
SingleTrack: A Dynamic Determinism Checker
for Multithreaded Programs

Caitlin Sadowski1 Stephen N. Freund2 Cormac Flanagan1

1 University of California at Santa Cruz, Santa Cruz, CA
2 Williams College, Williamstown, MA

Abstract. Multithreaded programs are prone to errors caused by un-
intended interference between concurrent threads. This paper focuses
on verifying that deterministically-parallel code is free of such thread
interference errors. Deterministically-parallel code may create and use
new threads, via fork and join, and coordinate their behavior with syn-
chronization primitives, such as barriers and semaphores. Such code
does not satisfy the traditional non-interference property of atomicity
(or serializability), however, and so existing atomicity tools are inade-
quate for checking deterministically-parallel code. We introduce a new
non-interference specification for deterministically-parallel code, and we
present a dynamic analysis to enforce it. We also describe SingleTrack,
a prototype implementation of this analysis. SingleTrack’s perfor-
mance is competitive with prior atomicity checkers, but it produces
many fewer spurious warnings because it enforces a more general non-
interference property that is applicable to more software.

1 Introduction

Multiple threads of control are widely used in software development for many
reasons, including their ability to utilize modern multi-core processors. Reason-
ing about the correctness of multithreaded code is notoriously difficult, however,
due to the potential for non-deterministic interference between threads. Thus,
methods for specifying and controlling thread interference are crucial for the
cost-effective development of reliable multithreaded software. Previous studies
have explored analyses for controlling interference by verifying, for example, that
a program is free of data races or that methods are atomic (in that they always
behave as if they execute serially). Some programs, however, are safe despite
the presence of non-atomic methods, and previous studies revealed numerous
examples of such methods. Motivated by this experience, this paper explores a
more general non-interference property, namely deterministic parallelism.

Deterministic Parallelism. A deterministically-parallel computation may use
multiple threads, but these threads either do not communicate (as in divide-
and-conquer parallelism) or they communicate in a deterministic manner (e.g.,
via barriers). In either case, the relative scheduling of threads in subcomputa-
tions does not affect the program’s overall behavior.

Figure 1: Deterministically Parallel Sort Implementation

deterministic void quicksort(int[] a) {

synchronized (a) {

quicksort_helper(a, 0, a.length-1);

}

}

void quicksort_helper(int[] a, int lo, int hi) {

if (hi - lo > 1) {

int pivot = partition(a, lo, hi);

Thread t1 = fork { quicksort_helper(a, lo, pivot-1); }

Thread t2 = fork { quicksort_helper(a, pivot+1, hi); }

t1.join();

t2.join();

}

}

To illustrate this concurrency pattern, consider the multithreaded quicksort
implementation shown in Figure 1. That method synchronizes on the lock for
array a, and then calls a helper method to sort the array by partitioning it and
forking two threads to recursively sort each half. The quicksort method is anno-
tated with the non-interference specification “deterministic.” Each invocation
of quicksort produces a computation involving multiplie threads: the initial
thread and all threads forked by the quicksort helper method. We refer to the
execution of a deterministic method and its forked threads as a transaction.

In general, a program execution may involve multiple, possibly concurrent,
transactions, and each transaction may be internally multithreaded (if, as in the
quicksort function, its code forks new threads). The goal of this paper is to
verify that the entire program execution satisfies the following two important
non-interference properties. These two properties prevent interference problems
between threads in one transaction, and in different transactions, respectively.

1. Conflict Freedom. Threads insinde each transaction must be conflict-free.
That is, if two operations from the same transaction are enabled at the same
time, then those operations must not conflict. Thus, all intra-transaction race
conditions are forbidden, including those on regular variables, on volatile
variables, and on locks. Deterministic synchronization, such as fork-join pat-
terns and barrier synchronization, is allowed, as is synchronization between
transactions, as in the quicksort example.

2. External Serializability. Threads inside each transaction must not inter-
fere with threads outside that transaction. Note that this notion is different
than atomicity, which would require the quicksort method to behave as if
it executes serially, without interleaved operations from other threads. Since
quicksort helper must wait for the forked threads to terminate, quicksort
cannot execute serially and is not atomic.
Nevertheless, quicksort does enjoy a strong atomicity-like property, but
only when considering the operations of all threads in the entire quicksort
transaction, and not just the operations of the thread calling quicksort.

2

More specifically, a trace is externally serial if each (possibly multithreaded)
transaction executes contiguously, without interleaved operations from out-
side that transaction. A trace is externally serializable if it is equivalent to
an externally serial trace.

For the interesting special case when the main method of an application is
annotated as deterministic, external serializability becomes a trivial property
(since the execution contains only one transaction), but conflict freedom provides
a strong determinism guarantee–that the program will behave the same regard-
less of how its threads are scheduled.1 This special case of entirely deterministic
applications was also addressed by the Cilk Nondeterminator [7], whereas this
paper addresses the problem in a more general setting.

Another interesting case is when a deterministic method does not fork ad-
ditional threads, and so conflict freedom becomes trivial (since the transaction
contains only a single thread) and external serializability reduces to the tradi-
tional notion of serializability or atomicity. Thus, deterministic can be viewed
as a generalization of atomic that better supports deterministically-parallel com-
putations such as quicksort.

In the more general situation, a program execution may consist of multiple
(possibly concurrent) transactions, each of which is internally multithreaded, and
the above two correctness properties control thread interference both within and
between transactions.

SingleTrack. This paper presents a dynamic analysis for verifying conflict free-
dom and external serializability. To verify conflict freedom, the analysis employs
clock vectors [14] as a compact representation of the happens-before relation, and
it uses additional mechanisms to track the current transaction for each thread
and to distinguish intra-transaction conflicts (which are forbidden) from inter-
transaction conflicts (which are allowed). To verify external serializability, the
analysis dynamically constructs a transactional happens-before graph [10]. This
graph encodes which transactions have operations that happen before operations
of other transactions, and it contains a cycle if and only if the observed trace
violates external serializability.

Figure 2 contains two code fragments that illustrate common patterns for
deterministic parallelism found in programs. In the left column, the main method
starts three concurrent invocations of the worker method, where each worker
invocation repeatedly reads shared data, blocks on a barrier, and then updates
disjoint portions of that shared data. The barrier synchronization ensures the
absence of conflicts on the reads and writes of the shared data. Although main
is not atomic, our analysis verifies that it is deterministic. The right column
of Figure 2 shows an idealized implementation of thread pools, in which the
assignment of tasks from the work list to worker threads is scheduler-dependent
and so non-deterministic. If a program uses a thread pool to execute tasks with
deterministic run methods, our analysis will still verify that these tasks are
deterministic, despite the non-determinism at the application level.
1 This property assumes that thread scheduling is the only source of non-determinism.

3

Figure 2: Common idioms for Deterministic Parallelism

Barrier barrier = new Barrier(3);

int a[] = new int[3];

deterministic void main() {

fork { worker(0); }

fork { worker(1); }

worker(2);

}

void worker(int id) {

for (int i = 0; i < 10; i++) {

int tmp = f(a[0],a[1],a[2]);

barrier.await();

a[id] = tmp;

barrier.await();

}

}

(a) Barrier synchronization

class ThreadPool {

BlockingQueue<Runnable> workList

= new BlockingQueue<Runnable>();

ThreadPool(int numWorkers) {

for (int i = 0; i < numWorkers; i++) {

fork {

while (true) {

workList.dequeue().run();

}

}

}

}

void execute(Runnable task) {

workList.enqueue(task);

}

}

(b) Thread pools

We have developed a prototype implementation, called SingleTrack, of this
dynamic analysis. Experimental results show that SingleTrack provides a sig-
nificant improvement over prior atomicity checkers, largely because deterministic
is a more general non-interference specification than atomic and so is applicable
to more methods. In effect, this permits us to check more complex code with
fewer false alarms than existing tools.

For example, the sor benchmark [1] includes six methods that are not atomic
because they involve barrier synchronization along the lines shown in Figure 2(a).
Atomicity checkers provide no insight regarding thread interference problems in
these methods and, in fact, mask a subtle synchronization defect detected by
SingleTrack. (The barrier implementation incorrectly relied on writes to a
long variable being atomic.) After fixing that bug, SingleTrack verified the
entire sor benchmark as deterministic, whereas Velodrome, a dynamic atomic-
ity checker [10], still reported spurious atomicity violations on the six methods.
In addition, SingleTrack verified as deterministic many other problematic
non-atomic methods in our benchmarks. Despite its increased generality, Sin-
gleTrack’s performance is competitive with existing atomicity checkers.

Contributions. In summary, this paper:

– identifies a limitation of atomicity for reasoning about the common idiom of
deterministic parallelism;

– proposes deterministic as a concise specification for this concurrency idiom
that combines conflict freedom and external serializability;

– develops a dynamic analysis for verifying this non-interference specification;
– shows that the analysis reports an error whenever the observed trace violates

this specification;
– presents an implementation for multithreaded Java programs; and
– validates the effectiveness and performance on a collection of benchmarks.

4

2 Semantics of Multithreaded Programs

To provide a sound basis for our dynamic analysis, we begin by formalizing the
semantics of multithreaded programs, as summarized in Figure 3. A program
consists of a number of concurrently executing threads that manipulate variables
x ∈ Var and locks m ∈ Lock . Each thread has a thread identifier t ∈ Tid . A
program state Σ maps program variables to values. The state also records the
holder (if any) of each lock m: if m held by thread t, then Σ(m) = t, and
otherwise Σ(m) = ⊥. The state also maps each thread identifier t to a local
store Σ(t) = π for that thread, which contains thread-local data such as the
program counter and call stack. The distinguished local stores NotStarted and
Finished indicate threads that have not started running yet and that have
finished running, respectively. Execution starts in an initial state Σ0, where
Σ0(t) = NotStarted for all threads t except the initial thread.

Operations. Each thread proceeds by performing a sequence of operations on
the global store. Thread t can perform all operations a from the following list:

– rd(t, x, v) and wr(t, x, v), which read and write a value v from variable x;
– acq(t,m) and rel(t,m), which acquire and release a lock m;
– begin(t) and end(t), which demarcate each deterministic block;
– fork(t, u, π), which forks a new thread u with initial local store π;
– stop(t), which stops thread t; and
– join(t, u), which blocks until thread t terminates via stop(t).

The relation T (t, π, a, π′) holds if the thread t can take a step from a local
store π to a new local store π′ by performing the operation a ∈ Operation on the
global store. We assume that T is not defined if either π or π′ is the distinguished
local stores NotStarted or Finished.

The transition relation Σ →a Σ′ performs a single step of execution. It
chooses an operation a by thread t that is applicable in the local state Σ(t),
performs that operation to yield a new local store π′, and returns a new (ap-
propriately updated) state. An operation a is enabled in Σ if ∃Σ′ such that
Σ →a Σ′. A state Σ is final if the local store for every thread in that state is
either NotStarted or Finished. We assume that each operation is deterministic:
if tid(a) = tid(b) and Σ →a Σ′ and Σ →b Σ′′ then a = b and Σ′ = Σ′′.

A trace α captures an execution of a multithreaded program by listing the
sequence of operations performed by the various threads. The behavior of a trace
α = a1.a2. · · · .an is defined by the relation Σ0 →α Σn, which holds if there exist
intermediate states Σ1, . . . , Σn−1 such that Σ0 →a1 Σ1 →a2 · · · →an Σn. We
assume that each valid trace is cycle free.

Conflicts. Two operations in a trace conflict if they satisfy one of the following:

– Communication conflict: they read or write the same variable, and at
least one of the accesses is a write.

– Lock conflict: they acquire or release the same lock.

5

Figure 3: Semantics of Multithreaded Programs

Domains:
Σ ∈ State = (Var → Value)

∪ (Lock → Tid⊥)
∪ (Tid → LocalStore)

a ∈ Operation ::= rd(t, x, v) | wr(t, x, v)
| acq(t,m) | rel(t,m)
| begin(t) | end(t)
| fork(t, u, π) | join(t, u) | stop(t)

u, t ∈ Tid
x ∈ Var
v ∈ Value
m ∈ Lock
π ∈ LocalStore

Transition relation: Σ →a Σ′

[step read]
a = rd(t, x, v) T (t, Σ(t), a, π′) Σ(x) = v

Σ →a Σ[t := π′]

[step write]
a = wr(t, x, v) T (t, Σ(t), a, π′)

Σ →a Σ[t := π′, x := v]

[step acquire]
a = acq(t,m) T (t, Σ(t), a, π′) Σ(m) = ⊥

Σ →a Σ[t := π′,m := t]

[step release]
a = rel(t,m) T (t, Σ(t), a, π′) Σ(m) = t

Σ →a Σ[t := π′,m := ⊥]

[step begin]
a = begin(t) T (t, Σ(t), a, π′)

Σ →a Σ[t := π′]

[step end]
a = end(t) T (t, Σ(t), a, π′)

Σ →a Σ[t := π′]

[step fork]
a = fork(t, u, π′′) T (t, Σ(t), a, π′)

Σ(u) = NotStarted π′ 6= NotStarted

Σ →a Σ[t := π′, u := π′′]

[step join]
a = join(t, u)

T (t, Σ(t), a, π′) Σ(u) = Finished

Σ →a Σ[t := π′]

[step stop]
a = stop(t) T (t, Σ(t), a, π′)

Σ →a Σ[t := Finished]

– Fork-join conflict: one operation is fork(t, u, π) or join(t, u) and the other
operation is by thread u.

– Program order conflict: they are performed by the same thread.

The happens-before relation <α for a trace α is the smallest transitively-closed
relation on operations in α such that if operation a occurs before b in α and a
conflicts with b, then a happens-before b.2

Two traces are equivalent if one can be obtained from the other by repeatedly
swapping adjacent non-conflicting operations. Equivalent traces yield the same
happens-before relation and exhibit equivalent behavior.

Transactions. A transaction in a trace α is the sequence of operations executed
by a thread t starting with a begin(t) operation and containing all t operations up
to and including a matching end(t) operation. For each operation fork(t, u, π) in
a transaction, that transaction also includes all operations of the forked thread
u. Any operation that does not occur within another transaction is considered
to execute in its own (unary) transaction. To simplify some aspects of the for-
mal presentation, we assume begin(t) and end(t) operations are appropriately

2 In theory, a particular operation a could occur multiple times in a trace. We avoid this compli-
cation by assuming that each operation includes a unique identifier, but, to avoid clutter, we do
not include this unique identifier in the concrete syntax of operations.

6

matched and are not nested (although our implementation does support nested
deterministic specifications). We also assume that all locks acquired within a
transaction are released within that transaction.

3 Dynamically Verifying Internal Conflict Freedom

We next address how to dynamically verify our notion of conflict freedom, i.e.,
that each operation in the observed trace does not conflict with any other op-
eration in the same transaction. Thus, for example, a lock acquire should not
conflict with any other acquire in the same transaction. Similarly, any read oper-
ation in a transaction should not conflict with any write in the same transaction.
Note that conflicts between an acquire inside a transaction and an acquire out-
side the transaction are permitted; they may violate external serializability but
not conflict freedom.

Our analysis uses clock vectors [14] as a compact representation for the
happens-before relation and to identify which operations in a transaction are
concurrent. A clock vector CV : Tid → Nat maps thread identifiers to clocks.
Roughly speaking, if cv is the clock vector for an operation a in a trace, then
cv(t) identifies which operations of thread t happen-before that operation a (i.e.,
those t-operations for which t’s clock is less than or equal to cv(t)).

Clock vectors are partially-ordered (v) in a point-wise manner, with an as-
sociated join operation (t) and minimal element (c0). In addition, the helper
function inct increments the t-component of a clock vector:

cv1 v cv2 iff ∀t. cv1(t) ≤ cv2(t)
cv1 t cv2 = λt. max (cv1(t), cv2(t))

c0 = λt. 0
inct(cv) = λu. if u = t then cv(u) + 1 else cv(u)

Our conflict freedom analysis allocates a unique transaction identifier w ∈
Xid for each transaction in the observed trace and records which threads belong
to that transaction. The analysis is an online algorithm based on an analysis
state σ = (X,C,U,R,W) where:

• X : Tid → Xid⊥ records the current transaction (if any) for each thread;
• C : Tid → CV records the clock vector of the current operation by each

thread;
• U : Lock ×Xid → CV records the clock vector of the last unlock of each lock

in each transaction;
• R : Var ×Xid → CV records the join of all clock vectors for all reads to each

variable by each transaction; and
• W : Var × Xid → CV records the clock vector of the last write to each

variable in each transaction.

7

Figure 4: Dynamically Verifying Conflict Freedom: σ ⇒a σ′

[cf begin]
X(t) = ⊥

X′ = X[t := w], w is fresh
C′ = C[t := inct(c0)]

(X,C,U,R,W) ⇒begin(t) (X′,C′,U,R,W)

[cf end]
X(t) 6= ⊥

X′ = X[t := ⊥]

(X,C,U,R,W) ⇒end(t) (X′,C,U,R,W)

[cf acquire]
X(t) = w 6= ⊥

U(m,w) v C(t)

(X,C,U,R,W) ⇒acq(t,m) (X,C,U,R,W)

[cf release]
X(t) = w 6= ⊥

U′ = U[(m,w) := C(t)]

(X,C,U,R,W) ⇒rel(t,m) (X,C,U′,R,W)

[cf read]
X(t) = w 6= ⊥

W(x,w) v C(t)
R′ = R[(x,w) := R(x,w) t C(t)]

(X,C,U,R,W) ⇒rd(t,x,v) (X,C,U,R′,W)

[cf write]
X(t) = w 6= ⊥

W(x,w) v C(t) R(x,w) v C(t)
W′ = W[(x,w) := C(t)]

(X,C,U,R,W) ⇒wr(t,x,v) (X,C,U,R,W′)

[cf fork]
X′ = X[u := X(t)]
C′ = C[t := inct(C(t)), u := incu(C(t))]

(X,C,U,R,W) ⇒fork(t,u,π) (X′,C′,U,R,W)

[cf join]
C′ = C[t := C(t) t C(u)]

(X,C,U,R,W) ⇒join(t,u) (X,C′,U,R,W)

[cf stop]

(X,C,U,R,W) ⇒stop(t) (X,C,U,R,W)

[cf outside]
X(t) = ⊥

a ∈ {acq(t,m), rel(t,m), rd(t, x, v),wr(t, x, v)}
(X,C,U,R,W) ⇒a (X,C,U,R,W)

In the initial analysis state, no thread is in a transaction and all clock vectors
are initialized to c0, except each C(t) starts at inct(c0) to reflect that the first
steps by different threads are not ordered.

σ0 = (λt.⊥, λt. inct(c0), λ(m,w). c0, λ(x,w). c0, λ(x,w). c0)

The relation σ ⇒a σ′ is defined in Figure 4. The first rule [cf begin] for
begin(t) records that thread t is in a fresh transaction, and resets the clock
vector for t. The complementary rule for end(t) records that t is no longer in a
transaction. The rule [cf acquire] checks that each lock acquire happens after
the last acquire of that lock in the same transaction. If this check fails, then
no rule is applicable and the analysis reports a violation of conflict freedom.
Rules [cf read] and [cf write] check in a similar manner that reads and
writes do not conflict with other operations in the same transaction. We update
clock vectors for fork and join operations that perform real (non-redundant)
synchronization. The rule [cf fork] for fork(t, u, π) performs one “clock tick”
for threads t and u, and [cf join] records that a join operation happens-after the
last operation (i.e., the stop operation) of the joined thread. Finally, operations
outside a transaction are irrelevant and are ignored via [cf outside].

We extend the relation σ ⇒a σ′ from operations to traces in the expected
manner: the relation σ0 ⇒α σn holds for a trace α = a1. · · · .an if there exist
intermediate analysis states σ1, . . . , σn−1 such that σ0 ⇒a1 σ1 ⇒a2 · · · ⇒an σn.

Correctness. The following lemma summarizes the non-interference guarantee
ensured by this analysis. If the entire program trace lies within a single transac-

8

tion, then conflict freedom guarantees determinism. That is, we can generalize
from a single observed trace of the target program to reason about behavior and
correctness of all possible traces for that program (assuming of course no sources
of non-determinism other than thread scheduling).

Lemma 1 (Single Transaction Determinism). Suppose Σ0 →α Σ where Σ
is final and σ0 ⇒α σ and α contains a single transaction. Then for any other
trace Σ0 →β Σ′ where Σ′ is final, we have that Σ = Σ′.

4 Dynamically Verifying External Serializability

We next describe our dynamic analysis for the second non-interference property
of external serializability. Our analysis allocates a Node for each transaction in
the observed trace. Then, for each operation in the trace that conflicts with a
preceding operation from a different transaction, our analysis adds a directed
edge between the nodes for these two transactions. Thus, the analysis computes
the transactional happens-before relation, where transaction A happens-before
transaction B in α (written Alα B) if there exists some operations a of A and
b of B such that a <α b. Then α is serializable if and only if the transactional
happens-before order lα is acyclic. This analysis generalizes the approach used
to identify atomicity violations in the Velodrome atomicity checker [10].

Our external-serializability analysis is an online algorithm that maintains an
analysis state φ = (C,L,U ,R,W,H) where:

• C : Tid → {In,Out} identifies whether a thread is currently in a transaction;
• L : Tid → Node⊥ identifies the transaction that executed the last operation

(if any) of each thread;
• U : Lock → Node⊥ identifies the last transaction (if any) to unlock each lock;
• R : Var ×Tid → Node⊥ identifies the last transaction of each thread to read

from each variable;
• W : Var → Node⊥ identifies the last transaction (if any) to write to each

variable; and
• H ⊆ Node × Node is the happens-before relation on transactions. (More

precisely, the transitive closure H∗ of H is the happens-before relation, since,
for efficiency, H is not transitively closed.)

In the initial analysis state φ0, these components are all empty:

φ0 = (λt.Out, λt.⊥, λm.⊥, λ(x, t).⊥, λx.⊥, ∅)

The relation φ Va φ′ shown in Figure 5 updates the analysis state for each
operation a of the target program. The first rule [xs begin] for begin(t) uses
the operation H] E to extend the happens-before graph with additional edges
E ⊆ Node⊥ ×Node⊥, filtering out self-edges and edges that start or end on ⊥:

H] E def= H ∪ {(n1, n2) ∈ E | n1 6= n2, n1 6= ⊥, n2 6= ⊥}

9

Figure 5: Dynamically Verifying External-Serializability: φ Va φ′

In all rules, φ = (C,L,U ,R,W,H).

[xs begin]
C(t) = Out
C′ = C[t := In]
L′ = L[t := n], n is fresh
H′ = H] {(L(t), n)}

φ Vbegin(t) (C′,L′,U ,R,W,H′)

[xs end]
C(t) = In
C′ = C[t := Out]

φ Vend(t) (C′,L,U ,R,W,H)

[xs acquire]
C(t) = In H′ = H] {(U(m),L(t))}

φ Vacq(t,m) (C,L,U ,R,W,H′)

[xs release]
C(t) = In U ′ = U [m := L(t)]

φ Vrel(t,m) (C,L,U ′,R,W,H)

[xs read]
C(t) = In
H′ = H] {(W(x),L(t))}
R′ = R[(x, t) := L(t)]

φ Vrd(t,x,v) (C,L,U ,R′,W,H′)

[xs write]
C(t) = In

W ′ = W[x := L(t)]
H′ = H]{(W(x),L(t)), (R(x, u),L(t)) |u∈Tid}

φ Vwr(t,x,v) (C,L,U ,R,W ′,H′)

[xs fork in]
C(t) = In

L′ = L[u := L(t)] C′ = C[u := In]

φ Vfork(t,u,π)(C′,L′,U ,R,W,H)

[xs fork out]
C(t) = Out n is fresh L′ = L[t := n, u := n]
C′ = C[u := Out] H′ = H] {(L(t), n)}

φ Vfork(t,u,π) (C′,L′,U ,R,W,H′)

[xs join]
C(t) = In H′ = H] {(L(u),L(t))}

φ Vjoin(t,u) (C,L,U ,R,W,H′)

[xs stop]
C(t) = In

φ Vstop(t) (C,L,U ,R,W,H)

[xs outside]
C(t) = Out

a ∈ {acq(t,m), rel(t,m), rd(t, x, v),wr(t, x, v), join(t, u), stop(t)}
φ Vbegin(t) φ1 φ1 Va σ2 φ2 Vend(t) φ′

φ Va φ′

Thus, in [xs begin], if L(t) = ⊥, then the happens-before graph is unchanged.
Otherwise it is extended with an edge from the last transaction of thread t to
the current transaction of t. The rule [xs acquire] for acq(t,m) updates the
happens-before graph with an edge from the last release U(m) of that lock. Con-
versely, [xs release] for rel(t,m) updates U(m) with the current transaction.

The rule [xs write] for wr(t, x, v) records that this write happens-after all
previous accesses to x, and updatesW(x) to denote the current transaction. The
rule [xs read] for rd(t, x, v) records that this read happens-after the last write
to x, and records that the last read to this variable by this thread is the current
transaction. For a fork operation within a transaction, the rule [xs fork in]
records that the forked thread also executes within that transaction. For forks
outside a transaction, [xs fork out] creates a fresh unary transaction n for
the fork operation. For other operations outside a transaction, [xs outside]
enters a new transaction, performs that operation, and then exits that (unary)
transaction. We extend the relation φ Va φ′ from operations to traces.

10

Correctness. The set Error denotes analysis states that contain a non-trivial
cycle in the happens-before relation:

Error def= {(C,L,U ,R,W,H) | H∗ contains a non-trivial cycle}

Our dynamic analysis is sound and in that it identifies exactly those traces that
are not externally serializable.

Lemma 2 (External Serializability). Suppose Σ0 →α Σ and φ0 Vα φ. Then
α is externally serializable if and only if φ 6∈ Error.

The preceding lemmas characterize the correctness guarantee provided by each
of the conflict-freedom and external-serializability analyses. We now describe
how the combination of these two analyses provides a determinism guarantee
for programs with multiple transactions (each of which may be internally mul-
tithreaded).

The begin-order of a serial trace is simply the projection of begin operations
in that trace, which identifies the order in which the transactions execute while
ignoring internal scheduling within each transaction.

begin-order(α) = projection of begin operations in α, where α is serial

We say that two serializable traces α and β have the same commit order if α
and β have equivalent serial traces α′ and β′ respectively, such that

begin-order(α′) = begin-order(β′)

Suppose that α is a program trace that satisfies our analyses. Clearly, a differ-
ent schedule β of the various transactions could change the program’s behavior
and, for example, cause it to execute code not covered by our analyses. How-
ever, if β is a serializable trace that has the same commit order as α, then β is
guaranteed to terminate in the same final state as α, and thus yield the same
observable behavior (where we assume all observations are made by inspecting
this final state).

Theorem 1 (Determinism). Suppose Σ0 →α Σ and σ0 ⇒α σ and φ0 Vα φ
where Σ is a final state and φ 6∈ Error. Then any serializable trace that has the
same commit order as α will terminate in the same final state.

5 Implementation and Evaluation

We have developed a prototype implementation, called SingleTrack, of our
dynamic analysis for deterministic parallelism. The analysis takes as input a
Java bytecode program and a specification of which methods should be deter-
ministic. It then monitors program execution and reports a warning whenever
a determinism specification is violated. For a conflict freedom error, Single-
Track identifies the two operations within a transaction that conflict. For an

11

external serializability error, SingleTrack identifies the corresponding cycle in
the transactional happens-before graph.

SingleTrack is implemented as a component in RoadRunner, a frame-
work we have designed for developing dynamic analyses for multithreaded soft-
ware. RoadRunner is written entirely in Java and runs on any standard JVM.
RoadRunner inserts instrumentation code into the target bytecode program
at load time. This code generates a stream of events for lock acquires and re-
leases, field and array accesses, method entries and exits, etc. Back-end tool
components, such as SingleTrack, process this event stream as it is gener-
ated. Re-entrant lock acquires and releases (which are redundant) are filtered
out by RoadRunner to simplify these analyses.

Our SingleTrack implementation extends the analysis described so far in
a number of respects, including by supporting additional synchronization prim-
itives such as barriers and semaphores. It also supports nested deterministic
blocks. When a determinism error is identified, the tool reports a warning for
each deterministic block being violated, and so a single bug may lead to mul-
tiple determinism warnings. It also includes a fast happens-before analysis to
verify that all array elements and non-volatile fields are accessed in a race-
free manner. Hence, only synchronization operations and accesses to volatile
fields must be analyzed for conflict freedom and external serializability, which
significantly improves SingleTrack’s performance.

We have applied SingleTrack to eight JavaGrande [1] benchmarks (crypt,
lufact, series, sor, sparse, moldyn, montecarlo, and raytracer), hedc (a
query engine that downloads astronomical data from the web [23]), and four
additional programs written by us: quicksort, which recursively quicksorts an
array, spawning new threads for the recursive calls; matrixmultiply, which im-
plements a multithreaded, divide-and-conquer matrix multiplication; queue-mm,
which uses a thread pool and work queue to perform a number of matrix mul-
tiplies simultaneously; and queue-jg, which uses a thread pool and work queue
to execute the first five JavaGrande benchmarks. All JavaGrande benchmarks
were configured to use the small data size and four threads, hedc was configured
to use four worker threads, and the thread pool programs were configured to use
pools with two worker threads.

We performed all experiments on an Apple Mac Pro with dual quad-core
3GHz Pentium Xeon processors and 4GB of memory, using OS X 10.5 and Sun’s
Java HotSpot Client VM, version 1.5.7. All classes loaded by the benchmark
programs were instrumented, except those from the standard Java libraries.

Table 1 presents the size, number of threads, and uninstrumented base run-
ning time of each program, as well as the slowdown (as a ratio to the base
time) of each program when checked by three dynamic analyses: EmptyTool
(which does no work and simply measures the instrumentation overhead), Sin-
gleTrack, and the Velodrome atomicity checker [10]. Both SingleTrack
and Velodrome used the same fast happens-before race detector mentioned
above to avoid the overhead of analyzing race-free data accesses. The average
slowdowns for these three tools are 4.3, 10.4, and 10.3, respectively, indicating

12

Base Slowdown Velodrome SingleTrack
Program Size Num. Time Empty Single- Velo- Atomicity Deterministic

(lines) Threads (sec) Tool Track drome Warnings Warnings

crypt 1,241 7 0.3 3.6 18.5 18.9 4 0
lufact 1,627 4 0.2 6.9 15.3 15.2 5 0
series 967 4 2.0 1.3 1.2 1.4 4 0
sor 876 4 0.2 3.8 7.7 7.5 6 6
sparse 868 4 0.3 7.7 24.6 24.4 4 0
moldyn 1,402 4 0.7 5.1 18.6 16.2 6 0
montecarlo 2,669 4 1.6 2.2 6.7 6.9 5 0
raytracer 1,970 4 0.9 13.3 19.5 19.9 5 1

matrixmult 301 7 0.04 4.1 5.8 6.0 5 0
quicksort 292 29 0.05 4.2 5.9 5.8 5 0

hedc 6,400 6 25.9 1.0 1.0 1.0 0 0
queue-jg 3,906 9 4.1 2.1 9.6 10.0 28 0
queue-mm 449 11 1.0 1.3 1.3 1.3 7 0

Table 1: Benchmark Programs.

that SingleTrack does not introduce much additional overhead over Velo-
drome, despite checking a more complex non-interference property.

The first ten programs in the table use various fork-join, barrier, and divide-
and-conquer idioms, and were designed to be deterministic. For these bench-
marks, all methods were specified as deterministic for SingleTrack and
atomic for Velodrome. Experiments using Velodrome produced 49 reports
of non-atomic methods. Further inspection revealed that these methods were
never intended to be atomic, however, since they involve multithreaded subcom-
putations. Thus, Velodrome is essentially enforcing the wrong non-interference
specification. Consequently, Velodrome provides no useful information about
the correctness of these methods. In contrast, SingleTrack eliminates all warn-
ings except those caused by two programming errors: raytracer has a known
race condition on a checksum field that causes nondeterminism, and sor contains
a barrier implementation that assumes operations on long values are atomic.
Fixing these two errors enables SingleTrack to verify that all ten programs
are deterministic.

The last three programs submit jobs to a work queue. As illustrated in Fig-
ure 2(b), concurrent worker threads introduce non-determinism. Velodrome
could verify only that the hedc tasks were atomic, but reported atomicity vi-
olations for the tasks in queue-jg and queue-mm. In contrast, SingleTrack
successfully verified that the tasks in all three of these benchmarks were deter-
ministic.

To summarize, SingleTrack can verify important non-interference prop-
erties for programs that are not supported by current checkers. This greatly
reduces the burden on the programmer by eliminating spurious warnings that
would otherwise have to be examined manually. In the programs studied, only
10% of the warnings reported by Velodrome reflect real interference errors,
whereas all of the SingleTrack warnings reflected real synchronization errors.

13

6 Related Work

Netzer and Miller [16] provide a good overview of various kinds of thread in-
ference errors in multithreaded programs. Much previous work has addressed
dynamically detecting race conditions, including via race detectors based on the
happens-before relation [4, 20, 5] as well as via extensions of Eraser’s lockset al-
gorithm [19], for example, to object-oriented languages [23] and for improved
precision or performance [3, 17]. Dynamic race detectors have also been devel-
oped for other settings, including for nested fork-join parallelism [15].

A variety of tools have been developed to detect atomicity violations, both
statically and dynamically. The Atomizer [8] uses Lipton’s theory of reduc-
tion [13] to check serializability. Wang and Stoller developed more precise commit-
node algorithms that address both conflict-atomicity (referred to as atomicity in
this paper) and view-atomicity [24].

The Cilk project investigated verifying determinism of entire multithreaded
applications, first addressing a more restricted fork-join concurrency structure [7]
and later extending that approach to more general locking idioms [2]. While
successful for deterministic Cilk applications, this approach does not support
applications (like hedc, queue-jg, and queue-mm) that are non-deterministic
but contain deterministic subcomputations.

Lightweight transactions (see e.g. [21, 11, 12, 22]) offer an interesting alter-
native to explicit concurrency control, and we believe that a combination or
synthesis of these two approaches may yield an attractive programming model.
In particular, language runtimes could implement determinism via techniques
similar to those used to implement transactions, combined with a deterministic
scheduler for threads inside transactions.

Static analyses for verifying atomicity include type systems [9, 18] as well as
techniques that look for cycles in the happens-before graph [6]. Compared to
dynamic techniques, static systems provide stronger soundness guarantees but
typically involve trade-offs between precision and scalability. An interesting topic
for future work is the development of static analyses that provide better support
for deterministically-parallel software.

7 Conclusions

Tools for identifying concurrency errors continue to grow in importance. To
be effective, they must be able to verify properties of complex software without
burdening the programmer with spurious warning messages. This work attempts
to achieve this goal by (1) introducing deterministic, a new non-interference
specification that generalizes atomic, and which provides better support for
deterministically-parallel software, and (2) by developing a new sound dynamic
analysis to identify deterministic specification violations. Experimental re-
sults demonstrate the our analysis provides a significant improvement over prior
checkers, particularly in terms of its ability to detect bugs and verify non-
interference properties for deterministically-parallel software. One avenue for
future work is to explore how to best design systems around this property.
This work was supported in part by NSF Grants 0341179, 0341387, 0644130, and 0707885.

14

References

1. Java Grande benchmark suite. http://www.javagrande.org, 2008.
2. G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting

data races in Cilk programs that use locks. In SPAA, 298–309, 1998.
3. J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridhara. Ef-

ficient and precise datarace detection for multithreaded object-oriented programs.
In PLDI, 258–269, 2002.

4. M. Christiaens and K. D. Bosschere. TRaDe: Data Race Detection for Java. In
International Conference on Computational Science, 761–770, 2001.

5. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and transaction-aware
Java runtime. In PLDI, 245–255, 2007.

6. A. Farzan and P. Madhusudan. Causal atomicity. In CAV, 315–328, 2006.
7. M. Feng and C. E. Leiserson. Efficient detection of determinacy races in Cilk

programs. In SPAA, 1–11, 1997.
8. C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for multi-

threaded programs. In POPL, 256–267, 2004.
9. C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static

checking and inference for Java. TOPLAS, 30(4):1–53, 2008.
10. C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and complete dynamic

atomicity checker for multithreaded programs. In PLDI, 2008.
11. T. Harris and K. Fraser. Language support for lightweight transactions. In OOP-

SLA, 388–402, 2003.
12. T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory

transactions. In PPOPP, 48–60, 2005.
13. R. J. Lipton. Reduction: A method of proving properties of parallel programs.

Communications of the ACM, 18(12):717–721, 1975.
14. F. Mattern. Virtual time and global states of distributed systems. In International

Workshop on Parallel and Distributed Algorithms. 1988.
15. J. Mellor-Crummey. On-the-fly detection of data races for programs with nested

fork-join parallelism. In Supercomputing, 24–33, 1991.
16. R. H. B. Netzer and B. P. Miller. What are race conditions? some issues and

formalizations. LOPLAS, 1:74–88, 1992.
17. E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection in mul-

tihreaded C++ programs. In PPOPP, 179–190, 2003.
18. A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Automated type-based

analysis of data races and atomicity. In PPOPP, 83–94, 2005.
19. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A

dynamic data race detector for multi-threaded programs. TOCS, 15(4):391–411,
1997.

20. E. Schonberg. On-the-fly detection of access anomalies. In PLDI, 285–297, 1989.
21. N. Shavit and D. Touitou. Software transactional memory. In PODC, 204–213,

1995.
22. J. Vitek, S. Jagannathan, A. Welc, and A. L. Hosking. A semantic framework for

designer transactions. In ESOP, 249–263, 2004.
23. C. von Praun and T. Gross. Object race detection. In OOPSLA, 70–82, 2001.
24. L. Wang and S. D. Stoller. Accurate and efficient runtime detection of atomicity

errors in concurrent programs. In PPOPP, 137–146, 2006.

15

