5 conforms to these require-
ments. Its shadow type is Set, its access method processes events
only when the shadow value is a Set, and it relinquishes ownership
of a location once a race condition has been observed.

For the ThreadLocal tool in Figure 6, the shadow type is
ShadowThread, and this tool initializes each shadow location with
the ShadowThread object for the first thread to access that lo-
cation. Subsequent accesses by that thread are filtered out of the
event stream until a second thread accesses the location. At that
point, the ThreadLocal tool passes ownership to the next anal-
ysis. Thus, the composed analysis “ThreadLocal:LockSet” ap-
plies the ThreadLocal tool to filter out thread-local accesses, and
then computes the lock set for all thread-shared locations using
LockSet. In this case, if a race is seen on a location, LockSet
reports the race and passes ownership to LastTool, which sets the
shadow location to a type not processed by any user-defined tool.

3. ROADRUNNER Implementation Details
ROADRUNNER is written entirely in Java, with no modifications to
the underlying Java Virtual Machine, and is roughly 20,000 lines of
code in size.

ROADRUNNER uses a specialized class loader to instrument the
classes loaded by the target program at load time. The instrumentor,
which is built using ASM [3], augments classes with additional

2 Utility tools that never own locations, such as PRINT or COUNT, may
invoke next.makeShadowVar() to pass ownership down the tool chain.

Figure 4: Tool Class with Tool Chain Support

103 abstract class Tool {
104

105 final Tool next;
106

107 void create (NewThreadEvent e) { next.create(e); }
108 void acquire (AcquireEvent e) { next.acquire(e); }
109 void release (ReleaseEvent e) { next.release(e); }
110 void access (AccessEvent e) { next.access(e); }
111

112 abstract ShadowVar makeShadowVar(AccessEvent e);
113

114 final void advance(AccessEvent e) { ... }
115 }

Figure 5: LockSet Tool with Tool Chain Support

115 class LockSet extends Tool {
116 ...
117 void acquire(AcquireEvent e) { ... next.acquire(e); }
118 void release(ReleaseEvent e) { ... next.release(e); }
119

120 void access(AccessEvent e) {
121 if (e.shadow instanceof Set) {
122 Set ls = (Set)e.shadow;
123 Set held = locksHeld.get(e.thread);
124 ls = ls.intersect(held);
125 e.putShadow(ls);
126 if (ls.isEmpty()) {
127 error(); advance(e);
128 }
129 } else {
130 next.access(e);
131 }
132 }
133 }

Figure 6: ThreadLocal Tool with Tool Chain Support

133 class ThreadLocal extends Tool {
134

135 ShadowVar makeShadowVar(AccessEvent e) {
136 return e.thread;
137 }
138

139 void access(AccessEvent e) {
140 if (e.shadow instanceof ShadowThread) {
141 if (e.shadow != e.thread) advance(e);
142 } else {
143 next.access(e);
144 }
145 }
146 }

fields and methods to generate the ROADRUNNER event stream and
to store shadow locations. The ROADRUNNER class loader also
gathers the class file metadata (such as type names, field names,
source locations, etc.) for later use by tools. We describe the basic
instrumentation process for field and array accesses in detail; the
instrumentation process for other events is similar.

Figure 7 shows a simple class A before and after instrumenta-
tion. The shadow locations for each object’s fields are stored in
the object itself as additional fields of type ShadowVar.3 For the
field int x in A, ROADRUNNER adds the field $rr x to hold the

3 ROADRUNNER also supports a less precise but more space-efficient
object-grained instrumentation in which a single ShadowVar is used for
all object fields (or all elements in an array) [31].



Figure 7: Instrumentation Example
Source Class (before instrumentation)

146 class A {
147 int x;
148 void f(int a[]) {
149 x = x + 1;
150 a[11] = 3;
151 }
152 }

Resulting Class (after instrumentation)

152 class A {
153 int x;
154 ShadowVar $rr_x;
155

156 int $rr_get_x(int accessID, ShadowThread ts) {
157 RR.read(this, accessID, ts);
158 return x;
159 }
160

161 int $rr_put_x(int xv, int accessID, ShadowThread ts) {
162 RR.write(this, accessID, ts);
163 return x = xv;
164 }
165

166 void f(int a[]) {
167 ShadowThread $rr_ts = RR.currentThread();
168 $rr_put_x($rr_get_x(101, $rr_ts)+1, 102, $rr_ts);
169 RR.writeArray(realToShadow(a), 11, 103, $rr_ts);
170 a[11] = 3;
171 }
172 }

shadow state for x (line 154). Thus, each object roughly doubles in
size under ROADRUNNER, due to these shadow fields.

All reads and writes to the field x are replaced by calls the
ROADRUNNER-inserted methods $rr get x and $rr put x (e.g.,
line 149 becomes line 168). In addition to reading or writing x,
these two methods also call the RR.read and RR.write methods,
which in turn extract the shadow for x and dispatch the appropriate
event to the tool chain. The accessor method $rr get x takes the
currently executing thread and an accessID as parameters. The
accessID is an integer generated by ROADRUNNER to uniquely
identify each syntactic access in the program source, and it enables
the RR.read and RR.write methods to recover source-level infor-
mation when generating events. For example, ROADRUNNER maps
the identifier 101 (line 168) to a FieldAccessInfo object describ-
ing an access to A.x at line 149.

The ShadowThread for the current thread is passed to every RR
entry point. To avoid recomputing the current thread for each event,
ROADRUNNER inserts a single call to RR.currentThread() at
the start of each instrumented method to obtain and then store the
current ShadowThread in a local variable $rr ts.

ROADRUNNER uses a different strategy to maintain shadow lo-
cations for array elements since it cannot extend the JVM’s rep-
resentation for arrays to directly include shadow data. For each
real array of size n allocated by the target program, ROADRUN-
NER allocates a shadow array of type ShadowVar[], also of size
n. ROADRUNNER maintains an internal real-to-shadow map, and
the realToShadow operation (see line 169) uses this map to find the
shadow array for the real array being accessed. We describe our
optimized map structure and lookup procedure below.

4. Optimizations
ROADRUNNER relies heavily on the JVM’s JIT compiler to opti-
mize the instrumented code and tool chain dispatches. Given that

most event handlers are relatively small and the tool chain is fixed
at system startup, aggressive method inlining by JITs, such as
HotSpot, actually makes most tool chain dispatches and event han-
dling operations run no slower than hand-optimized checkers built
from scratch. For example, the version of ATOMIZER built with-
out ROADRUNNER was actually a little slower than the version de-
signed as a composition of simpler tools. Achieving this level of
performance required designing the ROADRUNNER data structures
and instrumentation strategy to avoid a number of significant bot-
tlenecks. We described some of these below.

Event Reuse. To avoid unnecessary allocation of event objects,
ROADRUNNER creates, for each thread, exactly one object of each
Event type, and reuses that object for all events of that type gener-
ated by that thread.

Access Fast Path Inlining. Despite our best efforts to opti-
mize the event dispatch mechanism, the sheer number of mem-
ory accesses causes the overhead of setting up and dispatching
AccessEvents to be a bottleneck. Early experience with ROAD-
RUNNER provided a key insight for greatly reducing this cost: most
of the time, typical analyses need only examine the ShadowThread
and ShadowVar to properly handle an access, and do little or no
work before returning.

ROADRUNNER provides an “Access Fast Path” idiom to enable
the direct inlining of these fast paths into the target code. Full
AccessEvents are then only generated when the analysis falls off
the fast path. The following method in the LockSet class defines
a fast path for reads that succeeds in the common case where the
lock set for the accessed location is exactly the (non-empty) set of
locks held by the current thread.

static boolean readFP(ShadowVar v, ShadowThread ts) {
return v == locksHeld.get(ts) && !((Set)v).isEmpty();

}

The instrumentor generates the following variant of $rr get x for
class A that avoids calling the slow path RR.read in the common
case where the fast path succeeds and returns true:

int $rr_get_x(int accessID, ShadowThread ts) {
if (!LockSet.readFP(this.$rr_x, ts))

RR.read(this, accessID, ts);
return x;

}

The JIT optimizer typically inlines calls to small methods such as
$rr get x, readFP, locksHeld.get, and isEmpty, resulting in
very little overhead for processing most accesses. Write fast paths
are specified similarly.

For tool chains with multiple tools, the fast paths are called in
the tool chain order and tested sequentially until either (1) they all
return false, at which point the slow path RR.read is called; or
(2) one fast path returns true, meaning it successfully handled the
event, in which case no slow path processing is necessary.

Several issues, such as the exact JIT inlining policy and poten-
tial interference between threads executing the same fast path, re-
quire careful attention and a degree of manual tuning, but judicious
use of fast paths can substantially improve performance. If each
tool’s fast path returns true only in situations where the shadow
value has that tool’s shadow type and where the tool’s access han-
dler would process the event in the same way without passing it
along, then this fast path optimization should have no effect other
than improved performance.

Real-to-Shadow Map. As mentioned above, ROADRUNNER uses
the realToShadow operation to map arrays to their shadow state.
Implementing this lookup in an efficient manner is surprisingly
tricky, due to it being an extremely heavily used data structure



Slowdown (x Base Time)
Tool Chain Basic +Event Reuse +Fast Path Inlining +Array Lookup +Decoration Inlining

EMPTY 52.6 8.2 7.2 5.8 5.6
ERASER 52.8 11.8 10.5 10.1 9.4
ERASER:PROTECTINGLOCK:ATOMIZER 54.9 14.8 12.5 10.5 9.8
FASTTRACK 54.1 13.6 9.5 8.2 7.3
FASTTRACK:VELODROME 55.8 15.6 10.9 9.4 8.1
Average 54.0 12.8 10.1 8.8 8.0

Figure 8. ROADRUNNER performance on the JavaGrande benchmarks. ERASER abbreviates THREADLOCAL:READONLY:LOCKSET.

for array-intensive programs, and also due to garbage collection
concerns. In particular, we wish to garbage collect real arrays (and
their shadows) once the target program no longer references them.
ROADRUNNER maintains a three-tier lookup table:

1. The first tier is a per-thread inline cache for each syntactic array
access, which contains the eight (real-array/shadow-array) pairs
most recently looked up by each thread at that syntactic access.

2. The second tier is a shared ConcurrentHashMap, called Re-
cent, which also stores (real-array/shadow-array) pairs.

3. The final tier is a shared WeakHashMap, called Attic. At fixed
intervals, all entries stored in the Recent table are moved into
the Attic, to permit garbage collection of real and shadow ar-
rays. (Real arrays referenced only from the Attic, where they
are stored as weak references, can be reclaimed.)

The realToShadow procedure first looks in the per-thread inline
cache, then in the Recent table, and finally in the Attic table, stop-
ping as soon as the array is found (and inserting it into the cache and
Recent tables if not already there). To further reduce overhead, the
ROADRUNNER instrumentor performs a simple data-flow analysis
to eliminate redundant lookups.

There are many alternative designs for maintaining the shadow
array map, but this three-level strategy has proven straightforward
to implement, efficient, and predictable in behavior.

ShadowThread Decoration Inlining. Decorations are conve-
nient, modular, and efficient, but they do introduce extra lev-
els of indirection that can impact performance for heavily-used
ShadowThread decorations. To reduce this overhead, ROADRUN-
NER provides a load-time bytecode rewriting mechanism that can
dynamically add additional per-tool fields into the ShadowThread
class. The following example code illustrates how the LockSet
tool can use this feature to replace the locksHeld decoration.
The tool simply defines “dummy” accessor and mutator methods
(ts get locksHeld and ts set locksHeld) of the appropriate
types and calls these methods from event handlers:

class LockSet extends Tool {

static Set ts_get_locksHeld(ShadowThread ts) {
return null;

}

static void ts_set_locksHeld(ShadowThread ts, Set s) {
}

void acquire(AcquireEvent e) {
Set held = ts_get_locksHeld(e.thread);
...

}
}

ROADRUNNER recognizes the special name prefixes (ts get
and ts set ) at tool load time and inserts a corresponding field
$rr locksHeld into the ShadowThread class. It then rewrites the
dummy accessor and mutator methods to manipulate this new field.

While this lightweight mechanism has been sufficient for our pur-
poses, aspects [17] provide more general extension mechanisms.

Performance. We have found ROADRUNNER to provide accept-
able performance in practice. Figure 8 shows the average slow-
down of five ROADRUNNER analysis configurations when check-
ing the programs from the JavaGrande benchmark suite [14] on a
dual quad-core machine running Mac OSX 10.6 and HotSpot 1.6.
The second column describes the slowdown of the basic ROAD-
RUNNER framework, with all of the optimizations from this section
turned off. The subsequent columns then show the benefits as each
additional optimization is turned on. Cumulatively, the optimiza-
tions enable these analyses to have slowdowns of less than 10x.
This is quite competitive with specialized research prototypes built
to study individual analyses (e.g., [9, 21, 24]). As reported in ear-
lier papers [10, 11], ROADRUNNER checkers can scale to systems
as large as the Eclipse development environment [7].

5. Related Work
ROADRUNNER uses the ASM [3] library to perform rewriting and
instrumentation of the target program’s .class files at load time. A
number of other systems provide features comparable to ASM, e.g.,
BCEL [2]. The SOOT framework [26] is similar, but the rewriting is
performed on a somewhat higher-level intermediate language of the
kind traditionally used for compiler optimizations. ROADRUNNER
provides a higher-level and more focused API than these more gen-
eral rewriting engines, since ROADRUNNER analyses are specified
in terms of event stream handling, and not in terms of rewriting op-
erations on target program code. Indeed, much of ROADRUNNER’s
code base is essentially focused on lifting the bytecode-based vir-
tual machine abstraction to this event-based abstraction level.

Sofya [18] is a dynamic program analysis framework that has
similar goals to ROADRUNNER. A key difference is that Sofya
runs the target program in its own JVM, which prevents event pro-
cessing from interfering with program behavior, but introduces ad-
ditional overheads for inter-JVM communication. Sofya provides
an Event Description Language to specify which events are of
interest to the analysis, whereas ROADRUNNER in general com-
municates all events to the analysis back-end, since most analy-
ses (e.g., race detectors) will typically be interested in most or
all events. Thus, ROADRUNNER is designed to support a high-
bandwidth event stream, which in turn requires an architecture
where the target program and the analysis run on the same JVM.

CalFuzzer [15] is a framework for “active testing” of concurrent
programs. It performs bytecode rewriting using SOOT and runs
in the same memory space as the target program. Each analysis
provides callback functions to handle memory accesses, synchro-
nization operations, etc. CalFuzzer appears not to directly support
shadow locations for fields and for array elements. Instead, the Cal-
Fuzzer framework passes integer identifiers to the callback func-
tions to identify memory locations and locks. Analyses can then
allocate their own arrays indexed by these identifiers, but under
this approach shadow state is likely not garbage-collected, which



may be problematic for large benchmarks. CalFuzzer does include
explicit support for perturbing the scheduler for active testing.

ATOM [25] provides a framework for instrumenting native code
Alpha programs with callbacks to analysis tools. The instrumenta-
tion process permits a flexible choice of which events to instru-
ment, but does not provide explicit support for shadow state. Some
ATOM tools, most notably Eraser [24], implement this feature on
top of ATOM.

The Valgrind framework [20] supports heavyweight instrumen-
tation of binary code programs, where every register has an asso-
ciated shadow register that contains meta-data about the register’s
value. Valgrind works via disassembly-and-resynthesis, perform-
ing the instrumentation on an higher-level intermediate represen-
tation, somewhat like the SOOT framework discussed above. The
Valgrind distribution provides a number of analysis tools, including
some that focus on race conditions. In comparison, ROADRUNNER
uses a more lightweight copy-and-annotate approach to instrumen-
tation, which is sufficient for our purposes.

6. ROADRUNNER in Practice
ROADRUNNER has proven invaluable for building and evaluating
analyses. Implementing a first prototype of a new analysis often
takes a few days rather than the weeks or months required to build
a system from scratch. Much of this improvement comes from the
ROADRUNNER event stream model, which matches the level of
abstraction with which we formulate analyses.

In addition, initial versions of ROADRUNNER analyses can of-
ten be applied to large-scale systems such as Eclipse, because
ROADRUNNER deals with and hides many of the complexities in-
volved in scaling to such systems. This scalability and easy experi-
mentation is critical for evaluating and refining new analyses.

Tool composition in ROADRUNNER has also played a major
role in how we design, implement, test, and validate dynamic analy-
ses. It enables us to express complex algorithms as the composition
of simpler, modular ones; to reuse analysis components unchanged;
and to insert monitoring and debugging filters into the tool chain
without cluttering the analysis code.

Acknowledgments
This work was supported in part by the NSF under Grants 0341179,
0341387, 0644130, and 0707885 and by a Sloan Foundation Fel-
lowship. Ben Wood helped implement array tracking and several
analyses. Jaeheon Yi, Caitlin Sadowski, and Catalin Iordan helped
test and validate the ROADRUNNER framework.

References
[1] R. Agarwal and S. D. Stoller. Run-time detection of potential dead-

locks for programs with locks, semaphores, and condition variables.
In PADTAD, pages 51–60, 2006.

[2] Byte Code Engineering Library. http://jakarta.apache.org/bcel/,
2007.

[3] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation
tool to implement adaptable systems. In Adaptable and extensible
component systems, 2002.

[4] J. Burnim and K. Sen. Asserting and checking determinism for
multithreaded programs. In FSE, pages 3–12, 2009.

[5] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded
object-oriented programs. In PLDI, pages 258–269, 2002.

[6] M. Christiaens and K. D. Bosschere. TRaDe: Data Race Detection for
Java. In International Conference on Computational Science, pages
761–770, 2001.

[7] The Eclipse programming environment, version 3.4.0. Available at
http://www.eclipse.org, 2009.

[8] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and
transaction-aware Java runtime. In PLDI, pages 245–255, 2007.

[9] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomic-
ity checker for multithreaded programs. Sci. Comput. Program.,
71(2):89–109, 2008.

[10] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dy-
namic race detection. In PLDI, pages 121–133, 2009.

[11] C. Flanagan and S. N. Freund. Adversarial memory for detecting
destructive races. In PLDI, 2010.

[12] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded programs. In
PLDI, pages 293–303, 2008.

[13] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifica-
tions for concurrent object-oriented software using model-checking.
In VMCAI, pages 175–190, 2004.

[14] Java Grande Forum. Java Grande benchmark suite. Available at
http://www.javagrande.org/, 2008.

[15] P. Joshi, M. Naik, C.-S. Park, and K. Sen. Calfuzzer: An extensible
active testing framework for concurrent programs. In CAV, pages 675–
681, 2009.

[16] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized dynamic
program analysis technique for detecting real deadlocks. In PLDI,
pages 110–120, 2009.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In ECOOP,
pages 220–242, 1997.

[18] A. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya: Supporting
rapid development of dynamic program analyses for Java. ICSE
Companion, pages 51–52, 2007.

[19] F. Mattern. Virtual time and global states of distributed systems. In
Workshop on Parallel and Distributed Algorithms, 1988.

[20] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In PLDI, pages 89–100, June 2007.

[21] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In
PPOPP, pages 167–178, 2003.

[22] E. Pozniansky and A. Schuster. MultiRace: Efficient on-the-fly data
race detection in multithreaded C++ programs. Concurrency and
Computation: Practice and Experience, 19(3):327–340, 2007.

[23] C. Sadowski, S. N. Freund, and C. Flanagan. SingleTrack: A dynamic
determinism checker for multithreaded programs. In ESOP, pages
394–409, 2009.

[24] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson.
Eraser: A dynamic data race detector for multi-threaded programs.
TOCS, 15(4):391–411, 1997.

[25] A. Srivastava and A. Eustace. ATOM : A system for building cus-
tomized program analysis tools. In PLDI, pages 196–205, 1994.

[26] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and
V. Sundaresan. Optimizing Java bytecode using the Soot framework:
Is it feasible? In Compiler Construction, pages 18–34, 2000.

[27] C. von Praun and T. Gross. Object race detection. In OOPSLA, pages
70–82, 2001.

[28] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multi-
threaded programs. IEEE Trans. Software Eng., 32(2):93–110, 2006.

[29] M. Xu, R. Bodı́k, and M. D. Hill. A serializability violation detector
for shared-memory server programs. In PLDI, pages 1–14, 2005.

[30] J. Yi, C. Sadowski, and C. Flanagan. SideTrack: generalizing dynamic
atomicity analysis. In PADTAD, 2009.

[31] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient detection of
data race conditions via adaptive tracking. In SOSP, pages 221–234,
2005.


