
HW 8: TAC, x86 Code, Intro to Optimization CSCI 434T
Spring, 2019

Overview

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

This week, we dive into the compiler’s back end. The first readings focus on the run-time environ-
ment for your program, which describes how it executes machine code and how it manages the stack,
the heap, and other computer resources. This should hopefully be mostly a review of cs237 material.

We will discuss the particulars of the x86 environment in lab next week, in preparation for writing
a basic x86 code generator for IC.

The last two readings introduce the topic of program optimization. They explore the goals, the
challenges, and the various forms of optimization. This week we focus on one simple optimization,
redundant expression elimination via value numbering. This is a local optimization that operates
only on small contiguous sequences of instructions. Next week, we will begin to explore a general
framework for describing many program analysis and optimizations in a unified at elegant way.

Readings

• Dragon 7 – 7.2

• Code Generation Materials on web site

• Appel 14 (from last week)

• Cooper and Torczon 8.1 – 8.4

• Dragon 8.1 – 8.3

• Dragon 8.4 – 8.5 (You may want to read Cooper and Torczon first, and use this to fill in any
remaining details.)

Exercises

1. This question asks you to design the tac package for your IC compiler, as outlined in the PA 3
handout. Please write up the basic design of your TAC package, with enough detail to identify
the following items:

• The TAC instruction set for your compiler (The TAC description in the materials on the
web for PA 3 is a good start, although there will be some additions, and possibly a few
subtractions).

• The top-level design of the tac package:
– What are the main classes, what will they do?
– How do you represent a TAC instruction?
– How do you represent TAC operands?

1

2. Here is a small IC program:
class A {

int x;
int y;
void m(int w, int z) {

int r = w / z + this.x * this.x;
{

int k = w + 1;
}

}
void main(string[] args) { }

}

class B extends A {
int z;
void n(string s) { }
void m(int g, int h) { }

}

class C extends B {
void m(int g, int h) { }
void p() { }

}

class D extends A {
string k;
void p() { }

}

Using Appel, Figure 14.3, as a model, show the object and dispatch vector (or vtable) layouts for
the four classes shown here. Include the object offsets for fields and dispatch vector indexes for
methods. Assume all data is stored as 64-bit values.
Also, lay out the stack frame for method A.m, assuming that the TAC for this method is:

t1 = w / z
t2 = this.x
t3 = this.x
t3 = t2 * t3
t0 = t1 + t2
r = t0
t4 = w + 1
k = t4

Figure 7.5 in the Dragon book is a reasonable starting point. Include in your diagram:

• the stack pointer (%rsp).
• the frame pointer (%rbp), aka “Control Link”
• locations of parameters, including this, which is treated as an implicit first parameter to

every method.
• local variables, and the TAC temporary variables, assuming there are all stored in the stack

frame.

You do not need to keep an “Access link”, and the only “Saved machine status” is the return
address to jump back to upon return.

3. Consider the following TAC code:

2

x = 2
y = 3
z = 11
L0:
T0 = x < 10
fjump T0 L1
T1 = x < y
fjump T1 L3
T2 = x + 1
x = T2
jump L2
L3:
T3 = y < 100
fjump T3 L2
T4 = y + 1
y = T4
jump L3
L2:
T5 = z + 3
z = T5
jump L0
L1:

(a) Build the basic blocks and control flow graph for this code.
(b) Identify the natural loops.

4. Consider the following two basic blocks:

a = b + c a = b + c
d = c e = c + c
e = c + d f = a + c
f = a + d g = b + e
g = b + e h = b + c
h = b + d

(a) Build a DAG for each block. (The Dragon book and Cooper and Torczon use different notation
for the DAGs. I suggest using the Dragon book form — it is a little more flexible.)

(b) Value number each block.
(c) Explain any differences in the redundancies found by these two techniques.
(d) At the end of each block, f and g have the same value. Why do the algorithms have difficulty

discovering this fact?

5. Dragon 8.5.6

6. The gcc compiler (configured to pass all arguments on the stack) has generated the following
x86 64 code for a method in an object-oriented language:

_f:
pushq %rbp
movq %rsp, %rbp
subq $8, %rsp
movq 32(%rbp), %rax
addq 24(%rbp), %rax
movq %rax, -8(%rbp)

3

.L2:
movq 16(%rbp), %rax
movq 16(%rbp), %rdx
movq 8(%rax), %rcx
movq 16(%rdx), %rax
cmpq %rax, %rcx
jge .L5
movq 16(%rbp), %rcx
movq 16(%rbp), %rdx
movq -8(%rbp), %rax
addq 8(%rdx), %rax
movq %rax, 8(%rcx)
jmp .L2

.L5:
movq 16(%rbp), %rax
movq (%rax), %rdx
addq $64, %rdx
pushq %rax
movq (%rdx), %rax
call *%rax
addq $8, %rsp
movq 16(%rbp), %rax
movq %rbp, %rsp
popq %rbp
ret

(a) Assuming that the stack grows downwards, draw the memory layout during the execution of
this method. The layout must contain all of the pieces of memory that the execution of this
method accesses.

(b) Show a possible input program that this code may have been generated from.
(c) Would it be safe to remove the instruction “addq $8, %rsp” at the end of the program?

Explain.

7. The translation from TAC to assembly code can be expressed as a function CG [] in much the
same was as the TAC translation function T [] was described last week. This function converts
one TAC instruction into one or more assembly instructions that implement the TAC operation.
In order to properly generate the assembly code, the code generation function will take an “aug-
mented TAC” in which each variable name has been annotated with its offset from the frame
pointer, each field access has been annotated with the offset at which the field is located in the
object, and so on. (You may wish to think about how your TAC instruction objects will access this
information when it is needed in your compiler.) Given these annotations, here is the translation
of the TAC add instruction:

CG [xa = sb + tc] ≡
movq b(%rbp), %rax
addq c(%rbp), %rax
movq %rax, a(%rbp)

Of course, we would translate differently if one or more operands to + were constants instead of
variables:

4

CG [xa = J+ tc] ≡
movl $J, %rax
addl c(%rbp), %rax
movl %rax, a(%rbp)

CG [xa = J+ K] ≡
movl $J, %rax
addl $K, %rax
movl %rax, a(%rbp)

Converting a sequence of TAC instructions s1; . . . ; sn is defined in the obvious way: CG [s1; . . . ; sn] ≡
CG [s1]; . . . ;CG [sn].

(a) Write the compilation function for the following cases. Be sure to use proper x86 instructions
and addressing modes!
• CG [sa = tb]

• CG [xa = sb/tc]

Hint: compile
int main() {

long x,y,z;
x = y/z;

}

with gcc -m64 -S and look at the resulting assembly code.
• CG [xa = (yb.f)c], where c is the object offset of field f.
• CG [xa[yc] = zb]

(b) Augment the TAC for A.m with the offset information and show the compilation of those
TAC instructions using CG []. (Note: This is tedious to do by hand — just do the first couple
of instructions so that you can think about and answer the next part of the question.)

(c) There will be some obvious inefficiencies in your translation. Identify some of them and dis-
cuss how your code generator might avoid them. A short list or a few sentences is sufficient.

5

