
HW 1: Regular Expressions and Automata CSCI 434T
Spring, 2019

Overview

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

The goal of the first week is to cover two topics:

• A general introduction to compilation. As part of this introduction, you will read about the overall
architecture of a compiler, the separate phases of compilation, and how programming language
design and computer architecture affects compiler design. In addition, you will read a brief review
of key programming language ideas.

• Lexical Analysis. The first compilation stage is lexical analysis — the task of breaking source
code text into a language’s most basic lexemes. You will read about the basic theory behind lexical
analysis (regular expressions, transition diagrams, finite automata) and gain an appreciation for
how theory guides the design and implementation of a lexical analyzer.

Readings

• Dragon, Chapter 1. Fairly light reading — mostly background.

• Dragon, Chapter 3.3, 3.5–3.7

• “Regular Expression Matching Can Be Simple And Fast (but is slow in Java, Perl, PHP, Python,
Ruby, ...)”, Russ Cox, January 2007. Don’t worry about the C code implementations — pay more
attention to the basic ideas and commentary.

• If you have not used Scala before: the Scala Tutorial and “Scala by Example” on the Resources
page, and the other Scala links under Week 1.

Exercises

1. Dragon 1.1.2

2. Dragon 1.1.4

3. Dragon 1.6.1

4. Dragon 3.3.2

5. Dragon 3.3.9

6. Write a regular expression for http and ftp URLs. An URL consists of four parts: the protocol
(http:// or ftp://), the DNS name or the IP address of a host, an optional port number, and
an optional pathname for a file. For simplicity, we assume that:

• A DNS name is a list of non-empty alphabetical strings separated by periods.
• An IP address consists of four non-negative integers of at most three digits each, separated

by periods.

1

• A port number is a positive integer following a colon. (e.g. :8080)
• The pathname part is a unix-style absolute pathname. The allowed symbols are letters,

digits, period and slash. A sequence of two consecutive slashes // is forbidden, i.e. no empty
directory name.
• A URL may end with a slash as long as it does not create the sequence //.

7. Write the DFAs for each of the following:

(a) Binary numbers that contain the substring 011.
(b) Binary numbers that are multiples of 3 and have no consecutive 1’s. Your solution can accept

or reject the empty string – either is fine. (You may find it easiest to create DFAs for each of
the two requirements and then think about how to combine them.)

8. A comment in the C language begins with the two-character sequence /*, followed by the body of
the comment, and then the sequence */. The body of the comment may not contain the sequence
/, although it may contain the sequence /, or the characters * and /. We use the notation
(E)∗ for the Kleene closure of E; all other occurrences of * refer to the character itself, not to the
Kleene operator.

(a) Show that the following regular expression does not correctly describe C comments:
/* (/)∗ ([ˆ*/] | [ˆ*]/ | *[ˆ/])

∗ (*)
∗
*/

(b) Draw the DFA that accepts C comments and then use it to write the regular expression that
correctly describes C comments.

9. Convert the following NFA to a DFA. For each DFA state, indicate the set of NFA states to which
it corresponds. Make sure you show the initial state and the final states in the constructed DFA.

1 2 3

4 5 6

x

εε

ε

z y

εε

10. Russ Cox describes how inefficient some regular expression pattern matchers can be. You will
now build a pattern matcher that can outperform Java’s regular expression package. More specif-
ically, you will write a program that, given a description of an NFA, simulates its behavior on an
input string.
This problem involves writing some code. You may work on it with a partner if you
like. Please bring a copy of your code and results for part (d) to your meetings.

(a) To motivate the design and to see how a little bit of theory can dramatically improve software
design, we start by comparing the two simulation algorithms in section “Regular Expression
Search Algorithms” section of Cox’s article.
Here is the NFA corresponding to “a?a?a?aaa”:

0 1 2 3 4 5 6
a a a

a

ε

a

ε

a

ε

Enumerate all paths taken through the NFA using the backtracking search algorithm on
input aaab. How many are there? Given the NFA for (a?)nan, how many paths may need to
be explored to test an input string of length n + 1? (A Big-O bound is fine, and a one or two
sentence explanation is sufficient.)

2

(b) Now, show the steps performed by Algorithm 3.22 in Dragon. (This is a more precise and
succinct description of the second algorithm Cox describes). It is sufficient to show the states
in S each time line (3) is executed. You will find it useful to compute the ε-closure for each
state in the NFA.

(c) Implement Algorithm 3.22. You may use any language you like, provided that your program
compiles and runs on the lab machines. I have put a few lines of helper code to help you
parse the input data on the web site, should you choose to use Java or Scala.
The input to your program will be the transition table for an NFA over the alphabet {a, b}.
The format of the input is:
• a number n indicating the number of states (which will be labeled 0, 1, ..., n− 1);
• a number q ∈ 0..n − 1 indicating the only accepting state of the NFA. (Assume 0 is the

start state).
• the transitions for each state on a, b, and ε.

As an example, the table for the following NFA

0 1 2 3

a

a

b

b

b

ε

ε

would be

4
3
(0,1) (0) ()
() (2) ()
() (3) (1)
() () (0)

Several sample input files are also on the web page. Your program should output “yes” or
“no” for each string it tests. The name of the file containing the input NFA and the test
strings should be passed to your program as command-line arguments, as in:

scala nfa.NFASimulator ex1.nfa aabb abab cow

NOTE: I am far more interested in clarity and correctness than efficiency. The Dragon book
describes a fairly low-level, efficient implementation, but you are not expected to follow that
approach. Just use standard scala.collection (or similar) data structures — Stacks,
Lists, Vectors, Sets, arrays, etc. — to implement a reasonable, straight-forward solution.

(d) The java.util.regex package contains a Pattern class that uses the first algorithm. You
can test a string against a regular expression using this class as follows:

java.util.regex.Pattern.matches("a?a?a?aaa", "aaaa")

Compare the performance of your program to a program that uses this method. For conve-
nience, the data files part-d/en.nfa contain the NFAs for (a?)nan. (The provided example
is both legal Java code and legal Scala code.)

(e) The previous problem explored converting an NFA to a DFA before simulation. Why is this
preferable? What are the downsides to DFA conversion? Do you think the potential issues
impact lexical analysis for programming languages substantially?

11. If you have not used Scala before, please read the Scala tutorial and other resources on the
webpage and work through some small Scala programs to start becoming familiar with that
language. You may find it useful to look at my some of my CS 334 materials on Scala, which are
available on the web page under Week 1.

3

