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Atomicity is a fundamental correctness property in multithreaded programs. A method is atomic

if, for every execution, there is an equivalent serial execution in which the actions of the method

are not interleaved with actions of other threads. Atomic methods are amenable to sequential

reasoning, which significantly facilitates subsequent analysis and verification.

This article presents a type system for specifying and verifying the atomicity of methods in

multithreaded Java programs using a synthesis of Lipton’s theory of reduction and type systems

for race detection. The type system supports guarded, write-guarded, and unguarded fields, as well

as thread-local data, parameterized classes and methods, and protected locks. We also present an

algorithm for verifying atomicity via type inference.

We have applied our type checker and type inference tools to a number of commonly used Java

library classes and programs. These tools were able to verify the vast majority of methods in these

benchmarks as atomic, indicating that atomicity is a widespread methodology for multithreaded

programming. In addition, reported atomicity violations revealed some subtle errors in the syn-

chronization disciplines of these programs.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and

Verifying and Reasoning about Programs; D.2.4 [Software Engineering]: Software/Program Ver-

ification—Reliability; D.3.2 [Programming Languages]: Language Classifications—Concurrent,
distributed, and parallel languages; D.3.1 [Programming Languages]: Formal Definitions and

Theory—Semantics, and syntax
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1. INTRODUCTION

Multiple threads of control are widely used in software development because
they help reduce latency, increase throughput, and provide better utilization of
multicore and multiprocessor machines. However, reasoning about the behavior
and correctness of multithreaded code is difficult, due to the need to consider all
possible interleavings of the executions of the various threads. Thus, methods
for specifying and controlling the interference between threads are crucial to
the cost-effective development of reliable multithreaded software.

Much previous work on controlling thread interference has focused on race
conditions. A race condition occurs when two threads simultaneously access
the same data variable, and at least one of the accesses is a write [Savage
et al. 1997]. In practice, race conditions are commonly avoided by protecting
each data structure with a lock [Birrell 1989]. This lock-based synchronization
discipline is supported by a variety of type systems [Flanagan and Freund 2000;
Flanagan and Abadi 1999b, 1999a; Abadi et al. 2006; Boyapati and Rinard 2001;
Boyapati et al. 2002; Grossman 2003] and other static [Sterling 1993; Flanagan
et al. 2002; Chamillard et al. 1996; Corbett 1996] and dynamic [Savage et al.
1997; Choi et al. 2002; von Praun and Gross 2003; O’Callahan and Choi 2003;
Pozniansky and Schuster 2003] analyses.

Unfortunately, the absence of race conditions is not sufficient to ensure the
absence of errors due to unexpected interference between threads. As a concrete
illustration of this limitation, consider the following bank account class:

class Account {
int balance = 0;
synchronized int read() { return balance; }
synchronized void set(int b) { balance = b; }
void deposit(int amt) {
int b = read();
set(b + amt);

}
}

This class does not suffer from race conditions, a property that can be verified
with existing tools such as rccjava [Abadi et al. 2006]. However, the method
deposit may still behave incorrectly due to interactions between concurrent
threads. In particular, if n calls to deposit(1) are interleaved, then the overall
effect may be to increase balance by any number between 1 and n.

Recent results have shown that subtle defects of a similar nature are com-
mon, even in well-tested libraries [Flanagan and Qadeer 2003b; Flanagan et al.
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2005]. Artho et al. [2003] report finding similar errors in NASA’s Remote Agent
spacecraft controller, and Burrows and Leino [2002] and von Praun and Gross
[2003] have detected comparable defects in Java applications.

This paper focuses on the stronger noninterference property of atomicity. A
method is atomic if any interaction between that method and other threads is
guaranteed to be benign, in the sense that these interactions do not change
the program’s overall behavior. That is, for any (arbitrarily interleaved) exe-
cution, there is a corresponding serial execution with equivalent behavior in
which the instructions of the atomic method are not interleaved with instruc-
tions from other threads. Thus, having verified the atomicity of a method, we
can subsequently specify and verify that method using standard sequential
reasoning techniques, even though the scheduler is free to interleave threads
at instruction-level granularity.

Atomicity corresponds to a natural programming methodology, essentially
dating back to Hoare’s monitors1 [Hoare 1974]. The Account methods above are
all intended to be atomic, as are many existing classes and library interfaces.
For example, the documentation for the class java.lang.StringBuffer in JDK
1.4.0 [JavaSoft 2005] states:

String buffers are safe for use by multiple threads. The methods
are synchronized where necessary so that all the operations on any
particular instance behave as if they occur in some serial order that
is consistent with the order of the method calls made by each of the
individual threads involved.

Atomicity provides a strong, indeed maximal, guarantee of noninterference
between threads. This guarantee reduces the challenging problem of reasoning
about an atomic method’s behavior in a multithreaded context to the simpler
problem of reasoning about the method’s sequential behavior. The latter prob-
lem is significantly more amenable to standard techniques such as manual code
inspection, dynamic testing, and static analysis.

We present a type system for specifying and checking atomicity properties
of methods in multithreaded programs. Any method can be annotated with the
keyword atomic. The type system checks that for any (arbitrarily interleaved)
execution, there is a corresponding execution with equivalent behavior in which
the instructions of each atomic method are executed serially.2 The type system
is a synthesis of our earlier type systems for race freedom [Flanagan and Abadi
1999a, 1999b; Flanagan and Freund 2004b; Abadi et al. 2006] and Lipton’s
theory of reduction [Lipton 1975]. It supports features such as parameterized
classes and methods, thread-local data, and conditional atomicities. The type
system relies on type annotations specifying

1Monitors are less general in that they rely on syntactic scope restrictions and do not support

dynamically allocated shared data.
2For simplicity, we assume a sequentially-consistent memory model throughout this paper. Al-

though we believe that our techniques extend to non-sequentially-consistent models, doing so would

add further complexity to our formal development. We discuss the issue of memory models further

in Section 8.3.
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(1) the protecting lock of every field in the program and

(2) the atomicity of every method.

Given such a specification, our analysis checks that the implementation of the
program conforms to it.

Expressing our atomicity analysis as a type system in this way offers several
key benefits. Type checking is modular and more scalable to large programs
than model-checking or whole-program analyses. Atomicity specifications also
serve as useful and verifiable documentation of a program’s synchronization
requirements. Moreover, the type system can be extended to uniformly handle
additional locking idioms, such as locks protecting other locks, as we illustrate
below.

We also present a type inference algorithm for inferring these annotations.
The Rcc/Sat subroutine, described in an earlier paper [Flanagan and Freund
2004b], infers the first class of annotations, those describing the protecting lock
of each field. Here, we focus on the second class and present an algorithm to
infer the most precise atomicity for each method. Our type inference algorithm
is essentially a constraint-based analysis, but it is quite subtle, since the type
system supports conditional atomicities that contain lock expressions, and thus
we have a form of dependent effects. For soundness, the values of expressions
embedded inside these conditional atomicities must not change during execu-
tion. Our constraint language includes special constructs to describe the well-
formedness requirements on dependent atomicities, and the solver refers to
judgments in the type system to enforce these requirements. Despite this com-
plex interaction between the type system and constraint solver, the constraints
can be solved with an iterative fixed-point algorithm.

We have implemented our type checking and type inference algorithms for
the full Java programming language [Gosling et al. 1996], and we have evalu-
ated this checker, named Bohr, on a variety of benchmarks totaling over 60,000
lines of code. The type inference algorithm is fast and works well in practice.
Although the type system is necessarily incomplete, it has proved sufficiently
expressive to accommodate the majority of synchronization patterns present
in our benchmark programs and to verify the atomicity of most nonerroneous
methods. These experimental results validate the hypothesis that atomicity is a
widely used programming discipline in multithreaded programs, and they show
that reported atomicity violations often reveal subtle errors in a program’s syn-
chronization discipline, including, for example, errors in the standard library
classes java.util.Vector and java.lang.StringBuffer.

The following section presents an informal introduction to type-based atom-
icity checking. Sections 3 and 4 then formalize that approach for a small,
multithreaded subset of Java. Sections 5 illustrates some atomicity violations
caught using this type system. We then turn our attention to type inference in
Section 6 and describe our inference tool for Java in Section 7. The results of
applying this tool to various benchmarks is summarized in Section 8. Section 9
describes related work, and we conclude with Section 10. The online appendix
available in the ACM Digital Library contains the full details of our formal
development, including correctness proofs.
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This article is based on work presented in preliminary form at conferences
and workshops [Flanagan and Qadeer 2003c, 2003b; Flanagan and Freund
2004b; Flanagan et al. 2005]. Some of that work focused on imperative calculi
(rather than Java) and consequently used variations of the atomicity analysis
presented here. This article presents the contributions of the earlier papers in
a unified framework that permits us to, for example, show that the type system
is sound and that type inference is sound and complete with respect to the type
system. We also discuss additional language features, simplify various aspects
of our previous work, and present the technical development in more detail.

2. AN OVERVIEW OF TYPES FOR ATOMICITY

As we have seen, although the notions of atomicity and race-freedom are closely
related, and both are commonly achieved using locks, race freedom is not suf-
ficient for ensuring atomicity.

We now present an overview of our type system for checking atomicity. We
allow any method to be annotated with keyword atomic, and use the theory of
right and left movers, first proposed by Lipton [1975], to prove the correctness
of atomicity annotations.

An action a is a right mover if for any execution where the action a performed
by one thread is immediately followed by an action b of a different thread, the
actions a and b can be swapped without changing the resulting state S3, as
shown in the following. Similarly, an action b is a left mover if whenever b
immediately follows an action a of a different thread, the actions a and b can
be swapped, again without changing the resulting state.

The type system classifies actions as left or right movers as follows. Consider
an execution in which an acquire operation on some lock is immediately followed
by an action b of a second thread. Since the lock is already held by the first
thread, the action b neither acquires nor releases the lock, and hence the acquire
operation can be moved to the right of b without changing the resulting state.
Thus the type system classifies each lock acquire operation as a right mover.

Similarly, consider an action a of one thread that is immediately followed by
a lock release operation by a second thread. During a, the second thread holds
the lock, and a can neither acquire nor release the lock. Hence the lock release
operation can be moved to the left of a without changing the resulting state,
and thus the type system classifies lock release operations as left movers.

Finally, consider an access (read or write) to a shared variable declared
with the guard annotation guarded by l . This annotation states that the lock
denoted by expression l must be held when the variable is accessed. Since our
type system enforces this access restriction, no two threads may access the field
at the same time, and therefore every access to the field is both a right mover
and a left mover.
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To illustrate how the theory of movers enables us to verify atomicity, consider
the following Java method:

synchronized void inc() {
int t = x;
x = t + 1;

}
This method (1) acquires the lock on this (the operation acq in the first ex-
ecution trace in the diagram below), (2) reads a variable x protected by that
lock into a local variable t (t=x), (3) updates that variable (x=t+1), and then
(4) releases the lock (rel). Suppose that the actions of this method are inter-
leaved with arbitrary actions X 1, X 2, and X 3 of other threads. Because the
acquire operation is a right mover and the write and release operations are left
movers, there exists an equivalent serial execution where the operations of the
method are not interleaved with operations of other threads, as illustrated by
the following commuting diagram. Thus the method is atomic.3

More generally, suppose a method contains a sequence of right movers fol-
lowed by a single atomic action followed by a sequence of left movers. Then an
execution where this method has been fully executed can be reduced to another
execution with the same resulting state here the method is executed serially
without any interleaved actions by other threads. Therefore, an atomic anno-
tation on such a method is valid.

3. ATOMICJAVA

We base our formal development on the language ATOMICJAVA, a multithreaded
subset of Java with a type system for atomicity. This type system extends our
previous atomicity type system [Flanagan and Qadeer 2003c, 2003b] to include
support for thread-local objects and parameterized classes and methods. We
previously explored these features in a type system for race freedom [Flanagan
and Freund 2000, 2004b]. For clarity, ATOMICJAVA also simplifies some aspects
of our earlier formal development by, for example, not supporting inheritance.
(Section 7 describes how our implementation handles inheritance and other
aspects of the full Java programming language.)

An ATOMICJAVA program is a sequence of class declarations together with an
initial expression. (See Figure 1.) Each class declaration associates a class name
with a body that consists of a sequence of field and method declarations. The
self-reference variable “this” is implicitly bound within the class body, so that it
can be referred to both within method bodies and within method and field types.

3In general, if a program is race-free and only acquires one lock at a time, all synchronized methods

would be atomic. However, these requirements are rarely satisfied, and a key benefit of our analysis

is that it can handle programs that do not satisfy them.
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Fig. 1. AtomicJava Syntax.

Each field declaration includes a guard g that specifies the synchronization
discipline for that field. The possible guards are:

—final: the field cannot be written after initialization;

—guarded by l : the lock denoted by the lock expression l must be held on all
accesses (reads or writes) of that field;

—write guarded by l : the lock denoted by the lock expression l must be held
on all writes of that field, but not for reads; and

—no guard: the field can be read or written at any time.

A lock expression is an expression that denotes some lock in the program. To
ensure soundness, lock expressions are well-formed only if they denote a fixed
lock throughout program execution, and so, for example, they cannot access
mutable fields.

The guard no guard describes fields on which there are intentional race con-
ditions. If all such fields are marked with the Java keyword volatile, then we
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believe that our type system applies to the Java memory model [Manson et al.
2005], even though it is not sequentially-consistent.

The language provides parameterized classes to allow the fields of a class to be
protected by some lock external to the class. A parameterized class declaration

class cn〈ghost x1..n〉 { . . . }
introduces a binding for the ghost variables x1 . . . xn, which can be referred to
from type annotations within the class body. The type cn〈l1 . . . ln〉 refers to an
instantiated version of cn, where each xi in the body is replaced by the lock
expression li.

The ATOMICJAVA language also supports parameterized methods. For example,
the declaration

a t m〈ghost x〉(cn〈x〉 y) { . . . }
defines a method m of return type t that is parameterized by a ghost lock x and
takes an argument of type cn〈x〉. A corresponding invocation e.m〈z〉(e′) must
supply a ghost argument z and an actual parameter e′ of type cn〈z〉.

Each method declaration includes a specification a of the method’s atomicity.
The language of atomicities includes the keyword atomic, as well as more pre-
cise characterizations of method behavior, as described in the following section.
Here, we just note that the atomicity a may refer to program variables in scope,
including this, the ghost parameters of the containing class, and the ghost and
normal parameters of the method itself.

The object allocation expression new y c(e∗) includes a sequence e∗ of expres-
sions used to initialize the object fields. For technical reasons, the new keyword
is subscripted by y , which is a ghost variable bound to the object being created
while evaluating the field initialization expressions. This enables the types of
the initialization expressions to refer to the new object. We omit this binding
from examples when it is not needed.

Other expressions in the language include field read and update, method
calls, variable binding and reference, conditionals, loops, and synchronized
blocks. We include basic types for both single-word ints and double-word longs.
Only reads and writes of the former are atomic. Reads and writes of object ref-
erences are also atomic.

As in Java, each object has an associated mutual exclusion lock that is ini-
tially unlocked. The expression sync l e is evaluated in a manner similar to
Java’s synchronized statement: the subexpression l is evaluated first, and
should yield an object whose lock is then acquired; the subexpression e is then
evaluated; and finally the lock is released. The result of e is returned as the re-
sult of the synchronized expression. Any other thread that attempts to acquire
the lock blocks until the lock is released. A forked thread does not inherit locks
held by its parent thread.

The expression e.fork starts a new thread (and always evaluates to 0). The
expression e should evaluate to an object that includes a method run taking a
single ghost parameter. The fork operation spawns a new thread that, concep-
tually, creates and acquires a new thread-local lock tll for instantiating the
ghost parameter to the method run. This lock is always held by the new thread
and may therefore be used by run to guard thread-local data, and it may be
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passed as a ghost parameter to other methods that access thread-local data.
Thus, ATOMICJAVA leverages parameterized methods to reason about thread-
local data. This approach replaces the escape analysis embedded in our earlier
type system [Flanagan and Freund 2000].

The expression assert-atomic e specifies that e should be serializable with
respect to the rest of the system. The ATOMICJAVA type system ensures that this
requirement is satisfied.

We present example programs in an extended language with additional in-
teger and boolean constants and operations. The sequential composition e1; e2

abbreviates let x = e1 in e2, where x does not occur free in e2, and the expres-
sion e[x := e′] denotes the capture-free substitution of e′ for x in e. We sometimes
enclose expressions in parentheses or braces for clarity and use return e to em-
phasize that the result of e is the return value of the current method.

4. TYPES FOR ATOMICITY

4.1 Basic Atomicities

Like conventional type systems, our type system assigns to each expression a
type characterizing the value of that expression. In addition, our type system
also assigns to each expression an atomicity characterizing the behavior [Talpin
and Jouvelot 1992], or effect [Lucassen and Gifford 1988], of that expression.
The set of atomicities includes the following basic atomicities:

—const: The atomicity const describes any expression whose evaluation does
not depend on or change any mutable state. Hence the repeated evaluation of
a const expression with a given environment always yields the same result.

—mover: The atomicity mover describes any expression that both left and right
commutes with operations of other threads. For example, an access to a field
f declared as guarded by l is a mover if the access is performed with the
lock l held. Clearly, this access cannot happen concurrently with another
access to f by a different thread if that thread also accesses f with the lock l
held. Therefore, this access both left and right commutes with any concurrent
operation by another thread.4

—atomic: The atomicity atomic describes any expression that is a single atomic
action, or that can be considered to execute without interleaved actions of
other threads.

—cmpd: The atomicity cmpd describes a compound expression for which none of
the preceding atomicities apply.

—error: The atomicity error describes any expression violating the locking
discipline specified by the type annotations.

If the basic atomicity b reflects the behavior of an expression e, then the
iterative closure b∗ reflects the behavior of executing e an arbitrary number of

4Since Java does not provide separate lock acquire and release operations, we do not need separate

left movers and right movers, since each expression is either a mover in both directions or not at

all.
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times. Similarly, if basic atomicities b1 and b2 reflect the behavior of e1 and e2

respectively, then the sequential composition b1; b2 reflects the behavior of e1; e2.
These iterative closure and sequential composition operations are defined as
follows:

b b∗

const const
mover mover
atomic cmpd
cmpd cmpd
error error

; const mover atomic cmpd error

const const mover atomic cmpd error
mover mover mover atomic cmpd error
atomic atomic atomic cmpd cmpd error
cmpd cmpd cmpd cmpd cmpd error
error error error error error error

Basic atomicities are ordered by the subatomicity relation:

const � mover � atomic � cmpd � error

Let � denote the join operator based on this subatomicity ordering. If basic
atomicities b1 and b2 reflect the behavior of e1 and e2 respectively, then the
nondeterministic choice between executing either e1 or e2 has atomicity b1 � b2.

4.2 Conditional Atomicities

In some cases, the atomicity of an expression depends on the locks held by the
thread evaluating that expression. For example, an access to a field declared
as guarded by l has atomicity mover if the lock l is held by the current thread,
and it has atomicity error otherwise. We assign such an access the conditional
atomicity:

l ? mover : error

A conditional atomicity l ? a1 : a2 is equivalent to atomicity a1 if the lock l is
currently held, and it is equivalent to atomicity a2 if the lock is not held. Con-
ditional atomicities provide a more precise characterization of the behavior of
synchronized statements and methods. The set of atomicities thus includes both
the basic atomicities described above and conditional atomicities:

b ::= const | mover | atomic | cmpd | error
a ::= b | l ? a1 : a2

Each atomicity a is equivalent to a function (|a|) from the set of currently held
locks ls to a basic atomicity:

(|b|)(ls) = b

(|l ? a1 : a2|)(ls) =
{

(|a1|)(ls) if l ∈ ls
(|a2|)(ls) if l 	∈ ls

For example, the conditional atomicity a:

l1 ? mover : (l2 ? atomic : error)

is equivalent to the function:

(|a|)(ls) =
⎧⎨
⎩
mover if l1 ∈ ls
atomic if l1 	∈ ls, l2 ∈ ls
error if l1 	∈ ls, l2 	∈ ls
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We extend the calculation of iterative closure, sequential composition, and
join operations to conditional atomicities as follows:

(l ? a1 : a2)∗ = l ? a∗
1 : a∗

2

(l ? a1 : a2); a = l ? (a1; a) : (a2; a)
a; (l ? a1 : a2) = l ? (a; a1) : (a; a2)

(l ? a1 : a2) � a = l ? (a1 � a) : (a2 � a)
a � (l ? a1 : a2) = l ? (a � a1) : (a � a2)

These operations on conditional atomicities are the point-wise extensions of the
corresponding operations on basic atomicities:

THEOREM 1. For all atomicities a1 and a2 and all locksets ls:

(|a∗
1|)(ls) = ((|a1|)(ls))∗

(|a1; a2|)(ls) = (|a1|)(ls); (|a2|)(ls)
(|a1 � a2|)(ls) = (|a1|)(ls) � (|a2|)(ls)

We also extend the subatomicity ordering to conditional atomicities. To decide
a1 
 a2, we use an auxiliary relation 
h

n, where h is a set of locks known to
be held by the current thread, and n is a set of locks known not to be held
by the current thread. Intuitively, the condition a1 
h

n a2 holds if and only if
(|a1|)(ls) 
 (|a2|)(ls) holds for every lockset ls that contains h and is disjoint from
n. We define a1 
 a2 to be a1 
∅

∅ a2 and check a1 
h
n a2 recursively as follows:

b1 
 b2

b1 
h
n b2

l 	∈ n ⇒ a1 
h∪{l }
n a

l 	∈ h ⇒ a2 
h
n∪{l } a

l ? a1 : a2 
h
n a

l 	∈ n ⇒ b 
h∪{l }
n a1

l 	∈ h ⇒ b 
h
n∪{l } a2

b 
h
n l ? a1 : a2

The subatomicity ordering on conditional atomicities is the point-wise ex-
tension of the ordering on basic atomicities:

THEOREM 2. For all atomicities a1 and a2:

a1 
 a2 ⇔ ∀ls. (|a1|)(ls) 
 (|a2|)(ls)

Atomicities a1 and a2 are equivalent, written a1 ≡ a2, if a1 
 a2 and a2 
 a1.
If a1 ≡ a2, then ∀ls. (|a1|)(ls) = (|a2|)(ls). The equivalence relation ≡ identifies
atomicities that are syntactically different but semantically equal. For example,
(l ? mover : mover) ≡ mover.

The following theorem states a number of useful ordering and equivalence
properties for atomicities.
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THEOREM 3. For all atomicities a, a1, a2, and a3:

(1) Iterative closure is monotonic and idempotent.
a 
 a∗

(a∗)∗ ≡ a∗

(2) Sequential composition is monotonic and associative and has const as a left
and right identity.

a1 
 a1; a2

a2 
 a1; a2

(a1; a2); a3 ≡ a1; (a2; a3)
const; a ≡ a
a; const ≡ a

(3) Sequential composition and iterative closure distribute over the join
operation.

a1; (a2 � a3) ≡ a1; a2 � a1; a3

(a1 � a2); a3 ≡ a1; a3 � a2; a3

(a1 � a2)∗ ≡ a∗
1 � a∗

2

4.3 List Example

To illustrate how atomicities capture the behavior of code fragments, consider
the class List of Figure 2, which implements a linked list of ListElems. The
extra type annotations are underlined.

The class ListElem is parameterized by a lock x, which protects the num
and next fields, as indicated by the guarded by x annotations. The method
ListElem.get has conditional atomicity (x ? mover : error), which states that if
the lock x is not held, then a call to get has atomicity error, because the call
violates the program’s synchronization discipline. If the lock x is held, then the
method get is a mover, and its execution commutes with actions of concurrent
threads.

The class List contains an elems field whose type is ListElem〈this〉, indicat-
ing that the implicit lock of the List object protects its ListElems. The method
List.get consists of (1) a right mover (the lock acquire), (2) a both mover (the
read of this.elems), (3) a second both mover (the call to ListElem.get with the
lock held), and (4) a left mover (the lock release). Hence List.get is at most
atomic. However, if the lock this is already held, the re-entrant locking op-
erations are both movers, and so List.get is then a mover. Our type checker
verifies that List.get satisfies the precise atomicity (this ? mover : atomic), and
similarly for List.add.

The method List.addPair contains two nested calls to this.add and thus
has atomicity:

(this ? mover : atomic); (this ? mover : atomic) = this ? mover : cmpd

This inferred atomicity (this ? mover : cmpd) is inconsistent with the annotation
declaring List.addPair as atomic, and the type checker reports an atomicity vi-
olation on this method. Note that, if the lock this is not held, the atomicity cmpd
means that interleaved actions of concurrent threads may affect the behavior
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Fig. 2. Class List with locking and atomicity annotations.

and correctness of addPair (even though there are no race-conditions). In par-
ticular, if a concurrent thread also adds entries to the list, then addPair will not
achieve its intended behavior of adding its arguments to the list consecutively.

4.4 Type Rules

The ATOMICJAVA type system ensures that all locking and atomicity spec-
ifications in a program are correct and that all expressions of the form
assert-atomic e are serializable.

The core of the type system is a set of rules for reasoning about the judgment:

P ; E � e : t · a

Here, t is the type inferred for the expression e, and a is the atomicity generated
for e. The program P is included to provide access to class declarations, and E
is an environment providing types for the free regular and ghost variables of
the expression e:

E ::= ε | E, t x | E, ghost x

The complete set of type rules for expressions appears in Figures 3 and 4. Type
rules for various supporting judgments are shown in Figure 5. These judgments
check the well-formedness of various entities, including: environments (via the
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Fig. 3. AtomicJava type rules (I).

judgment P � E), types (P ; E � t), atomicities (P ; E � a), field declarations
(P ; E � field), method declarations (P ; E � meth), class declarations (P �
defn), and programs (P � wf). The judgment P ; E �lock e checks that e is a well-
formed lock expression with respect to the given program and environment.

We briefly describe some of the more important rules defining these various
judgments.

[EXP VAR] A variable access has const atomicity, since all variables are im-
mutable in ATOMICJAVA. This rule retrieves the variable’s type from the envi-
ronment, after checking that that environment is well-formed.

[EXP IF] The atomicity of a conditional expression is the atomicity of the test
subexpression, sequentially composed with the join of the atomicities of the
then and else branches.

[EXP LET] This rule for let x = e1 in e2 infers atomicity expressions a1 and a2

for e1 and e2, respectively. Since the atomicity expression a2 may refer to
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Fig. 4. AtomicJava type rules (II).

the let-bound variable x, we apply the substitution θ = [x := e1] to yield a
corresponding atomicity θ (a2) that does not mention x.
However, e1 may not have atomicity const, in which case θ (a2) may not be
a valid atomicity (because it could contain e1 as part of a nonconstant lock
expression). Therefore, we use the judgment P ; E � θ (a2) ↑ a′

2 to lift the
atomicity θ (a2) to some well-formed atomicity a′

2 that is greater than or equal
to θ (a2). This lifting judgment is defined by the following rules from Figure 5:
[LIFT BASE] Basic atomicities are always well-formed and remain unchanged

when lifted.
[LIFT LOCK WELL-FORMED] If a conditional atomicity refers to a well-formed lock,

this rule recursively lifts the two component atomicities.
[LIFT LOCK ILL-FORMED] If a conditional atomicity refers to an ill-formed lock,

this rule removes the dependency on this lock by joining together the two
recursively lifted component atomicities.

[EXP REF] The rule for a field read e.fd first checks that e is of some type cn〈l1..n〉,
and that cn is a class parameterized by ghost variables x1..n that declares
a field fd of some type t. The type t may refer to the variables this and
x1..n, which are not in scope at the field access, and so the substitution θ

replaces them with the corresponding expressions e and l1..n. The type rule
also ensures that θ (t) is a well-formed type, and then performs a case analysis
on the field’s guard:
—If the field is final, then the read operation has atomicity const, since

there can be no concurrent writes.
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Fig. 5. AtomicJava type rules (III).

—If the field is no guard, then the read operation has atomicity B(t), where
the function B(t) yields the atomicity of a single unprotected read or write
to a field of type t:

B(int) = atomic
B(long) = cmpd

B(c) = atomic

As in Java, integers and object references may be accessed atomically, but
accesses to double-word longs have atomicity cmpd.
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—If the field is guarded by l , then the lock θ (l ) must be held and the read
operation has atomicity mover.

—If the field is write guarded by l , then the read operation has atomicity
mover if the lock θ (l ) is held, and it has atomicity B(t) if the lock is not
held.

As in rule [EXP LET], we ensure that the resulting atomicity is well-formed in
E using the atomicity lifting judgment.

[EXP ASSIGN] The rule for field update is similar to the rule for field reads, with
two notable differences. A write to a final field is assigned the atomicity error,
indicating an error. A write to a write-guarded field when the appropriate lock
is not held is also an error. Otherwise, such a write is assigned the atomicity
B(t) since it could occur concurrently with reads from other threads.

[EXP SYNC] The rule for the synchronized statement sync l e checks that l has
atomicity const, and so always denotes the same lock. The rule then yields
the atomicity expression S(l , a), where a is the atomicity of e.
The function S, which we will define in the following, determines the atom-
icity of the synchronized statement. For example, if the body is a mover and
the lock is already held, then the synchronized statement is also a mover,
since the acquire and release operations are no-ops. If the body is a mover
and the lock is not already held, then the synchronized statement is atomic,
since the execution consists of a right mover (the acquire), followed by a
both mover (the body), followed by a left mover (the release). If the body has
conditional atomicity l ? a1 : a2, then, since l is held within the synchronized
body, we ignore a2 and recursively apply S to a1. If the body has some other
conditional atomicity, then we recursively apply S to both branches.

S(l , const) = l ? const : atomic
S(l , mover) = l ? mover : atomic

S(l , atomic) = atomic
S(l , cmpd) = cmpd

S(l , error) = error
S(l , (l ? a1 : a2)) = S(l , a1)
S(l , (l ′ ? a1 : a2)) = l ′ ? S(l , a1) : S(l , a2) if l 	= l ′

[EXP NEW] The rule [EXP NEW] for an object creation expression new y cn〈l1..n〉(e1..k)
first retrieves the corresponding class declaration

class cn〈ghost x1..n〉 { field1..k meth1..m }
from P . The substitution θ = [x j := l j

j∈1..n, this := y] replaces the ghost
parameters x1..n with the actual arguments l1..n, and replaces occurrences
of the self reference this with y . In effect, this rule uses the name y as a
placeholder for the object that is about to be constructed. The rule checks
that each expression ei has the appropriate type θ (ti), where ti is the type
of fieldi, since in ATOMICJAVA the arguments ei are used to directly initialize
these fields.

[EXP INVOKE] The rule [EXP INVOKE] for a method invocation expression
e.md〈l ′

1..k〉(e1..d) is similar to field access, but it is slightly more complex
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due to the presence of both regular and ghost method parameters. The rule
checks that e has some type cn〈l1..n〉 and that cn includes a matching method
declaration

a′ t md〈ghost y1..k〉(t j z j∈1..r
j ) { e′ }

The rule then constructs the substitution

θ = [this := e, xi := li
i∈1..n, yi := l ′

i
i∈1..k , zi := ei

i∈1..r ]

which substitutes
—the receiver’s name e for this;
—the lock expressions l1..n for the class’ ghost parameters x1..n;
—the lock expression arguments l ′

1..k for the method’s ghost parameters y1..k ;
and

—the method arguments e1..r for the method’s formal parameters z1..r .
Each method argument e j must have type θ (t j ), and the return type θ (t) must
be well-formed. The atomicity of the call is the atomicity of each argument
sequentially composed with the atomicity a′ of the invoked method.

[EXP FORK] The expression e.fork creates a new thread. As such, e must be an
object supporting an appropriate run method that expects a single ghost pa-
rameter tll for the thread-local lock. The newly spawned thread must not
violate the program’s locking discipline. Since the new thread implicitly ac-
quires the thread-local lock tll before executing run, requiring the run to
have atomicity at most tll ? cmpd : error is sufficient to ensure this.
The fork operation is itself an atomic operation, making the atomicity of
e.fork be a; atomic, where a is the atomicity of e.

[EXP ASSERT] The rule for assert-atomic e ensures that the atomicity a of the
expression e is at most atomic. However, we cannot simply check that
a 
 atomic, since we must also consider what locks will be held when e
is evaluated.
Instead, we enforce the requirement that the atomicity of e is never cmpd, by
replacing all occurrences of cmpd in a with error using the function R(a):

R(cmpd) = error
R(b) = b if b 	= cmpd

R(l ′ ? a1 : a2) = l ? R(a1) : R(a2)

To motivate how this rule enforces atomicity, suppose a = l ? mover : cmpd.
Then R(a) is l ? mover : error, which requires that the lock l is held whenever
e is evaluated, or else e would exhibit non-atomic behavior.

[LOCK GHOST] and [LOCK EXP] The judgment P ; E �lock l checks that l is a well-
formed lock expression in environment E. The lock expression l can be either
a ghost variable or a program expression e. In the latter case, e must denote
a fixed lock throughout the execution of the program to ensure soundness.
Thus, we require that e has atomicity const.
In addition, each lock expression e has a size |e|, which is the number of field
accesses it contains. To ensure termination of the type inference algorithm
presented in the second half of this article, we require that the size of each
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lock expression is bounded by the constant MaxLockSize. The size restriction
poses no limitation in practice, because lock relationships are never complex
enough to be problematic, even with a relatively small MaxLockSize.5

[PROG] This rule defines the top-level judgment P � wf stating that P is a well-
formed program, based on the following additional predicates. (See Flatt et al.
[1998] for their precise definition.)
—ClassOnce(P ): no class is declared twice in P .
—FieldsOnce(P ): no field name is declared twice in a class.
—MethodsOncePerClass(P ): no method name is declared twice in a class.
This rule guarantees that the locking discipline for the program is followed
by asserting that the atomicity of the main thread is at most cmpd.

We prove the type system is sound in the online appendix available on
the ACM Digital Library and show that all code blocks appearing inside
assert-atomic blocks are serializable.

5. EXAMPLES

This section describes our initial experience with the ATOMICJAVA type system.
Our prototype checker, Bohr, extends the type system outlined so far to handle
the additional features of the full Java programming language, including in-
heritance, interfaces, subtyping constructors, static fields and methods, inner
classes, and so on, as discussed in Section 7. The extra type and atomicity an-
notations required by the type checker are embedded in special Java comments
that start with the character #, thus preserving compatibility with existing
Java compilers and other tools. If a method body’s atomicity does not match the
declared atomicity of the method, an appropriate error message is produced.
Bohr allows class declarations to be annotated as atomic to indicate that all
methods in the class should be atomic.

In practice, programs use a variety of synchronization mechanisms, not all
of which can be captured by our type rules. Bohr is able to relax the formal type
system in several ways when it proves too restrictive:

—the no warn annotation turns off certain kinds of warnings on a particular
line of code, such as when a particular race condition is considered benign.

—the holds annotation permits the checker to assume that a particular lock
is held from the current program point to the end of the current statement
block.

—the command line flag “-constructor holds lock” causes the checker to as-
sume that the lock this is held in constructors. This assumption is sound as
long as references to this do not escape to other threads before the construc-
tor returns. This assumption eliminates a large number of spurious warnings
and is valid for the benchmark programs examined, but may be violated by
other classes, including some in the standard Java libraries [Stoller 2006].
We believe this command line flag could be replaced with a sound escape

5Setting MaxLockSize to be the size of the program is sufficient for any fully-annotated program,

but setting it to be 4 or 6 has been sufficient for all the programs examined to date.
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Table I. Manually Annotated Classes

Annotations per KLOC

Class LOC Total Guard Atomicity Escapes

java.lang.String 2,307 3.0 1.3 1.3 0.4

java.util.StringBuffer 1,276 7.8 2.3 5.5 0

java.util.Vector 1,021 16.6 7.8 4.9 3.9

java.util.zip.Inflater 319 18.8 15.7 3.1 0

java.util.zip.Deflater 384 23.4 20.8 2.6 0

java.io.PrintWriter 738 48.8 4.1 39.3 5.4

java.net.URL 1,189 29.4 13.5 10.9 5.0

java.lang.String (1.4.0) 2,351 3.0 1.3 1.3 0.4

java.net.URL (1.4.0) 1,231 27.6 13.0 9.7 4.9

analysis [Choi et al. 1999; Salcianu and Rinard 2001] without significant
reduction in the expressiveness of the system.

We used Bohr to check a number of standard Java library classes that are
intended to be atomic. These classes are listed in Table I and include the JDK
1.4.2 versions of StringBuffer, String, PrintWriter, Vector, URL, Inflator, and
Deflator. We also include the 1.4.0 versions of String and URL, which contained
atomicity errors that were previously identified by our type system [Flanagan
and Qadeer 2003b] but fixed prior to the 1.4.2 release. We used the command
line flag -constructor holds lock. The atomicity checker checked each class
in under a second and succeeded in detecting a number of subtle atomicity
violations, including errors that would not be caught by a race condition checker:

java.util.StringBuffer. This class provides an excellent example of the bene-
fits of our type system, since its documentation clearly states that all String-
Buffermethods should be atomic. The StringBuffer implementation uses lock-
based synchronization to achieve this atomicity guarantee, and we formalized
this synchronization discipline using guarded by annotations. The following
method append(StringBuffer sb) then failed to type check:

public final class StringBuffer ... {
...
private int count /*# guarded by this */;

/*# atomic */ public synchronized int length() {
return count;

}
/*# atomic */ public synchronized void getChars(...) { ... }

// does not type check:
/*# atomic */
public synchronized StringBuffer append(StringBuffer sb) {
if (sb == null) { sb = NULL; }
int len = sb.length(); // len may become stale
int newcount = count + len;
if (newcount > value.length) expandCapacity(newcount);
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sb.getChars(0, len, value, count); // use of stale len
count = newcount;
return this;

}
}

An examination of the method reveals that it violates its atomicity speci-
fication. In particular, after append(StringBuffer sb) calls the synchronized
method sb.length(), a second thread could remove characters from sb. In this
situation, len is now stale [Burrows and Leino 2002] and no longer reflects the
current length of sb, and so sb.getChars(...) is called with invalid arguments
and throws a StringIndexOutOfBoundsException. The following test harness
triggers this crash.

public class StringBufferTest extends Thread {
static StringBuffer sb = new StringBuffer("abc");

public void run() {
while(true) { sb.delete(0,3); sb.append("abc"); }

}

public static void main(String[] argv) {
(new StringBufferTest()).start();
while(true) (new StringBuffer()).append(sb);

}
}

Our type system identifies this error because the method calls to sb.length()
and sb.getChars(...) are both specified to have atomicity atomic, making the
overall atomicity be cmpd.

java.lang.String. This class (from JDK 1.4.0) contains a method
contentEquals that suffers from a similar defect: a property is checked in one
synchronized block and assumed to still hold in a subsequent synchronized
block, resulting in a potential ArrayIndexOutOfBoundsException.

public boolean contentEquals(StringBuffer sb) {
if (count != sb.length()) return false;
// under a sequential execution count == sb.length()
// but concurrent threads may change that property
...
char v2[] = sb.getValue();
// subsequent code wrongly assumes v2.length==count
// and may throw an ArrayIndexOutOfBoundsException
...

}
This defect was fixed in the 1.4.2 release by having
contentEquals(StringBuffer sb) acquire the lock on sb for the duration
of the method call.
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The method String.hashCode() in both tested JDK releases is also not
atomic because it caches the hashcode for the String object in an unprotected
field. However, this can only result in redundant hash recomputations and not
erroneous behavior, and we suppressed the warning with a no warn annotation.
Analysis techniques that abstract away benign atomicity violations [Flanagan
et al. 2005] can eliminate some spurious warnings like this one.

java.util.Vector. The class java.util.Vector illustrates the need for condi-
tional atomicities. The synchronized method removeElement calls the methods
indexOf followed by removeElementAt. To verify that removeElement is atomic,
we need to know that removeElementAt behaves as a mover when called with the
vector’s lock held. Thus, we declare removeElementAt as having the conditional
atomicity this ? mover : atomic (and similarly for indexOf). These conditional
atomicities enable us to conclude that removeElement has the conditional atom-
icity this ? mover : atomic, which guarantees that its behavior will always be
atomic, regardless of which locks are held when it is invoked.

public class Vector ... {

/*# this ? mover : atomic */
public void synchronized removeElementAt(int index) { ... }

/*# this ? mover : atomic */
public int indexOf(Object elem) { ... }
...
/*# this ? mover : atomic */
public synchronized boolean removeElement(Object obj) {
...
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;

}
return false;

}

}
Given this specification, the type system assigns the atomicity

this ? mover : atomic to both the call to indexOf and the call to removeElementAt
in the body of removeElement, making the atomicity of the entire method
body be this ? mover : cmpd. Since removeElement is synchronized, the overall
atomicity for the method is S(this, this ? mover : cmpd) = this ? mover : atomic.

Bohr also found three errors in the class Vector, one of which is shown below.
This error was independently detected by Wang and Stoller [2006].

interface Collection {
/*# this ? mover : atomic */ int size();
/*# this ? mover : atomic */ Object[] toArray(Object a[]);

}
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class Vector ... {
Object elementData[] /*# guarded by this */;
int elementCount /*# guarded by this */;

// does not type check:
/*# atomic */ Vector(Collection c) {
elementCount = c.size();
elementData = new Object[Math.min((elementCount*110L)/100,

Integer.MAX VALUE)];
c.toArray(elementData);

}
...

}

For simplicity, we annotated Collection under the assumption that Collection
objects are internally synchronized, as is the case for Hashtable and Vector.6

The Vector constructor should set elementCount to the size of its argument c
and copy the contents of c into the newly-created array elementData. However,
since the lock c is not held between the calls to c.size() and c.toArray(...),
another thread could concurrently modify c, resulting either in an improperly
initialized Vector or an ArrayIndexOutOfBounds exception.

The type system identifies this error because it assigns the atomicity
(c ? mover : atomic) to both the call to c.size() and the call to c.toArray(...)
in the body of removeElement, making the atomicity of the entire method
body be c ? mover : cmpd. The specification for the constructor is violated be-
cause (c ? mover : cmpd) 	
 atomic. The methods Vector.removeAll(c) and
Vector.retainAll(c) exhibit similar defects.

java.util.PrintWriter. Type checking java.io.PrintWriter raised interesting
issues concerning rep-exposure, which occurs when a component of an abstrac-
tion leaks outside of that abstraction’s implementation [Detlefs et al. 1998].

The superclass of PrintWriter is the abstract class Writer, which includes
methods for writing a single character or a String to a stream. These two
methods are made atomic by synchronizing on the lock stored in the instance
variable lock. The default value for the lock is the self reference.

public abstract class Writer {
// The object used to synchronize operations on this stream.
protected Object lock;

Writer() { this.lock = this; }

/*# lock ? mover : atomic */

6The Java library does contain subtypes of Collection that require external synchronization, such

as LinkedList and HashMap. Permitting both internally and externally synchronized subtypes of

Collection requires several extensions to the type system, as described in Sections 7.2 and 7.4.

The simpler annotations above are sufficient to illustrate the potential error.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.



20:24 • C. Flanagan et al.

public void write(int ch) { ... }

/*# lock ? mover : atomic */
public void write(String str) { ... }

...
}

Each PrintWriter object contains a reference out to an underlying Writer
object and provides methods for printing a variety of data types to that Writer.
For example, the method print(int x) prints an integer; println() prints a
new line character; and println(int x) prints an integer followed by a new line
character. The code below shows a simplified implementation of these features.

// Does not type check!
public class PrintWriter extends Writer {

protected Writer out;

public PrintWriter(Writer out) { super(); this.out = out; }

public void print(int x) {
synchronized (lock) {
out.write(Integer.toString(x));

}
}

public void println() {
synchronized (lock) {
out.write(lineSeparator);

}
}

public void println(int x) {
synchronized (lock) {
print(x);
println();

}
}

}
The three methods print(int x), println(), and println(int x) all synchro-
nize on the lock lock inherited from the superclass Writer, and so one might
expect these methods to be atomic. However, the methods do not synchronize
on the lock out.lock of the underlying Writer. Hence, some other thread could
concurrently write characters to the underlying Writer without acquiring the
protecting lock used by the PrintWriter. For example, if the PrintWriter puses
w as the underlying Writer, two threads could concurrently call p.println(3)
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and w.write("hello"), causing the output “hello” to be incorrectly printed be-
tween “3” and the new line.

To deal with this problem, we declared println and 9 similar methods in
PrintWriter as cmpd and the remaining 17 public methods as atomic. We then
succeeded in type checking PrintWriter without warnings.

An alternative would be to annotate the print(int x) and println() meth-
ods with the atomicity

out.lock ? (lock ? mover : atomic) : atomic

and the println(int x) method with the atomicity

out.lock ? (lock ? mover : atomic) : cmpd

While somewhat complex, this specification does clearly reflect the undesirable
requirement that clients of a PrintWriter must perform locking on the underly-
ing writer to ensure atomicity if the writer is shared among threads. However,
it does come at the expense of exposing the underlying representation of the
PrintWriter to the client. One could also ensure that uses of a PrintWriter are
atomic by employing an ownership type system [Boyapati et al. 2002; Boyapati
and Rinard 2001] or escape analysis [Choi et al. 1999; Salcianu and Rinard
2001] to reason about rep-exposure and whether the underlying out writer is
shared among threads.

java.net.URL. The synchronization discipline used by java.net.URL is fairly
involved, and the atomicity checker reported a number of race conditions on
both versions 1.4.0 and 1.4.2. We have not yet determined if these warnings
reflect real errors in the program or benign race conditions. Instead, we added
no warn annotations to instruct the checker to ignore the problematic field ac-
cesses. We did find one particularly suspicious code fragment with our tool in
the 1.4.0 version. In particular, the following method can be simultaneously
called from multiple threads, resulting in multiple initializations of the field
specifyHandlerPerm:

private static NetPermission specifyHandlerPerm;

private void checkSpecifyHandler(SecurityManager sm) {
if (specifyHandlerPerm == null)
specifyHandlerPerm =

new NetPermission("specifyStreamHandler");
sm.checkPermission(specifyHandlerPerm);

}
The type system identifies this error because there is no protecting lock for

specifyHandlerPerm, and each access to that variable is therefore assigned the
atomicity atomic. Any method that accesses the variable multiple times will be
given the atomicity cmpd.

6. TYPE INFERENCE FOR ATOMICITY

Our type checker provides fairly promising results, but it does require the pro-
grammer to fully annotate the code. Table I shows the number of annotations
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per thousand lines of code for the classes discussed in the previous section. The
table also breaks the annotations down by type: guard annotations (guarded by
and write guarded by), atomicity annotations, and escapes (holds, no warn).
On average, roughly 20 annotations per thousand lines were required. The
time necessary to understand the code and add these annotations significantly
increases the cost of using this type system on large programs.

To address this shortcoming, we now develop a type inference algorithm for
atomicity. Our inference algorithm proceeds in two phases. The first phase in-
fers which locks (if any) protect each field. This task is accomplished using the
Rcc/Sat subroutine, which is described in an earlier paper [Flanagan and Fre-
und 2004b]. Essentially, this part of the type inference problem is NP-complete,
and Rcc/Sat works via reduction to propositional satisfiability.

We focus here on the second type inference phase, which infers the most pre-
cise atomicity for each method, using a constraint-based analysis. This phase
is quite subtle, since the type system supports conditional atomicities that con-
tain lock expressions whose values must not change during execution. Our con-
straint language includes special constructs to describe such well-formedness
requirements on conditional atomicities, and the constraint solver refers to
judgments in the type system to enforce these requirements. Once this interac-
tion between the type system and constraint solver is properly structured, the
constraints can be solved with an iterative fixed-point algorithm.

6.1 Language Extensions for Type Inference

To support type inference, we extend atomicities to include atomicity variables
α. An open atomicity s is either an (explicit) atomicity a or an atomicity variable
α.

b ::= const | mover | atomic | cmpd | error (basic atomicities)
a ::= b | l ? a1 : a2 (atomicities)
s ::= a | α (open atomicities)
α ∈ AtomVar (atomicity variables)

We permit methods to be annotated by atomicity variables as well as explicit
atomicities:

meth ::= s t md〈ghost x1..n〉(arg∗) { e }
An ATOMICJAVA program is explicitly-typed if it does not contain atomicity vari-
ables. The type inference problem is, given a program P with atomicity vari-
ables, to replace each atomicity variable with an atomicity so that the resulting
explicitly-typed program is well-typed.

We illustrate the type inference process using the unannotated version of the
List class from Section 4.3 shown in Figure 6(a). Figure 6(b) shows the program
after inferring the guarded by clauses and class parameters with Rcc/Sat and
after inserting the atomicity variables α1, . . . , α4.

Our type inference rules perform a syntax-directed traversal of the program
with atomicity variables to generate a collection of constraints over those vari-
ables. A subsequent constraint-solving phase then finds the most precise (mini-
mal) solution to these constraints or determines that no solution exists, in which
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Fig. 6. The example class List and inferred locking and atomicity annotations.

case type inference fails. The following subsections describe the constraint lan-
guage, the type inference rules that generate constraints, and our constraint
solving algorithm.

6.2 Atomicity Constraints

A constraint C is a subatomicity constraint between an atomicity expression d
and an open atomicity s:

C ::= d �� s

Atomicity expressions include open atomicities as well as constructs for repre-
senting various operations on atomicities, such as sequential composition, join,
iteration, and substitution.

d ::= s | d ;; d | d���d | d∗ | l ??? d : d (atomicity expressions)
| d · θ | S(l , d ) | R(d ) | lift(P, E, d )

We use bold symbols such as “��” and “;;” to distinguish the syntactic constructs
relating atomicity expressions from the corresponding semantic operations “
”
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and “;” on atomicities. The expression forms for sequential composition (d ;; d ),
join (d���d ), iterative closure (d∗), conditional atomicities (l ??? d : d ), synchroniza-
tion (S(l , d )), and assertion (R(d )) are analogous to the underlying operations
on atomicities. We discuss the atomicity expression forms for delayed substitu-
tion (d · θ ) and lifting (lift(P, E, d )) where they are used in the following.

An atomicity expression is closed if it does not contain atomicity variables.
The meaning function [[·]] maps closed atomicity expressions to atomicities:

[[·]] : ClosedAtomExpr → Atomicity

[[a]] = a
[[d1;; d2]] = [[d1]]; [[d2]]
[[d1���d2]] = [[d1]] � [[d2]]

[[d∗]] = [[d ]]
[[l ??? d1 : d2]] = l ? [[d1]] : [[d2]]

[[d · θ ]] = θ ([[d ]])

[[S(l , d )]] = S(l , [[d ]])
[[R(d )]] = R([[d ]])

[[lift(P, E, d )]] = a such that P ; E � [[d ]] ↑ a

6.3 Assignments

An assignment A maps atomicity variables to atomicities:

A : AtomVar → Atomicity

The ordering relation for assignments is the point-wise extension of the sub-
atomicity relation:

A1 
 A2 iff ∀α. A1(α) 
 A2(α)

⊥ def= λα. const

We extend assignments in a compatible manner to arbitrary atomicity expres-
sions:

A(a) = a
A(d1;; d2) = A(d1);; A(d2)
A(d1���d2) = A(d1)���A(d2)

A(d∗) = A(d )∗
A(d · θ ) = A(d )· θ

A(l ??? d1 : d2) = l ??? A(d1) : A(d2)

A(S(l , d )) = S(l , A(d ))
A(R(d )) = R(A(d ))

A(lift(P, E, d )) = lift(A(P ), E, A(d ))

We also extend assignments to programs, so that the program A(P ) is identical
to P , except that each atomicity variable α is replaced with its meaning A(α).

An assignment A satisfies a constraint C = d �� s (written A |= C) if, after
applying the assignment, the meaning of the left-hand side of the constraint is
a subatomicity of the right-hand side:

A |= d �� s iff [[A(d )]] 
 A(s)

If A |= C for all C ∈ C̄ then A is a solution for C̄, written A |= C̄. A set of
constraints C̄ is valid, written |= C̄, if every assignment is a solution for C̄. In
particular, if A is a solution for C̄, then A(C̄) is valid, and vice-versa.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.



Types for Atomicity: Static Checking and Inference for Java • 20:29

Fig. 7. AtomicJava type inference rules (I).

6.4 Type Inference Rules

The ATOMICJAVA type inference judgments and rules are shown in Figures 7–9.
Mostly, these judgments extend the type checking judgments of Figures 3–5
to also generate atomicity constraints. For example, the main type inference
judgment:

P ; E � e : t · d · C̄

now yields a set of constraints C̄ generated from type checking e with respect to
program P and environment E. We highlight the most interesting extensions:

[INF EXP SYNC] The atomicity of a synchronized expression sync l e is S(l , d ),
where d is the atomicity of e. Recall that the semantics of S(l , d ) is defined
in terms of the function S, that is, [[S(l , d )]] = S(l , [[d ]]).

[INF EXP LET] This rule for let x = e1 in e2 infers atomicity expressions d1 and
d2 for e1 and e2, respectively. Since d2 may mention x, we introduce the
substitution θ = [x := e1] as in the earlier type checking rule [EXP LET], but
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Fig. 8. AtomicJava type inference rules (II).

here we need to use the atomicity expression form d2· θ to delay applying this
substitution until after atomicity variables are resolved. (A similar delayed
substitution occurs in [INF EXP INVOKE].)
Furthermore, e1 may not be const (in general, we cannot determine which ex-
pressions are const until after type inference), in which case d2· θ may not be
a valid atomicity. Therefore, we use the atomicity expression lift(P, E, d2· θ )
to yield an atomicity for e2 that is well-formed in environment E.

[INF LOCK EXP] The judgment P ; E �lock e · C̄ ensures that e is a valid lock expres-
sion. This rule checks that e denotes a fixed lock throughout the execution of
the program by generating the constraint that e has atomicity const.
As in the type system, the requirement that |e| ≤ MaxLockSize ensures that
there is only a finite number of valid lock expressions at any program point,
which in turn bounds the size of conditional atomicities and guarantees ter-
mination of our type inference algorithm.

The type inference system defines the top-level judgment

P � C̄

where C̄ is the generated set of constraints for the program P .
For the example program List of Figure 6, our system generates the four

atomicity constraints in Figure 10. (We omit several trivial constraints that do
not involve atomicity variables, such as const �� const.)
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Fig. 9. AtomicJava type inference rules (III).

As a technical requirement, we introduce the notion of a well-formed
assignment. An assignment A is well-formed for C̄ if, for all constraints
(lift(P, E, d ) �� α) in C̄, A(P ); E � A(α). In other words, A(α) cannot refer to
lock expressions that are not well-formed in the environment E.
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Fig. 10. Constraints for the List program.

With this definition, we can now state that if A is a well-formed solution
to the constraints for a program P , then the explicitly-typed program A(P ) is
well-typed.

THEOREM 4 (TYPE INFERENCE YIELDS WELL-TYPED PROGRAMS). If P � C̄ and
A |= C̄ and A is well-formed for C̄ then A(P ) � wf.

The proof proceeds by induction over the derivation of P � C̄ and makes use of
the fact that every constraint generated by that derivation is satisfiable. The
well-formedness requirement on A ensures that the atomicities substituted for
atomicity variables are well-formed in the scopes in which they appear. See
Appendix F in the online appendix for details.

6.5 Solving Constraint Systems

To solve a generated constraint system C̄, we start with the minimal assignment
A = ⊥ and iteratively increase this assignment until we reach a solution or
obtain a contradiction. The relation A →C̄ A′ performs one step of this iterative
computation. It identifies some constraint d �� α which is not satisfied by the
current assignment A and produces a larger assignment A′ that does satisfy
that constraint:

A →C̄ A′ iff ∃ (d �� α) ∈ C̄ and [[A(d )]] 	
 A(α)
and A′ = A[α := A(α) � [[A(d )]]]

The relation A →C̄ ERROR detects if some constraint in C̄ cannot be satisfied
by the current assignment A or any larger assignment:

A →C̄ ERROR iff ∃ (d �� a) ∈ C̄ and [[A(d )]] 	
 a

Our constraint solving algorithm Solve(C̄), defined in Figure 11, is an itera-
tive least fix-point computation based on these two relations. For the atomicity
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Fig. 11. Constraint solving algorithm.

constraints of Figure 10, this constraint solving algorithm yields the minimal
solution:

ListElem.get : α1 = (x ? mover : error)
List.add : α2 = (this ? mover : atomic)

List.addPair : α3 = (this ? mover : cmpd)
List.get : α4 = (this ? mover : atomic)

This solution yields the atomicities matching those discussed for the original
version of List in Figure 2.

6.6 Correctness of the Algorithm

The Solve algorithm is correct and terminates for all constraint sets C̄ generated
by the type inference rules. To show this, we first characterize the two relations
A →C̄ A′ and A →C̄ ERROR and prove that if neither of these relations is
applicable to an assignment A, then that assignment is a solution to C̄. We
assume throughout this section that C̄ was generated by the type inference
rules, that is, that there exists P such that P � C̄.

LEMMA 5 (STEP). Suppose A →C̄ A′. Then A � A′. If in addition there exists
A′′ such that A � A′′ and A′′ |= C̄, then we also have that A′ 
 A′′.

LEMMA 6 (CONTRADICTION). Suppose A →C̄ ERROR. Then there is no A′′ such
that A 
 A′′ and A′′ |= C̄.

LEMMA 7 (SOLUTION). Suppose A 	→C̄ ERROR and for all A′, A 	→C̄ A′. Then
A |= C̄.

Also, the algorithm Solve computes only well-formed assignments.

LEMMA 8 (WELL-FORMED). If A is well-formed for C̄ and A →C̄ A′ then A′ is
well-formed for C̄.

PROOF. Inspection of the type inference rules indicates that C̄ will always
have the following two properties:

(1) Each C ∈ C̄ has one of two forms: (d �� a) or (lift(P, E, d ) �� α).

(2) There is at most one lower bound (lift(P, E, d ) �� α) in C̄ for each α.
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If A →C̄ A′, then A′ = A[α := A(α) � [[A(lift(P, E, d ))]]], where
(lift(P, E, d ) �� α) ∈ C̄ is the unique lower bound on α. Since A is well-formed,
A(P ); E � A(α). Also, [[A(lift(P, E, d ))]] = a, where A(P ); E � [[A(d )]] ↑ a. This
implies that A(P ); E � a. The atomicity A′(α) = A(α)�a will also be well-formed
in E, since it can only refer to lock expressions already present in A(α) and a.
Thus, A′ is well-formed for C̄.

The previous four lemmas are sufficient to show in Theorem 12 that the algo-
rithm only produces correct results. Moreover, Lemma 5 guarantees that the
algorithm computes the most precise satisfying assignment.

Proving termination is more difficult, because delayed substitutions could
lead to arbitrarily large lock expressions and infinite ascending chains of atom-
icities and assignments. We bound the size of lock expressions to exclude this
possibility. A lock expression l is bounded if |l | < MaxLockSize. Similarly, an
atomicity is bounded if it only contains bounded lock expressions. An assign-
ment is bounded if it only yields bounded atomicities. An atomicity expression
or constraint is bounded if it is only conditional on bounded lock expressions,
and if every delayed substitution occurs inside the construct lift(P, E, ·).

LEMMA 9. If d is a closed, bounded atomicity expression, then [[d ]] is also
bounded.

PROOF. The only difficulty is that [[d ]] may apply delayed substitutions in d ,
which could result in non-bounded lock expressions, but the enclosing construct
lift(P, E, ·) will filter out these non-bounded lock expressions.

LEMMA 10. If A and d are bounded, then A(d ) is bounded.

LEMMA 11 (TERMINATION). The constraint solving algorithm terminates on
any bounded, constraint system C̄.

PROOF. Since C̄ is bounded, every generated assignment is also bounded. In
addition, C̄ contains only a finite number of distinct variable and field names. All
bounded lock expressions appearing in the generated assignments are derived
from these names. Only a finite number of such bounded lock expressions exist,
so there is only a finite set of bounded assignments containing them. Since
the generated assignments are increasing, the algorithm must terminate, as
otherwise it would generate an infinite ascending chain of bounded assignments
drawn from this set.

Since the type inference rules only generate bounded constraint systems, the
algorithm will terminate for any set of constraints generated while checking a
program. Thus, we may state the following correctness theorem.

THEOREM 12 (TYPE INFERENCE CORRECTNESS). Given program P and con-
straints C̄ such that P � C̄:

(1.) Solve(C̄) always terminates.
(2.) If ∃A′. A′(P ) � wf, then Solve(C̄) returns an assignment A.
(3.) If Solve(C̄) returns an assignment A, then A(P ) � wf.
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PROOF. The first two parts follow from Lemma 11 and Lemmas 5–6, respec-
tively. For part (3), suppose Solve(C̄) returns A. Lemma 7 indicates that A |= C̄.
Since ⊥ is well-formed for C̄ and ⊥ →C̄ . . . →C̄ A, Lemma 8 states that A is
well-formed for C̄ . Theorem 4 then concludes that A(P ) � wf.

7. IMPLEMENTATION

We have extended the Bohr type checker to perform type inference. Bohr takes
Java source code with optional guarded by and atomicity annotations. If all
annotations are provided, Bohr simply ensures the annotations are correct, as
described in Section 5. If some or all annotations are missing, Bohr proceeds to
infer them and to report violations of any annotations that were provided.

Inference runs in two phases. The first phase infers appropriate guards for
each field using the Rcc/Sat subroutine. Since field guards may refer to ghost
parameters, Rcc/Sat also infers appropriate formal and actual ghost parame-
ters for class and method declarations and uses, respectively. For more details
on Rcc/Sat, we refer the interested reader to our earlier paper [Flanagan and
Freund 2004b].

The key novelty of our inference algorithm is the second phase of inference.
This phase first adds a fresh atomicity variable α to each method without an
explicit atomicity. It then checks the program according to the constraint-based
type inference algorithm described in Section 6. If a solution to the generated
constraints is found, Bohr outputs a fully annotated version of the source code.
Otherwise, the checker prints warning messages for each atomicity violation
identified.

A common and significant problem with many type-inference techniques is
the inability to construct meaningful error messages when inference fails (see,
for example, [Wand 1986; Yang et al. 2000; Haack and Wells 2003]). An inter-
esting contribution of our approach is that if the source program is completely
unannotated, then type inference never fails; instead it just assigns an atom-
icity such as cmpd to each nonatomic method in the program.

The remainder of this section describes a number of implementation details
regarding both performance and extensions necessary to support expressive
subtyping and additional common synchronization idioms of Java programs.

7.1 Avoiding Exponential Explosion

Our initial implementation of the type inference algorithm often produced
atomicities with millions of terms. To illustrate why, note that the sequential
composition of two conditional atomicities

(l ? a1 : a2) ; (l ? a3 : a4)

yields the atomicity

l ? (l ? (a1; a3) : (a1; a4)) : (l ? (a2; a3) : (a2; a4))

containing many duplicate subterms. More generally, the sequential composi-
tion of n conditional atomicities yields an atomicity whose size is exponential
in n.
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Fig. 12. Atomicity simplification rules.

These large atomicities typically contain redundant information and can be
simplified. For example, the above result can be simplified to

l ? (a1; a3) : (a2; a4)

The simplification rules in Figure 12 define a relation a →h
n a′ that simplifies

a to a′ by removing redundant information, under the assumption that the locks
in h are held, and the locks in n are not held. Bohr always applies the first of
these rules that is applicable.

One strategy for applying these rules is, after computing a = [[d ]], to im-
mediately simplify a via a →∅

∅ a′. However, the intermediate atomicity a may
still be prohibitively large. Instead, we use an optimized routine that directly
computes the simplified atomicity a′ from d in a single pass, applying the simpli-
fication rules on-the-fly to avoid unnecessarily large intermediate atomicities.
The running time of this optimized algorithm is linear in the size of the result-
ing atomicity a′. Although a′ may still, in theory, be exponential in the size of
the program, our algorithm works well in practice since a′ is typically small.

An interesting area for future work is to explore the use of binary decision
diagrams [Bryant 1986] to represent and manipulate conditional atomicities
efficiently.

7.2 Subtyping and Covariant Atomicity Specifications

The most significant extension to our type system and type inference rules for
supporting large programs is to support inheritance and subtyping. Consider a
class C with a subclass D:

class C〈ghost x〉 {
s1 t1 f() { ... }

}

class D〈ghost y〉 extends C〈z〉 {
s2 t2 f() { ... }

}
We consider a type D〈l 〉 to be an immediate subtype of C〈m〉 provided m ≡ z[ y :=
l ]. (The extension to multiple ghost arguments is straightforward, and it is
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omitted for clarity.) The subtyping relation is the reflexive-transitive closure of
this rule.

Note that the class C declares a method f() that is overridden in D. We re-
quire t2 = θ (t1), that is, that the return type of the overriding and overridden
methods must match exactly, after applying the type parameter substitution
θ = [x := z] induced by the inheritance hierarchy. A similar requirement ap-
plies for argument types.

The original prototype of Bohr required that θ (s1) = s2, but this was not
expressive enough in many cases. For increased expressiveness, we permit the
atomicity of a method to change covariantly, intuitively requiring only that

s2 �� s1· θ
However, if s1 is an atomicity variable α and this constraint is not satisfied

by the current assignment A, it is unclear how to increase A(α) to satisfy this
constraint. We therefore convert the constraint into a more standard format
before running the algorithm. First, we replace the substitution θ on the right-
hand side with a corresponding inverse substitution on the left-hand side. For
this purpose, we introduce the inverse substitution function:

θ−1(l )
def= {l ′ | θ (l ′) = l }

This function yields a set of all lock names l ′ that yield l under substitution θ .
We extend the inverse substitution function to atomicities:

θ−1(b) = b
θ−1(l ? a1 : a2) = l1 ? a′

1 : (l2 ? a′
1 · · · : (ln ? a′

1 : a′
2) · · · )

where θ−1(ai) = a′
i for i = 1, 2

and θ−1(l ) = {l1, . . . , ln}
Each l1..n maps to a′

1 to reflect that all of these locks become l after applying θ .
We then introduce a new atomicity expression construct invsub(θ , d ) with

the following meaning:

[[invsub(θ , d )]] = θ−1([[d ]])

This expression permits us to express the above requirement s2 �� s1· θ. as the
more easily manipulated constraint

lift(P, E, invsub(θ , s2)) �� s1

where the environment E of the class C ensures that the resulting atomicity for
s1 is well-formed in C. Interfaces are handled in a similar fashion.

7.3 Protected Locks

The next two sections describe extensions to the annotation language that we
have found valuable in practice for describing additional synchronization id-
ioms.

First, lock acquire and release operations are normally right and left movers,
respectively. However, large programs typically contain redundant lock oper-
ations that we can more precisely characterize as both movers. For example,
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Fig. 13. Annotations for Vector and Observable.

the ATOMICJAVA type system already treats re-entrant lock operations as both
movers.

One common cause of redundant lock operations is illustrated by the Vector
and Observable classes in Figure 13(a). The method Observable.addObserver
calls Vector.contains and then Vector.add. With the type system outlined
so far, the most precise atomicity assignable to the two Vector methods
is this ? mover : atomic, which causes Observable.addObserver to be cmpd.
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However, that method can shown to be atomic by introducing the notion of
protected locks.

A lock l protects lock m if l is held whenever a synchronized m e is encoun-
tered. In this case, the atomicity of synchronized m e is simply the atomicity of
e, since no other thread will be trying to synchronize on m. In Figure 13(a), the
lock of the Observable object protects the lock of the underlying Vector.

To support protecting locks, the first ghost parameter to a class may be spec-
ified as the protecting lock for instances of that class, as in the declaration

class A〈protecting x1, ghost x2, x3〉
Given an object a of type A〈l1, l2, l3〉, the lock l1 is the protecting lock of a and
must be held when synchronizing on a. Since not all instances of the class A may
have protecting locks, we also introduce the special lock “none” to indicate that
an object has no protecting lock, as in A〈none, l2, l3〉. In this case, a thread can
synchronize on the object without restriction. We could permit more than one
parameter to be designated as a protecting lock, but we have never needed
that added expressiveness. We have extended Rcc/Sat to infer protecting
locks.

In Figure 13(b), we may now assign to the Vector methods the more precise
predicated atomicity

(x=none) ? (this ? mover : atomic) : (x ? mover : error)

This atomicity uses the conditional predicate x = none to test the equivalence
of the lock substituted for the ghost parameter x against the lock name none.
Thus, this method atomicity is conditional both (1) whether the Vector on which
the method is invoked has a protecting lock, (2) whether the protecting lock is
held, and (3) whether the this lock is held. After inferring this atomicity for
the Vector methods, Bohr can verify that addObserver is atomic.

Another common case involving protecting locks occurs when a lock is only
manipulated by a single thread, such as when a Vector is created and used
only within one thread. The Vector’s lock can be considered protected by the
thread-local lock for that thread (see Section 3).

7.4 Internal Synchronization

A common pattern in the Java collections library is the use of synchronized
wrapper classes. This pattern is illustrated in Figure 14, in which the interface
Counter declares a method inc, and different Counter implementations use
different synchronization disciplines.

The UnsyncCounter implementation requires clients to acquire a protecting
lock lock2 before calling the method UnsyncCounter.inc, which has atomicity

lock2 ? mover : error

The parameter lock2 may be instantiated with the thread-local lock to create
counters for use in a single thread, or with a lock protecting accesses from
different threads when a counter is shared.
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Fig. 14. Synchronized wrapper class.

The SynchCounter class is a wrapper class that internally synchronizes the
inc operation avoid the need for external locking. No locks need to be held before
calling the method SynchCounter.inc, which is atomic.

A major difficulty in checking this code is that the Counter interface must
be a supertype of both the externally and internally synchronized subclasses.
To simultaneously support both synchronization disciplines, we introduce a
special lock “always held”. This lock is implicitly simultaneously held by all
threads, but cannot be used to guard fields. We assign the method Counter.inc
the predicated atomicity:

(lock1=always held) ? atomic : (lock1 ? mover : error)

The predicate (lock1= always held) holds if Counter is parameterized by the
special lock always held; if so, then inc is internally synchronized and is atomic;
if not, then inc has the standard conditional atomicity (lock1 ? mover : error).

The program in Figure 14 declares a SyncCounter sc that is a wrapper
around an UnsyncCounter, where the UnsyncCounter is protected by the lock sc.
Our implementation puts the declared variable sc in scope (as a ghost variable)
in the initialization expression for sc, in order to support a natural initialization
syntax for such synchronized wrappers.

8. TYPE INFERENCE EVALUATION

We have applied Bohr to a number of benchmarks, including both standard
library classes and complete programs. Table II summarizes the results of these
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experiments. Columns 1 and 2 show the name of each benchmark and its size
in terms of lines of code.

Column 3 shows the running time of our implementation (excluding the
time required for the Rcc/Sat subroutine, whose performance is documented
in an earlier paper [Flanagan and Freund 2004b]). These experiments were
performed on a Linux computer with a 3.06 GHz Pentium 4 Xeon processor and
2GB of memory. We set MaxLockSize to permit no more than four field accesses
in lock expressions. Larger values of MaxLockSize slowed down performance
with no increase in precision, and smaller values degraded precision. Overall,
the performance of the type inference algorithm is quite fast.

Column 4 shows the number of subatomicity constraints generated for each
benchmark. Column 5 shows the number of type annotations we manually
added to some benchmarks. These type annotations enable Rcc/Sat to more
precisely infer locking information, to ignore infeasible races, and to infer an-
notations most suitable for Bohr when Rcc/Sat may choose among multiple
correct but incomparable annotations.

Columns 6 through 9 evaluate the precision of our type inference algorithm.
Since our inference algorithm could infer the trivial atomicity cmpd for each
method in unannotated Java programs, we use the following two heuristics to
specify which methods and code blocks should be atomic:

(1) The exported methods heuristic states that all public or package-level meth-
ods should be atomic, with the exceptions of main and run, which are starting
points for new threads.

(2) The synchronized blocks heuristic states that all synchronized methods and
synchronized blocks should be atomic. Experience indicates that nonatomic
synchronized blocks are often a source of errors.

For each heuristic, columns 6 and 8 of Table II show the number of methods
and code blocks which that heuristic states should be atomic, and columns 7
and 9 show the number of potential atomicity violations reported.

8.1 Standard Library Classes

Table II contains two groups of benchmarks. The first group contains a num-
ber of classes from the Sun JDK 1.4.2 library and Doug Lea’s concurrency
package [Lea 2004] that are intended to be atomic (i.e., all exported methods
are atomic, regardless of the calling context). Since our implementation infers
atomicities for all methods in the target class’s supertypes, the “Size” column
includes the size of the class and all of its supertypes.

Our type inference system was able to verify the atomicity of the vast major-
ity of methods in these classes. For example, the exported methods heuris-
tic suggests that 68 methods in the java.lang.String benchmark should
be atomic; our system validated the atomicity of all but the previously de-
scribed hashCode method. Our system verified the atomicity of all methods in
java.lang.StringBuffer, except for append. It also identified the known prob-
lems in PrintWriter.
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Fig. 15. Atomicities for Vector and Collection.

Three new errors were detected in Vector, for which Bohr inferred precise
conditional atomicities, as described in Section 7.3 and 7.4, for methods in
the supertypes AbstractCollection, AbstractList, SynchronizedCollection,
List, and Collection. We show in Figure 15 these more precise atomicities
for the code snippet previously described in Section 5. (Bohr also infers pro-
tecting lock ghost variables for Collections and Vectors, but we omit them
from this example since they do not affect the example shown.) Bohr detected
similar atomicity violations in the removeAll and retainAll methods of both
Vector and SynchronizedList, which is a synchronized wrapper class for List
objects.

The warnings for the remaining classes involve subtle synchronization pat-
terns that are not verifiable with our current analysis, but which appear to be
correct.

8.2 Complete Programs

The second benchmark group contains complete programs that were previ-
ously used to evaluate the Atomizer dynamic atomicity checker [Flanagan and
Freund 2004a]. Bohr reported warnings on pieces of code that may not exe-
cute atomically, even with the guarantee that the locking discipline inferred by
Rcc/Sat for a whole, unannotated program is never violated.

We originally expected that Bohr would issue significantly more warnings
than the Atomizer, due to (1) the greater coverage of the static approach, and (2)
the inherent approximations of any static analysis. However, the Bohr warn-
ings are only slightly higher than the Atomizer in most cases, suggesting that
Bohr may scale to checking large programs as easily as our dynamic checker,
but with stronger safety guarantees. The Bohr warnings also differed to some
degree from the Atomizer’s, because the Rcc/Sat subroutine performs an escape
analysis not present in the Atomizer.
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The number of warnings for jbb reported by Bohr was significantly higher
than the number reported by the Atomizer. We do not yet understand jbb’s
synchronization discipline sufficiently well to confidently classify these warn-
ings as either real errors or false alarms. However, many of them appear to be
spurious warnings triggered by unusual allocation and initialization patterns
that cannot be handled precisely by Rcc/Sat.

Our experimental results corroborate our earlier findings with the Atom-
izer that atomicity is a widely-used programming discipline in multithreaded
programs. In particular, the results for the exported methods heuristic suggest
that the vast majority of exported methods in multithreaded applications are
atomic.

The synchronized blocks heuristic revealed a previously-known defect in the
computation of a checksum in raytracer [O’Callahan and Choi 2003; Flanagan
and Freund 2004a].

8.3 Limitations

Bohr has been quite successful at inferring atomicity specifications and identi-
fying atomicity violations, but there are some limitations to this approach.

Incorrect Specifications. Bohr relies on programmer-supplied specifications.
If a programmer does not properly annotate which methods should be atomic,
Bohr may not find some concurrency problems. For example, a programmer
may have mistakenly assumed that only synchronized methods needed to be
atomic when annotating the following version of Account:

class Account {
int balance = 0;
atomic synchronized int read() { return balance; }
atomic synchronized void set(int b) { balance = b; }
void deposit(int amt) {
int b = read();
set(b + amt);

}
}

Clearly, deposit should be atomic as well, but Bohr would not report any warn-
ings. However, even with this potential pitfall, the tool can be quite useful. In
a number of cases we examined, such as the StringBuffer.append() method
in Section 5, annotating only synchronized methods as atomic would have un-
covered concurrency errors.

Moreover, there are a number of ways in which to make specifications
less likely to include errors. For example, we could make all methods atomic
by default, making false negatives due to missing annotations less likely. A
specification review process could also help identify incorrect atomicity specifi-
cations.

Relaxed Memory Models and Race Conditions. A programming language’s
memory model [Gharachorloo 1995] can also impact the ability of Bohr to
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reason about programs. Our analysis is sound for any program executed
under a sequentially-consistent memory model. It is also sound for any program
executed under a relaxed memory model, provided that the program does not
have any race conditions on nonvolatile data.

However, the analysis is not necessarily sound for programs that contain
race conditions when they are executed under a relaxed model. Such race con-
ditions can result quite subtle behavior, which we currently do not model in
our semantics and type system for the sake of simplicity. We believe ATOMICJAVA

can be extended to properly reason about data races in relaxed models, such
as the Java Memory Model [Manson et al. 2005], but we leave this for future
work.

Synchronization Idioms. Bohr currently reasons about mutex locks quite
effectively, but large programs typically employ additional synchronization id-
ioms that our analysis cannot currently handle. For example, condition vari-
ables (implemented with Java’s wait and notify operations) can be used to
ensure mutual exclusion and to implement synchronization barriers [Birrell
1989]. We currently verify the correctness of these idioms manually and then
add annotations to suppress race condition warnings resulting from these fea-
tures.

Bohr also has trouble with nonblocking data structures, such as those im-
plemented in the Java 1.5 java.util.concurrent package [Goetz et al. 2006],
as well as synchronization patterns that vary over time as the program exe-
cutes. Since Bohr attempts to identify a single, fixed lock protecting each field,
it will generate spurious warnings when the lock protecting a field varies over
time. Including a more precise race condition analysis, such as a happens-before
analysis [Lamport 1978], could alleviate some of these limitations.

Irreducible Code Sequences. Bohr may also report false alarms on code paths
that are not reducible yet are still conceptually atomic. For example, perfor-
mance counters typically are not protected by locks, under the assumption that
the resulting race conditions will not significantly affect the final counter val-
ues. Any method that increments such a counter will be considered compound,
despite the race conditions not impacting the overall correctness at an abstract
level that ignores these performance counters.

A more interesting situation is the following method alloc, which is modeled
after code that searches for a free disk block in a file system. The flag free[i]
indicates whether the i-th disk block is currently unused, and this flag is pro-
tected by lock[i]. When alloc identifies a free block, it allocates the block by
setting the appropriate bit to false and returns the index of that block. The
method returns -1 if it fails to find a free block.

Object lock[];
boolean free[]; // free[i] guarded by locks[i]

atomic int alloc() {
for (int i = 0; i < max; i++) {
synchronized(lock[i]);
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if (free[i]) {
free[i] = false;
return i;

}
}

}
return -1;

}
The method is not atomic, since there exist some nonserial executions of this
method that are not equivalent to any serial executions. In particular, concur-
rent calls to alloc and a method to free a block are not serializable, since the
exact interleaving of steps by each method could impact which block the alloc
method returns. However, alloc is atomic in an abstract sense because any
execution performs the atomic action of either allocating a block or returning
-1. Currently Bohr cannot reason about the fine-grained locking used in this
example or about the abstract atomicity property of alloc, and we are forced
to insert “no warn” annotations to avoid reporting warnings.

We have explored an analysis to identify some abstractly atomic methods
by exploiting properties of pure code blocks that have no side effects visible to
other threads [Flanagan et al. 2005]. In essence the analysis is able to ignore
any iteration of the loop inside alloc that does not change program state visible
outside the current thread.

9. RELATED WORK

Lipton [1975] first proposed reduction as a way to reason about concurrent
programs without considering all possible interleavings. He focused primarily
on checking deadlock freedom. Doeppner [1977], Back [1989], and Lamport and
Schneider [1989] extended this work to allow proofs of general safety properties.
Cohen and Lamport [1998] extended reduction to allow proofs of liveness prop-
erties. Misra [2001] has proposed a reduction theorem for programs built with
monitors [Hoare 1974] communicating via procedure calls. Bruening [1999] and
Stoller [2000] have used reduction to improve the efficiency of model checking.
Flanagan and Qadeer [2003a] have pursued a similar approach, and Qadeer
et al. [2004] have used reduction to infer procedure summaries in concurrent
programs.

A number of tools have been developed for detecting race conditions, both
statically and dynamically. Our previous work on rccjava [Abadi et al. 2006]
uses a type system to catch race conditions in Java programs. This approach has
been extended [Boyapati and Rinard 2001; Boyapati et al. 2002] and adapted
to other languages [Grossman 2003]. Other static race detection tools include
Warlock [Sterling 1993] and Locksmith [Pratikakis et al. 2006] for ANSI C
programs, Chord [Naik et al. 2006], and ESC/Java [Flanagan et al. 2002], which
catches a variety of software defects in addition to race conditions. ESC/Java has
been extended to catch “higher-level” race conditions, where a stale value from
one synchronized block is used in a subsequent synchronized block [Burrows
and Leino 2002]. Vault [DeLine and Fähndrich 2001] is a system designed to
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check resource management protocols, and lock-based synchronization can be
considered to be such a protocol. Aiken and Gay [1998] also investigate static
race detection, in the context of SPMD programs.

Eraser [Savage et al. 1997] detects race conditions and deadlocks dynami-
cally, rather than statically. The Eraser algorithm has been extended to object-
oriented languages [von Praun and Gross 2001] and has been improved for pre-
cision and performance [Choi et al. 2002]. Agarwal and Stoller [2004] present a
dynamic type inference technique for the type system of Boyapati and Rinard
[2001].

A variety of other approaches have been developed for race and deadlock
prevention; they are discussed in more detail in earlier papers [Flanagan and
Abadi 1999b; Flanagan and Freund 2000; Abadi et al. 2006].

Since an atomicity describes aspects of the behavior or effect [Lucassen and
Gifford 1988] of an expression, we are essentially performing a form of effect
reconstruction [Tofte and Talpin 1994; Talpin and Jouvelot 1992]. However,
our atomicities are quite different from traditional effects; in particular, our
atomicities may include program variables and expressions, and thus we have
dependent effects. Similarly, our parameterized classes are actually dependent
types. Cardelli [1988] was among the first to explore type checking for depen-
dent types. Our dependent types and effects are comparatively limited in ex-
pressive power, but the resulting type checking and type inference problems
are decidable.

In summary, reduction has been studied in depth, as have type systems for
preventing race conditions. This paper combines these existing techniques in a
type system that provides an effective means for checking atomicity.

Sasturkar et al. [2005] also present a type inference algorithm for atomicity.
Their type system also extends Flanagan and Qadeer [2003b] with parame-
terized classes [Flanagan and Freund 2000]. Unlike our system, their system
includes a notion of object ownership [Boyapati and Rinard 2001], but does not,
for example, support protected locks. In contrast to our static type inference
algorithm, they use a dynamic analysis to infer race condition information and
ghost parameters.

Freund and Qadeer [2004] combined both reduction and simulation in the
Calvin checker to verify functional procedure specifications in multithreaded
programs. Our atomic type system is inspired by the Calvin checker, but repre-
sents a different point in the trade-off between scalability and expressiveness.
While Calvin’s semantic analysis based on verification conditions and automatic
theorem proving is more powerful, the syntactic type-based analysis of this pa-
per provides several key benefits: it is simpler, more predictable, more scalable,
and requires fewer annotations than the Calvin checker. We have explored
adding abstraction based on purity to a type system for atomicity [Flanagan
et al. 2005]. A pure block of code does not change the program state under nor-
mal termination and can be removed from the program trace before reduction.
This notion may reduce spurious warnings in some cases.

The use of model checking for verifying atomicity had been explored by Hat-
cliff et al. [2004]. This model checking approach is more expressive than our
type-based analysis, but is vulnerable to state-space explosion. Their results
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suggest that verifying atomicity via model-checking is feasible for unit-testing.
A more general (but more expensive) technique for verifying atomicity during
model checking is commit-atomicity [Flanagan 2004].

Several tools have explored verifying atomicity dynamically [Flanagan and
Freund 2004a; Wang and Stoller 2003], but these tools are sensitive to test case
coverage, unlike our static analysis.

Atomicity is a semantic correctness condition for multithreaded software.
In this respect, it is similar to strict serializability [Papadimitriou 1986] for
database transactions and linearizability [Herlihy and Wing 1990] for concur-
rent objects. However, we are not aware of any automated techniques to verify
these conditions. We hope that the lightweight analysis for atomicity presented
in this paper can be leveraged to develop checking tools for other semantic
correctness conditions as well.

Other languages have included a notion of atomicity as a primitive opera-
tion. Hoare [1972] and Lomet [1977] first proposed the use of atomic blocks for
synchronization, and the Argus [Liskov et al. 1987] and Avalon [Eppinger et al.
1991] projects developed language support for implementing atomic objects.
Recent approaches to supporting atomicity also include lightweight transac-
tions [Harris and Fraser 2003; Welc et al. 2004; Ringenburg and Grossman
2005] and automatic generation of synchronization code from high-level speci-
fications [Deng et al. 2002] or atomicity specifications [McCloskey et al. 2006;
Vaziri et al. 2006; Hicks et al. 2006].

10. CONCLUSIONS

Atomicity facilitates the validation of multithreaded programs by reducing the
number of thread interleavings that need to be considered, since each atomic
method can be considered to execute sequentially. However, verifying atom-
icity can be nontrivial. Previous approaches were limited by test case cover-
age [Flanagan and Freund 2004a; Wang and Stoller 2003] or to systems with
small states spaces [Hatcliff et al. 2004].

The primary contribution of this article is a type-based approach for spec-
ifying and checking atomicity properties in concurrent programs. Our analy-
sis is scalable to larger systems than previous static approaches and provides
stronger guarantees by performing all checking statically. However, using the
type system by itself does require substantial assistance from the programmer
in order to annotate the source code.

Our second main contribution is a type inference algorithm that removes
this burden from the programmer by automatically inferring the most pre-
cise atomicity for each unannotated method in a program. When used in
conjunction with Rcc/Sat [Flanagan and Freund 2004b], this inference al-
gorithm can identify atomicity violations in unannotated source code by
inferring both the code’s synchronization discipline and atomicity proper-
ties. Our tool, Bohr, thus provides a convenient and effective means to ver-
ify many atomicity properties in large programs. For example, it can ver-
ify that 85% of the exported methods in jbb (our largest benchmark) are
atomic.
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Additional extensions to the type system and inference algorithms may
help reduce the number of false alarms and improve precision. For exam-
ple, Bohr only reasons about mutual exclusion locks and not other synchro-
nization techniques, such as wait and notify or nonblocking data structures.
The former could be handled by replacing our lockset-based race-condition
analysis [Savage et al. 1997; Flanagan and Freund 2000] with a happens-
before analysis [Lamport 1978] to identify conflicting accesses. Recent studies
suggest that, while more expensive, such an analysis may be tractable [von
Praun and Gross 2003]. Nonblocking data structures, and other synchroniza-
tion primitives such as compare-and-swap or load-linked/store-conditional, can
be handled by applying reduction to an abstraction of the program [Flanagan
et al. 2005; Sasturkar et al. 2005]. However, these techniques add significant
complexity to the analysis and their effectiveness in practice remains to be
seen.

Once atomicity errors are identified, the programmer must still fix them,
which may not be straightforward in all cases. Another avenue for future work
is to explore synchronization correction algorithms that not only identify atom-
icity errors statically, but also give hints to the programmer as how to correct
them [Flanagan and Freund 2005].

Recent studies on lightweight transactions [Harris and Fraser 2003; Welc
et al. 2004; Ringenburg and Grossman 2005] offers an alternative mechanism
for ensuring atomicity. Current work on improving the performance of trans-
actions may enable programmers to forego lock-based synchronization alto-
gether in some cases. However, we believe that a synthesis of transactions and
programmer-supplied synchronization code will be the most effective program-
ming methodology in the future, and ensuring the correctness of code with
explicit synchronization will continue to be important for ensuring the correct-
ness of concurrent software.
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