
HW 3: Bottom-Up Parsing Techniques CSCI 434T
Spring, 2019

Overview

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

This week focuses on a second form of parsing, called bottom-up parsing. In contrast to top-down
parsing, this approach constructs the parse tree from the leaves up towards the root. As you will see,
this is quite a powerful technique. For example, bottom-up LR parsers can parse languages described
by a much larger class of grammars than LL parsers, and they more easily handle grammar ambiguity
of the form common in programming languages. (More on this second point next week when we build
the parser for IC...) As I’m sure you observed last week with LL parsing, the algorithms for building
parsers can be quite detailed. I strongly encourage you to follow the algorithms in the book carefully
as you work through these problems. I have also provided some optional reading and problems that
look more deeply at syntax error recovery.

Readings

• Dragon 4.5 – 4.6, 4.7 – 4.7.3, 4.8.1 – 4.8.3

• (primarily the early sections) Michael Burke and Gerald Fisher, A practical method for LR and
LL syntactic error diagnosis and recovery, 1987. On the web site.

Exercises

1. Dragon 4.5.3

2. The following grammar describes the language of regular expressions:

R → R bar R | R R | R star | (R) | ε | letter

where bar, star, letter, ’(’, and ’)’ are all terminals. This is an ambiguous grammar. The Kleene
star operation has higher precedence than concatenation; and, in turn, concatenation has higher
precedence than alternation.

(a) Write a LR grammar that accepts the same language, respects the desired operator prece-
dence, and is such that alternation is left-associative, but concatenation is right-associative.
(Note: You need not prove that your grammar is LR.)

(b) Write the parse tree for the expression a|bc ∗ d|e using the LR grammar.

3. Dragon 4.6.2. You will find it useful to construct the LR(0) automaton while you are building the
SLR items and the parsing table.

4. Dragon 4.6.3

5. Consider the following grammar:

E → id | id (E) | E + id

1

(a) Build the LR(0) automaton for this grammar.
(b) Show that the grammar is not an LR(0) grammar by building the parsing table. (LR(0)

parsing table construction is left implicit in the text — however, it is essentially Algorithm
4.46, where Rule 2(b) is applied for all a, rather than for all a in FOLLOW(A).)

(c) Is this an SLR grammar? Give evidence.
(d) Is this an LR(1) grammar? Give evidence.

6. Consider the grammar of matched parentheses:

A → (A) A | ε

(a) Construct the LR(1) automaton.
(b) Build the LR(1) parsing table to show that the grammar is LR(1).
(c) Is the grammar LR(0)? Justify your answer.

7. The following grammar describing expressions over addition, negation, and array accesses is
ambiguous:

E → E[E] (1)
| E + E (2)
| −E (3)
| id (4)

To generate an LR parser for this grammar, we could rewrite the grammar. However, it is also
possible to directly eliminate the ambiguity in the parsing table, taking advantage of precedence
and associativity rules.
Here are the LR(0) automaton and SLR parsing table for this grammer:

Item 0
S' → • E
E → • E [E]
E → • E + E
E → • - E
E → • id

Item 3
S' → E •
E → E • [E]
E → E • + E

Item 2
E → - • E
E → • E [E]
E → • E + E
E → • - E
E → • id

Item 6
E → E [• E]
E → • E [E]
E → • E + E
E → • - E
E → • id

Item 5
E → E + • E
E → • E [E]
E → • E + E
E → • - E
E → • id

Item 8
E → E [E •]
E → E • [E]
E → E • + E

Item 9
E → E [E] • Item 7

E → E + E •
E → E • [E]
E → E • + E

Item 4
E → - E •
E → E • [E]
E → E • + E

Item 1
E → id •

-

id

E

[

[

id

id

id

E

]

E

++

E

-

-

-

+

[
+

[

X First(X) Follow(X)

S′ $ $
E id,− $, [,],+

2

Parsing Table:
Action Goto

State [] + id − $ S′ E

0 s1 s2 3
1 r4 r4 r4 r4
2 s1 s2 4
3 s6 s5 acc
4 s6/r3 r3 s5/r3 r3
5 s1 s2 7
6 s1 s2 8
7 s6/r2 r2 s5/r2 r2
8 s6 s9 s5
9 r1 r1 r1 r1

(a) Given that + is left-associative and has a lower precedence than unary negation, and that
negation has lower precedence than array accesses, eliminate the conflicts in the SLR table
by removing actions from the problematic table entries. Justify how you resolved conflicts.

(b) Show how your resulting parser handles the input id+ id[id] + id.

8. Here is a grammar similar to the one used to look at error recovery in LL parsers:

Stmt → if E then Stmt (1)
| if E then Stmt else Stmt (2)
| while E Stmt (3)
| { List } (4)
| S (5)

List → List ; Stmt (6)
| Stmt (7)

Here is the LR(0) automaton and parsing table for this grammar, with the dangling-else ambigu-
ity resolved in the usual way. I have introduced the extra production

S′ → Stmt

3

Item 0
S' → • Stmt
Stmt → • if E then Stmt
Stmt → • if E then Stmt else Stmt
Stmt → • while E Stmt
Stmt → • { List }
Stmt → • S

Item 1
Stmt → if • E then Stmt
Stmt → if • E then Stmt else Stmt

Item 5
S' → Stmt •

Item 14
Stmt → if E then Stmt •
Stmt → if E then Stmt • else Stmt

Item 16
Stmt → if E then Stmt else • Stmt
Stmt → • if E then Stmt
Stmt → • if E then Stmt else Stmt
Stmt → • while E Stmt
Stmt → • { List }
Stmt → • S

Item 17
Stmt → if E then Stmt else Stmt •

Item 7
Stmt → while E • Stmt
Stmt → • if E then Stmt
Stmt → • if E then Stmt else Stmt
Stmt → • while E Stmt
Stmt → • { List }
Stmt → • S

Item 11
Stmt → while E Stmt •

Item 3
Stmt → { • List }
List → • List ; Stmt
List → • Stmt
Stmt → • if E then Stmt
Stmt → • if E then Stmt else Stmt
Stmt → • while E Stmt
Stmt → • { List }
Stmt → • S

Item 9
Stmt → { List • }
List → List • ; Stmt

Item 12
Stmt → { List } •

Item 4
Stmt → S •

Stmt

if

else Stmt

while

Stmt

List
 }

Item 6
Stmt → if E • then Stmt
Stmt → if E • then Stmt else Stmt

E

Item 10
Stmt → if E then • Stmt
Stmt → if E then • Stmt else Stmt
Stmt → • if E then Stmt
Stmt → • if E then Stmt else Stmt
Stmt → • while E Stmt
Stmt → • { List }
Stmt → • S

then

Item 2
Stmt → while • E Stmt

E

Item 13
List → List ; • Stmt
Stmt → • if E then Stmt
Stmt → • if E then Stmt else Stmt
Stmt → • while E Stmt
Stmt → • { List }
Stmt → • S

Item 15
List → List ; Stmt •

Item 8
List → Stmt •

S

{

;

Stmt

Stmt

1 2 3 4

if while { S

1 2 3 4

if while { S

1 2 3 4

if while { S

1 2 3 4

if while { S

1 2 3 4

if while { S
Stmt

Parsing Table:

Action Goto
State if E then else while S { } ; $ Stmt List
0 s1 s2 s4 s3 5
1 s6
2 s7
3 s1 s2 s4 s3 8 9
4 r5 r5 r5 r5 r5 r5 r5 r5 r5 r5
5 acc
6 s10
7 s1 s2 s4 s3 11
8 r7 r7 r7 r7 r7 r7 r7 r7 r7 r7
9 s12 s13
10 s1 s2 s4 s3 14
11 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3
12 r4 r4 r4 r4 r4 r4 r4 r4 r4 r4
13 s1 s2 s4 s3 15
14 r1 r1 r1 s16 r1 r1 r1 r1 r1 r1
15 r6 r6 r6 r6 r6 r6 r6 r6 r6 r6
16 s1 s2 s4 s3 17
17 r2 r2 r2 r2 r2 r2 r2 r2 r2 r2

4

(a) Implement error correction by filling in the blank entries in the parsing table with extra
reduce actions or suitable error-recovery routines.

(b) Describe the behavior of your parser on the following two inputs:
• if E then S ; if E then S }
• while E { S ; if E S ; }

9. (Read enough of Burke-Fisher to get the basic idea of what they propose.) The Burke-
Fisher paper describes a different approach to syntax error recovery for parsers.

(a) What is their basic approach, and how does it differ from what you did last week (or in the
previous problem)? In particular, how does their error handling fit into the general parsing
algorithm? You may wish to focus only on the early sections involving single-token recovery.

(b) Are there advantages or disadvantages to this approach? Which would you prefer to use
while developing a compiler for a large language?

5

