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Texts

The primary text book for this course is Compilers: Principles, Techniques, and Tools by Aho, Lam,
Sethi, and Ullman. Additional reading material and resources will be made available to you.

Course Objectives

This tutorial covers the principles and practices for the design and implementation of compilers
and interpreters. Topics include all stages of the compilation and execution process: lexical analysis;
parsing; symbol tables; type systems; scope; semantic analysis; intermediate representations; run-
time environments and interpreters; code generation; program analysis and optimization; and garbage
collection. The course covers both the theoretical and practical implications of these topics. As a project
course, students will construct a full compiler for a simple object-oriented language.

Tutorial Meetings

This course will be taught as a tutorial. Each of you will be assigned to a group of two students.
Your group will normally meet with me each week to discuss the readings and exercises I assigned for
the week. These exercises will focus on “problem set” questions, small programming exercises, primary
literature, design of your projects, and possibly even code reviews.

In the “canonical” tutorial format, one student in each group is primarily responsible for the pre-
sentation each week. Because of the cumulative nature of the material we will be considering, I will
expect each of you to come to each meeting fully prepared to present summaries of the readings and
solutions to the exercises. To compensate for the higher workload such an approach entails compared
to the “canonical” tutorial, you are encouraged to work on the assignments with others taking the
course. To make our meetings more interesting, however, I ask that you not work as one large class
group. (And I may also ask you not to work with your tutorial partner on some weeks.)

The tutorial format naturally emphasizes learning more than the specific material covered by the
course. In particular, this format can have the very positive effect of encouraging you to develop your
ability to learn new material independently and to improve your ability to present your thoughts
orally. Therefore, in completing the assignments, you should do more than prepare written solutions.
You should take some time to think about how you will present your solutions. I do not mean that you
should prepare a lecture. Rather, take the time to look over each reading and decide what the major
points are. Do the same with the exercises. I will ask you to submit polished, written solutions to some
of the problems the day after your meeting.



Lab Meeftings

Lab meetings on Tuesday 2:35pm - 4:00pm are a required part of this class. Not attending lab is
grounds for failure in the class.

Programming Project

As a project course, there will also be a substantial semester-long programming project. The overall
goal of the project is to build a fully functional compiler for a small but fairly complete subset of Java.
The project will be done in groups of three. You may choose your own project groups, although I may
choose to reorganize them as the semester progresses.

Programs should be turned in electronically by the due date. Each group may use a maximum of
three free late days during the course of the semester. A late day permits you to hand in an assignment
up to 24 hours late, without penalty. In order to use a late day, you must send to me before the deadline
a status update that includes a description of what has been completed, what functionality still needs
to be implemented, and an outline of what steps remain.

Late days are designed to give you some flexibility, but be warned that the programming projects
are substantial and cumulative — falling behind or failing to complete one project will substantially
impact the follow-on assignments. Use late days if you need to, but plan ahead and start early. You
will not finish these assignments if you wait until the last minute.

Once those late days are exhausted, late assignments will be penalized severely.

All programs will be graded on design, documentation, style, correctness, and efficiency. We will
use the Unix lab computers for the programming assignments.

Grading

Grades will be determined roughly as follows: Homework/Meetings: 50%, Projects: 50%.
Honor Code

Discussing written problems with other students in the class is permitted. However, copying of
solutions is not. The work you hand in should be your own. A good rule to follow is to work through the
problems with others, taking only rough notes. You should then write your solutions independently,
referring to your notes as little as possible. The idea is to understand each solution well enough that
you can reconstruct it by yourself. In addition, you should write on each assignment the list of people
with whom you collaborated.

The same applies to programming feel free to discuss general ideas with others, but the design and
code you submit should have been written entirely by you (or your group if it is a group assignment).

I will occasionally give more detailed collaboration guidelines on some assignments. Uncredited
collaborations will be considered a violation of the honor code and will be handled appropriately.

Outside references: You may refer to any course materials and the web sites listed under the Re-
sources heading. You may use other sources as references to look for specific information — API usage,
git or scala commands, etc. You may not use other sources to look for solutions to your homework or
lab questions, and you may never copy prose or code directly from another source.

Examples of information you may look for in outside sources:

e “What are the parameters for List.append?”

e “What does the scala compiler error ... mean?”

e “How do I use case classes in Scala?”

e “How do I connect a Bison parser to a Flex scanner?”
Examples of information you may not look for:

e “How do I solve problem 4.3 from the book?”



e “How do I write a regular expression for floating point numbers?”
e “How do I write a compiler in Scala?”
e “How do I prove theorem ...?”

Any sources of information used to complete your assignments should be cited.
Please also read the complete The CS Honor Code and Computer Usage Policy at

https://csci.williams.edu/the-cs—honor—-code—and-computer—usage—-policy/

If in doubt as to what is appropriate, do not hesitate to ask me.

After the semester: Please do not post your solutions to the CS 434 problem sets or labs in any public
forum, including public GitHub repositories.

Tentative Schedule

The course is structured roughly as follows. This will undoubtedly change.

Lexical and Syntax Analysis 3 weeks
Abstract Syntax Trees and Semantic Analysis 2 weeks
Intermediate Representations and Code Generation 3 weeks
Optimization 3 weeks
Advanced Topics 1 week

Be sure to check the web site for an up-to-date schedule.
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