
HW 9: Dataflow Analysis and Optimizations CSCI 434T
Fall, 2011

Overview

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Intermediate
Code

Generation

Machine-
Independent
Optimization

Code
Generation

Source
Program

Target
Program

As you write the TAC and x86 generators, we are going to begin exploring machine independent
optimizations. Like the earlier topics, this is a great example of how a theoretical model can provide
insight into how to think about and implement the fairly sophisticated analyses and transformations
necessary to generate efficient code.

In this particular case, the theoretical foundations will be dataflow analysis. In general terms,
dataflow analyses compute facts that must be true at the beginning and end of each basic block in a
Control Flow Graph for a procedure body. The reading for the week focuses on several specific instances
of dataflow analysis, as well as a short introduction to lattice theory, the mathematics behind this
general technique. Next week, we will develop a general framework for dataflow problems.

Readings

• Dragon 9 – 9.2

Exercises

1. Nothing to write for this question, but be prepared to give me a status update on PA 3.

2. For the Control Flow Graph (CFG) in Fig 9.10:

(a) Identify the loops.
(b) Statements (1) and (2) in B1 are both copy statements, in which a and b are given constant

values. For which uses of a and b can we perform copy propagation and replace these uses of
variables by uses of a constant. Do so, wherever possible, and show the resulting CFG. Do
any statements become Dead Code?

(c) Identify any global common subexpressions for each loop, and eliminate them wherever
possible. Show the resulting CFG.

(d) Using the CFG from (b), Identify any induction variables for each loop. Be sure to take into
account any constants introduced in (b). Can strength reduction and/or induction variable
elimination be applied? If so, show the resulting CFG. If not, describe one or two instructions
that, if added the flow graph, would result in an opportunity for strength reduction.

(e) Does the CFG from part (c) contain any loop-invariant computations to which code motion
can be applied? If not, describe one or two instructions that, if added to the flow graph,
would result in an opportunity for code motion.

3. For the CFG in Fig 9.10, compute the following:

(a) Reaching Defs:
• The gen and kill sets for each block. I usually represent this information in a table like

the one I’ve started below:

1

Block gen kill
B1 (1), (2) (8), (10), (11)
B2

B3

B4

B5

B6

• The IN and OUT sets for each block. I always find it easiest to actually write the IN and
OUT sets on the CFG while working through the algorithm. I’ve included a version on
the next page that you can use for this purpose if you like. And feel free to print a few
more copies to use for the other parts of this problem.

(b) Available Expressions:
• The e gen and e kill sets for each block. For the e kill sets, you may use a description

like “all expressions using a or b as an operand”.
• The IN and OUT sets for each block.

(c) Live Variables:
• The def and use sets for each block.
• The IN and OUT sets for each block.

4. Dragon 9.2.6.

5. While you are not required to write up the solutions, please spend a few minutes thinking about
Dragon 9.2.7 or 9.2.8, in order to develop an intuition for how to relate dataflow facts back to
program behavior. I hope to touch on this a little bit next Monday.

2

(1) a = 1

(2) b = 2

(3) c = a + b

(4) d = c - 1

(5) d = b + d

(6) d = a + b

(7) e = e + 1

(8) b = a + b

(9) e = c - a

(10) a = b * d

(11) b = a - d

Exit

Enter

B1

B2

B3

B4 B5

B6

IN:

OUT:

IN:

OUT:

IN:

OUT:

IN:

OUT:
IN:

OUT:

IN:

OUT:

3

